Please use this identifier to cite or link to this item: https://repositorio.ufba.br/handle/ri/17068
metadata.dc.type: Artigo de Periódico
Title: Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria
Other Titles: BioEnergy Research
Authors: Nascimento, Iracema Andrade
Marques, Sheyla Santa Izabel
Cabanelas, Iago Teles Dominguez
Pereira, Solange Andrade
Druzian, Janice Izabel
Souza, Carolina Oliveira de
Vich, Daniele Vital
Carvalho, Gilson Correia de
Nascimento, Maurício Andrade
metadata.dc.creator: Nascimento, Iracema Andrade
Marques, Sheyla Santa Izabel
Cabanelas, Iago Teles Dominguez
Pereira, Solange Andrade
Druzian, Janice Izabel
Souza, Carolina Oliveira de
Vich, Daniele Vital
Carvalho, Gilson Correia de
Nascimento, Maurício Andrade
Abstract: The viability of algae-based biodiesel industry depends on the selection of adequate strains in regard to profitable yields and oil quality. This work aimed to bioprospecting and screening 12 microalgae strains by applying, as selective criteria, the volumetric lipid productivity and the fatty acid profiles, used for estimating the biodiesel fuel properties. Volumetric lipid productivity varied among strains from 22.61 to 204.91 mg l−1 day−1. The highest lipid yields were observed for Chlorella (204.91 mg l−1 day1) and Botryococcus strains (112.43 and 98.00 mg l−1 day−1 for Botryococcus braunii and Botryococcus terribilis, respectively). Cluster and principal components analysis analysis applied to fatty acid methyl esters (FAME) profiles discriminated three different microalgae groups according to their potential for biodiesel production. Kirchneriella lunaris, Ankistrodesmus fusiformis, Chlamydocapsa bacillus, and Ankistrodesmus falcatus showed the highest levels of polyunsaturated FAME, which incurs in the production of biodiesels with the lowest (42.47–50.52) cetane number (CN), the highest (101.33–136.97) iodine values (IV), and the lowest oxidation stability. The higher levels of saturated FAME in the oils of Chlamydomonas sp. and Scenedesmus obliquus indicated them as source of biodiesel with higher oxidation stability, higher CN (63.63–64.94), and lower IV (27.34–35.28). The third group, except for the Trebouxyophyceae strains that appeared in isolation, are composed by microalgae that generate biodiesel of intermediate values for CN, IV, and oxidation stability, related to their levels of saturated and monosaturated lipids. Thus, in this research, FAME profiling suggested that the best approach for generating a microalgae-biodiesel of top quality is by mixing the oils of distinct cell cultures.
Keywords: Biodiesel quality
Fatty acid profiles
Lipid productivity
Microalgae bioprospection
Microalgae selection for biodiesel production
metadata.dc.rights: Acesso Aberto
URI: http://repositorio.ufba.br/ri/handle/ri/17068
Issue Date: 2013
Appears in Collections:Artigo Publicado em Periódico (Biologia)

Files in This Item:
File Description SizeFormat 
Iracema Andrade Nascimento.pdf419,83 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.