DSpace

RI UFBA >
Escola Politécnica >
Programa de Pós-Graduação em Engenharia Industrial (PEI) >
Teses de Doutorado (PEI) >

Please use this identifier to cite or link to this item: http://repositorio.ufba.br/ri/handle/ri/28872

Title: Modelos de detecção e contagem de esporos de fungos micorrízicos por meio da transformada de hough circular e de redes neurais artificiais
Authors: Melo, Clênia Andrade Oliveira de
???metadata.dc.contributor.advisor???: Magalhães, Robson da Silva
???metadata.dc.contributor.advisor-co???: Trindade, Roque Mendes Prado
Keywords: Classificação de Padrões;Contagem Semiautomatizada;Rede Neural Artificial;Processamento de Imagem;Transformada de Hough Circular
Issue Date: 18-Mar-2019
Abstract: A maioria das espécies vegetais forma associações mutualistas entre certos fungos de solo e suas raízes, e essas associações são denominadas micorrizas. Destaca-se, como parte das pesquisas em Fungos Micorrízicos Arbusculares (FMAs), a detecção da presença e a estimativa da quantidade dos esporos desses fungos, após sua extração. A dificuldade na contagem desses esporos se dá pelo fato dela ainda ser feita manualmente, com auxílio de microscópio (lupa) e, às vezes, com contador digital. A contagem dos esporos exige habilidade do especialista para diferenciar os esporos de outros elementos que permanecem após a extração, como partículas minerais e fragmentos de hifas. Isso ocorre porque a porção de terra em análise, mesmo passando por um processo mecânico de limpeza, permanece com impurezas na amostra que vai ao microscópio. Essas impurezas podem confundir a detecção e posterior contagem dos esporos, além da dificuldade do especialista de seguir uma ordem para não contar esporos repetidos ou deixar de contar algum. A detecção e a contagem dos esporos de FMA são importantes métodos, por exemplo, para controlar a aplicação de insumos em uma determinada área. Utilizando-se dessas associações e com o conhecimento prévio da quantidade presente de FMA, é possível definir as quantidades adequadas de insumos, garantindo-se que a planta consiga absorvê-los ao máximo, reduzindo-se os desperdícios. A automação do processo de contagem de esporos de FMA proporciona confiabilidade e agilidade nos resultados apresentados pelos especialistas. O objetivo deste estudo é propor e investigar a eficiência de um método de contagem automática com a aplicação de modelos com arquiteturas baseadas em Rede Neural Artificial (RNA). O trabalho avalia o desempenho de um sistema semiautomatizado de contagem, com base na aplicação de dois modelos usados como identificadores e classificadores das imagens dos esporos de FMAs. Utiliza-se a Transformada Hough Circular (THC) como ferramenta de pré-processamento das imagens a serem classificadas pelas RNAs. Os resultados obtidos demonstraram que os dois modelos, baseados em redes neurais se caracterizam como bons classificadores. Ambos os modelos alcançaram altas taxas de acerto na classificação, quando comparados ao sistema de contagem manual, podendo ser aplicados em um sistema de automação do processo de contagem de esporos de FMAs. Como forma de beneficiar este processo propõe-se o desenvolvimento de um modelo, baseado em software, que possa automatizá-lo, explorando técnicas de processamento de imagens e de redes neurais artificiais. Palavra
URI: http://repositorio.ufba.br/ri/handle/ri/28872
Appears in Collections:Teses de Doutorado (PEI)

Files in This Item:

File Description SizeFormat
Tese Final - CLÊNIA.pdf6.19 MBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

    Universidade Federal da Bahia

Contate-nos. Saiba mais sobre o RI/UFBA