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Abstract. The aim of this paper is to prove that the Ricci curvature RicM of
a complete hypersurface Mn, n ≥ 3, of the Euclidean sphere �n+1, with two distinct
principal curvatures of multiplicity 1 and n − 1, satisfies sup RicM ≥ inf f (H), for a
function f depending only on n and the mean curvature H. Supposing in addition that
Mn is compact, we will show that the equality occurs if and only if H is constant and
Mn is isometric to a Clifford torus Sn−1(r) × S1(

√
1 − r2).

2000 Mathematics Subject Classification. Primary 53C42. Secondary 53B30,
53C50.

1. Introduction. Let Mn be a n-dimensional complete, oriented Riemannian
manifold and ϕ : M → �n+1 a minimal isometric immersion of M into the unit
Euclidean sphere �n+1. When n = 3, T. Hasanis and D. Koutrofiotis [5] proved that
sup RicM ≥ 3

2 and, that if M3 is compact, the equality occurs if and only if ϕ(M3)

is isometric to the Clifford torus S1(
√

1
3 ) × S2(

√
2
3 ). Later, L. Haizhong [6] showed

that if M3 is compact and 0 ≤ RicM ≤ 3
2 then ϕ(M3) is isometric to the Clifford torus

S1(
√

1
3 ) × S2(

√
2
3 ). On the other hand, T. Hasanis and T. Vlachos [4] proved that

sup RicM ≥ n − 2, for any dimension n. Moreover, for even dimension n = 2m they
proved that the equality occurs if and only if ϕ(Mn) is isometric to the Clifford torus
Sm( 1√

2
) × Sm( 1√

2
). In the odd case n = 2m + 1, the authors obtained a topological

result. More precisely, they showed that the universal covering of Mn is homeomorphic
to totally geodesic sphere Sn.

It is known that the supremum of Ricci curvature of a Clifford torus
Sn−1(r) × S1(

√
1 − r2) with nonnull mean curvature H (constant) is given by

n(n − 2)
n − 1

[
1 + n

2(n − 1)
H2 − 1

2(n − 1)

√
n2H4 + 4(n − 1)H2

]
, if r2 >

n − 1
n

,

or
n(n − 2)

n − 1

[
1 + n

2(n − 1)
H2 + 1

2(n − 1)

√
n2H4 + 4(n − 1)H2

]
, if r2 <

n − 1
n

.

When H = 0 we have r2 = n − 1
n and the supremum is n(n − 2)

n − 1 .

∗Partially supported by Universidade Federal do Ceará and IM-AGIMB (Instituto do Milênio-Avanço
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Let ki, i = 1, . . . , n, denote the principal curvatures of an immersion
ϕ : Mn → �n+1. If there exist smooth functions λ,µ : M → � such that

λ = k1, . . . , km µ = km+1, . . . , kn,

and λ(p) �= µ(p), for all p ∈ M, we say that ϕ has two distinct principal curvatures of
multiplicity m and n − m. Clifford tori Sn−m(r) × Sm(

√
1 − r2) ↪→ Sn+1 are examples of

these kind of immersions.

We will prove the following result.

THEOREM 1. Let Mn, n ≥ 3, be a n-dimensional complete, oriented Riemannian
manifold, and ϕ : Mn → �n+1 be an isometric immersion whose mean curvature H is
bounded. Suppose that ϕ has two distinct principal curvatures with multiplicity 1 and
n − 1. Then

sup RicM ≥ f (sup |H|), (1)

where

f (x) = n(n − 2)
n − 1

[
1 + n

2(n − 1)
x2 − 1

2(n − 1)

√
n2x4 + 4(n − 1)x2

]
.

Moreover, if Mn is compact, the equality in (1) occurs if and only if H is constant and

ϕ(Mn) = Sn−1(r) × S1(
√

1 − r2), r2 ≥ n − 1
n

.

In order to prove the Theorem 1 we will make use of the following result obtained
by the author et al. [1].

THEOREM 2. Let ϕ : Mn → �n+1, n ≥ 3, be a closed and orientable hypersurface. If
the Ricci curvature of Mn is nonnegative and the fundamental group π1(Mn) of M is
infinite, then ϕ(Mn) is isometric to a Clifford torus Sn−1(r) × S1(

√
1 − r2).

2. Preliminaries. Let Mn be a n-dimensional and oriented Riemannian manifold.
We consider an isometric immersion ϕ : Mn → �n+1 of Mn into the unit Euclidean
sphere �n+1. We denote by N the unit normal field to ϕ. The Gauss mapping
η : Mn → �n+1 of ϕ is defined as follows: for each p ∈ Mn, η(p) is the end point of
the vector obtained by translating N(p) parallel in Rn+2 so as its initial point is the
origin of Rn+2. Identifying Mn and ϕ(Mn) locally, we have, for tangent vectors X to Mn,
that (∇X N)
 = −AX , where ∇ is the connection of �n+1, A is the Weingarten operator
of ϕ and v
 denote the tangent component to Mn of a vector v tangent to �n+1. We
can see easily that dη(X) =−AX . If A is nonsingular, then the map η : Mn → �n+1 is
an isometric immersion when we endow Mn with the metric 〈 , 〉∗ given by

〈X, Y〉∗ = 〈AX, AY〉,

where 〈 , 〉 denote the induced metric of Mn by ϕ. Moreover, the Weingarten operator
of the immersion η is A−1 and the equalities

〈A−1X, Y〉∗ = 〈X, AY〉 = 〈AX, Y〉
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imply that ϕ and η have the same principal directions. More precisely, if {e1, . . . , en}
is an orthonormal basis which diagonalizes A, then { e1

λ1
, . . . , en

λn
} is an orthonormal

basis with respect to metric 〈 , 〉∗ that also diagonalizes A−1, where λ1, . . . , λn are the
principal curvatures of ϕ. Hence the principal curvatures of η are 1

λ1
, . . . , 1

λn
and the

sectional curvatures k∗ of (Mn, 〈 , 〉∗) with respect to the 2-planes spanned by principal
directions are given by

k∗(ei, ej) = 1 + 1
λiλj

, i, j = 1, . . . , n, i �= j.

LEMMA 1. Let ϕ : Mn → �n+1 be an oriented hypersurface of �n+1 with bounded
mean curvature. Suppose there exists a constant α, with α < n − 1, so that the Ricci
curvature of Mn satisfies everywhere RicM ≤ α〈 , 〉. Then, the principal curvatures of Mn

satisfy |λi| ≥β, for some positive constant β. It follows that the Gauss mapping η of the
immersion ϕ is an isometric immersion and that if Mn is complete in the induced metric
by ϕ, then 〈X, Y〉∗ = 〈AX, AY〉 is also a complete metric on Mn.

The proof of the Lemma 1 can be found in the paper of T. Hasanis and
D. Koutroufiotis [5].

3. Proof of Theorem 1. Let us put sup RicM = α and suppose, by contradiction,
that α < f (sup |H|). Then, since f (x) is decreasing for x ≥ 0, we have

α < f (sup |H|) ≤ n(n − 2)
n − 1

< n − 1. (2)

Consequently, we can apply the Lemma 1 to conclude that the principal curvatures λ

and µ of ϕ are non-zero and that (Mn, 〈 , 〉∗) is complete. We will denote by e1, . . . , en

the principal directions with respect the principal curvatures λ1 = λ and λ2, . . . , λn = µ,
respectively. Since

RicM(ei) = n − 1 + nHλi − λ2
i

and RicM ≤ α, it follows that

λi ≥ n
2

H +
√

n2

4
H2 + n − 1 − α

or

λi ≤ n
2

H −
√

n2

4
H2 + n − 1 − α.

Since λ + (n − 1)µ= nH, by changing the orientation of M, if necessary, we may
assume that

λ ≥ n
2

H +
√

n2

4
H2 + n − 1 − α (3)
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and

µ ≤ n
2

H −
√

n2

4
H2 + n − 1 − α. (4)

On the other hand, we have

λ = nH − (n − 1)µ

≥ nH − n(n − 1)
2

H + (n − 1)

√
n2

4
H2 + n − 1 − α

= −n(n − 3)
2

H + (n − 1)

√
n2

4
H2 + n − 1 − α. (5)

Then, (4) and (5) yield

λµ ≤
(

−n(n − 3)
2

H + (n − 1)

√
n2

4
H2 + n − 1 − α

)

×
(

n
2

H −
√

n2

4
H2 + n − 1 − α

)

= −g(H), (6)

where

g(x) = (n − 1)2 − (n − 1)α + n2(n − 2)
2

x2 − n(n − 2)x

√
n2

4
x2 + n − 1 − α.

It is obvious that g(x) is decreasing everywhere. Moreover, it satisfies

g(sup |H|) > 1. (7)

In fact, this inequality is equivalent to

(n − 1)2α2 − n(n − 2)[2(n − 1) + n(sup |H|)2]α + n2(n − 2)2[1 + (sup |H|)2] > 0.

This is true, since the minor root is f (sup |H|) and α < f (sup |H|).
The sectional curvature k∗ of the Gauss mapping η of the immersion ϕ, with

respect to the plane generated by e1 and ej ( j > 1), taking into account of (7), satisfies

k∗(e1, ej) = 1 + 1
λµ

≥ 1 − 1
g(H)

≥ g(sup |H|) − 1
g(sup |H|) = δ > 0,

where δ is a positive constant. On the other hand, for i > j > 1 we have

k∗(ei, ej) = 1 + 1
µ2

> 1.

Since the sectional curvature of hypersurface of a space form attains its absolute
extrema at planes spanned by principal directions, the sectional curvatures of
(Mn, 〈 , 〉∗) are bounded from below by a positive constant. Hence we may apply
Bonnet-Myers Theorem to conclude that Mn is compact and its fundamental group
π1(Mn) is finite.



HYPERSURFACES OF �
n+1 153

For n ≥ 4, since η has only two principal curvatures of multiplicity 1 and n − 1,
we conclude that (Mn, 〈 , 〉∗) is conformally flat (see [3, Theorem 7.11]) and without
umbilical points. Since Mn is compact, we may apply Theorem 1.4 of M. do Carmo
et al. [2], to derive that Mn is homeomorphic to a product Sn−1(r1) × S1(r2). Therefore,
π1(Mn) is infinite, which implies a contradiction. For n = 3, we obtain the same
conclusion since η is conformally flat ([1]) without umbilical points. This proves the
first part of the theorem.

Now, we will suppose that Mn is compact and sup RicM = f (sup |H|), i.e.,

RicM(X) ≤ α ≤ f (sup |H|), ∀X ∈ TM, |X | = 1.

Hence, we have α < n − 1 and in an analogous way to the first part of proof, we
conclude

k∗(e1, ej) = 1 + 1
λµ

≥ g(sup |H|) − 1
g(sup |H|) ≥ 0, j > 1.

However, we note that it can happen that g(sup |H|) − 1 = 0 since now α ≤ f (sup |H|).
On the other hand we have

k∗(ei, ej) = 1 + 1
µ2

> 1, j > i > 1. (8)

It follows that the Ricci curvature of η is nonnegative. Since M is compact and η

has two distinct principal curvatures of multiplicity 1 and n − 1, we can show by the
same argument as the first part of the proof that π1(M) is infinite. Then we can apply
Theorem 2 for η to conclude that η(Mn) is a Clifford torus Sn−1(r0) × S1(

√
1 − r0

2)
with constant mean curvature. In particular, we have that the principal curvatures
1/λ and 1/µ of η are constants. Hence, λ, µ and H are constants. Consequently,
ϕ(Mn) is a Clifford torus Sn−1(r) × S1(

√
1 − r2). Since sup RicM = f (H), it follows

that r2 ≥ (n − 1)/n, which completes the proof of the theorem. �
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