Instituto de Matemática >
Artigos Publicados em Periódicos (IM) >

Please use this identifier to cite or link to this item: http://repositorio.ufba.br/ri/handle/ri/6648

Title: Hypersurfaces of sn+1 with two distinct principal curvatures
Other Titles: Glasgow Mathematical Journal
Authors: Barbosa, José Nelson Bastos
Issue Date: Jan-2005
Publisher: Cambridge University Press
Abstract: The aim of this paper is to prove that the Ricci curvature RicM of a complete hypersurface Mn, n≥3, of the Euclidean sphere Sn+1, with two distinct principal curvatures of multiplicity 1 and n−1, satisfies supRicM≥inff(H), for a function\, f depending only on n and the mean curvature H. Supposing in addition that Mn is compact, we will show that the equality occurs if and only if H is constant and Mn is isometric to a Clifford torus Sn−1(r)×S1(1−r2−−−−−√).
Description: p. 149-153
URI: http://www.repositorio.ufba.br/ri/handle/ri/6648
ISSN: 0017-0895
Appears in Collections:Artigos Publicados em Periódicos (IM)

Files in This Item:

File Description SizeFormat
(181).pdf478.14 kBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


    Universidade Federal da Bahia

Contate-nos. Saiba mais sobre o RI/UFBA