Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSimis, Aron-
dc.contributor.authorVasconcelos, Wolmer V.-
dc.creatorSimis, Aron-
dc.creatorVasconcelos, Wolmer V.-
dc.descriptionTexto completo. Acesso restrito. p. 63 - 78pt_BR
dc.description.abstractFor a finitely generated module E over the Noetherian ring R we consider formulas for the Krull dimension of the symmetric algebra S(E). A result of Huneke and Rossi is re-proved and an eiffective formulais derived that reads the dimension of S(E) from a presentation of E. They provide a first line of obstructions for S(E) to be an integral domain. For algebras of codimension at most four we give methods, including computer-assisted ones, to ascertain whether S(E) is a Cohen-Macaulay domain.pt_BR
dc.publisherManuscripta Mathematicapt_BR
dc.titleKrull dimension and integrality of symmetric algebraspt_BR
dc.title.alternativeManuscripta Mathematicapt_BR
dc.typeArtigo de Periódicopt_BR
dc.identifier.numberv. 61, n. 1pt_BR
Appears in Collections:Artigo Publicado em Periódico (IME)

Files in This Item:
File Description SizeFormat 
111.pdf675,36 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.