Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/43012
Registro completo de metadados
Campo DCValorIdioma
dc.creatorWatanabe Neto, Mitsuo-
dc.date.accessioned2025-09-24T12:57:50Z-
dc.date.available2025-09-24T12:57:50Z-
dc.date.issued2025-02-14-
dc.identifier.citationABNTpt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/43012-
dc.description.abstractThe process of separating certain components is one of the most important operations in the chemical industry. Absorption columns are used in various unit operations to separate compounds to specify and market them, thus playing a fundamental role in the purification and concentration of chemical substances. The problem related to this equipment is associated with erroneous handling and unfamiliarity with computer modeling, especially from an industrial point of view, which leads to high operating, energy, and raw material costs, as well as affecting product quality, emitting pollutants into the atmosphere, and compromising the plant's operational safety. Therefore, this study focuses on a gas absorption column 1 m high and 0.07 m in diameter, with a glass Raschig ring filling, where water was used as a solvent to remove the volatile organic compound (acetone or propanone) present in the air. That said, to achieve more economical and efficient separations, this work aimed to simulate this column in particular, using the Aspen Plus® software as a tool, evaluating not only the influence of operational variables on transport phenomena but also on hydrodynamic behavior. The simulation was validated with experimental data obtained in the laboratory by Barbosa and Góis (2024), for the pressure drop, the fraction of acetone absorbed, and the volumetric mass transfer coefficient (KL.a). In conclusion, from the simulated results obtained by the hydrodynamic study together with the mass transfer, it was possible to validate the empirical data already collected in the column, regarding the pressure drop, for the air-acetone-water system with Raschig rings, using the Sherwood-Leva-Eckert (SLE) modeling, which showed an average deviation of 20%. In addition, the volumetric mass transfer coefficient (KL.a) was validated for a gas flow rate of 0.85 g/min, based on Bravo-Fair rate based modeling. For the other phenomena, the Bravo-Fair rate-based model proved to be the most suitable for the study, showing that an increase in gas flow is associated with a greater pressure drop, an increase in the probability of flooding, an increase in the fraction of acetone absorbed, in the interfacial mass transfer area and a better fit of the model about the experimental KL.a. Thus, the study provided reliability in analyzing the phenomena, as well as proposing improvements and substantiating topics that have not yet been studied experimentally in the column, thus facilitating future studies.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectAbsorçãopt_BR
dc.subjectAcetonapt_BR
dc.subjectÁguapt_BR
dc.subjectAspen-Pluspt_BR
dc.subject.otherAbsorptionpt_BR
dc.subject.otherAcetonept_BR
dc.subject.otherWaterpt_BR
dc.subject.otherAspen-Pluspt_BR
dc.titleSimulação de uma absorvedora com recheio na recuperação da propanona do arpt_BR
dc.title.alternativeSimulation of a packed absorber for recovering propanone from airpt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Quimica (PPEQ) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::OPERACOES INDUSTRIAIS E EQUIPAMENTOS PARA ENGENHARIA QUIMICA::OPERACOES DE SEPARACAO E MISTURApt_BR
dc.contributor.advisor1Góis, Luiz Mário Nelson de-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6362865810706974pt_BR
dc.contributor.referee1Simonelli, George-
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3421092159521710pt_BR
dc.contributor.referee2Ferreira, Gabriela Fontes Deiró-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/6837902462644236pt_BR
dc.contributor.referee3Marques, José Jaílton-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/0327054232898199pt_BR
dc.contributor.referee4Góis, Luiz Mário Nelson de-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/6362865810706974pt_BR
dc.creator.IDhttps://orcid.org/0000-0001-9555-9357pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/3689397845686332pt_BR
dc.description.resumoO processo de separação de determinados componentes representa uma das operações mais importantes na indústria química. As colunas de absorção são utilizadas em diversas operações unitárias na separação de compostos visando sua especificação e comercialização, desempenhando assim, um papel fundamental na purificação e concentração de substâncias químicas. A problemática relacionada a este equipamento está associada à manipulação de forma errônea e à não familiarização com a modelagem computacional, principalmente do ponto de vista industrial, o que acarreta altos custos operacionais, energéticos e de matérias-primas, além de afetar a qualidade dos produtos, emitir poluentes para a atmosfera e comprometer a segurança operacional da planta. Assim, o presente estudo tem enfoque em uma coluna de absorção gasosa de 1 m de altura e 0,07 m de diâmetro, com recheio do tipo anéis de Raschig de vidro, onde se utilizou a água como solvente para remoção do composto orgânico volátil (acetona ou propanona) presente no ar. Posto isso, para alcançar separações mais econômicas e eficientes, o intuito desse trabalho foi o de simular esta coluna em especial, utilizando como ferramenta o software Aspen Plus®, avaliando não só a influência de variáveis operacionais nos fenômenos de transporte como também no comportamento hidrodinâmico. A simulação foi validada com os dados experimentais obtidos em laboratório por Barbosa e Góis (2024), para a queda de pressão, a fração de acetona absorvida e o coeficiente volumétrico de transferência de massa (KL.a). Em conclusão, a partir dos resultados simulados obtidos pelo estudo hidrodinâmico juntamente com a transferência de massa, foi possível validar os dados empíricos já obtidos na coluna, referentes à queda de pressão, para o sistema ar-acetona-água com anéis de Raschig, utilizando a modelagem de Sherwood-Leva-Eckert (SLE), que apresentou um desvio médio de 20%. Adicionalmente, validou-se o coeficiente volumétrico de transferência de massa (KL.a) para a vazão de gás de 0,85 g/min, com base na modelagem rate-based de Bravo-Fair. Para os demais fenômenos, o modelo rate-based de Bravo-Fair mostrou-se o mais adequado para o estudo, evidenciando que o aumento da vazão de gás está associado a uma maior queda de pressão, a uma elevação na probabilidade de inundação, a um acréscimo na fração de acetona absorvida, na área interfacial de transferência de massa e a um melhor ajuste do modelo em relação ao KL.a experimental. Assim, o estudo deu confiabilidade em analisar os fenômenos, além de propor melhorias e fundamentar tópicos que ainda não foram estudados experimentalmente na coluna, facilitando assim estudos futuros.pt_BR
dc.publisher.departmentEscola Politécnicapt_BR
dc.relation.referencesASPEN PLUS . User guide Aspen Plus steady state simulation, v. 10. Aspen Technology Inc, 1999. ABEDI, M.; SAHA, P.; TAN, X.; KLAUSNER, J. F.; BENARD, A. Evaluation of Mass Transfer and Interfacial Area Correlations in Direct Contact Packed-Bed: Comparison of Correlations. Proceedings of the 2nd International Conference on Fluid Flow and Thermal Science (ICFFTS’21), n. 118, p. 1–7, 2021. AHMADPOUR, A.; KAVIANI, R. Original Article: Minimization of Energy Consumption in the Condenser of Acetone Recovery Process from Air. v. 2, n. 3, p. 53–66, 2023. AHMED, M. J.; HAMEED, B. H. Removal of emerging pharmaceutical contaminants by adsorption in a fixed-bed column: A review. Ecotoxicology and Environmental Safety, v. 149, p. 257–266, mar. 2018. ALBRIGHT, L. et al. Albright’s Chemical Engineering Handbook. [s.l.] CRC Press, 2008. ALGRIM, L. B.; PAGONIS, D.; DE GOUW, J. A.; JIMENEZ, J. L.; ZIEMANN, P. J. Measurements and modeling of absorptive partitioning of volatile organic compounds to painted surfaces. Indoor Air, v. 30, n. 4, p. 745–756, 2020. ALMOSLH, A.; ALOBAID, F.; HEINZE, C.; EPPLE, B. Comparison of equilibrium-stage and rate-based models of a packed column for tar absorption using vegetable oil. Applied Sciences (Switzerland), v. 10, n. 7, p. 8–10, 2020. Aspen plus input language guide. [s.l: s.n.]. BARBIERI, C.; DE GUIDO, G.; MOIOLI, S. Vapor-liquid equilibrium data for the binary system isopropanol+water at 60 kPa and 80 kPa. The Journal of Chemical Thermodynamics, v. 198, p. 107342, nov. 2024. BARBOSA, I. B; GOIS, L.M.N. Mass Transfer in An Absorption Column. International Journal of Scientific Research in Science and Technology, v. 11, n. 5, p. 150–156, 25 set. 2024. BASHAR, A. Biogas Quality Improvement Using Water Wash and Phosphorus Recovery as Struvite in Jones Island Wwtp. n. August, p. 40–49, 2018. BAZOOYAR, B.; ZHU, M.; MANOVIC, V.; NABAVI, S. A. Direct numerical simulation of packed and monolith syngas catalytic combustors for micro electrical mechanical systems. Energy Conversion and Management: X, v. 20, p. 100422, out. 2023. BEMER GG, K. G. A new method to predict hold-up and pressure drop in packed columns. Trans.I.Chem.Eng, v. 56, 1978. BIARD, P. F.; COUVERT, A.; GIRAUDET, S. Volatile organic compounds absorption in packed column: theoretical assessment of water, DEHA and PDMS 50 as absorbents. Journal of Industrial and Engineering Chemistry, v. 59, p. 70–78, 2018. BILLET, R.; SCHULTES, M. Predicting mass transfer in packed columns. Chemical Engineering & Technology, v. 16, n. 1, p. 1–9, 1993. BILLET, R.; SCHULTES, M. Prediction of Mass Transfer Columns with Dumped and Arranged Packings. Chemical Engineering Research and Design, v. 77, n. 6, p. 498–504, 1999. BIRD, R. B.; STEWART, W. E.; LIGHTFOOT, E. N. Balanços de momento em cascas e distribuição de velocidades em regime laminar. [s.l: s.n.]. BRAVO, J. L.; FAIR, J. R. Generalized Correlation for Mass Transfer in Packed Distillation Columns. Industrial and Engineering Chemistry Process Design and Development, v. 21, n. 1, p. 162–170, 1982. CALDAS, J. N.; LACERDA, A. I. DE; VELOSO, E.; PASCHOAL, L. C. M. Internos de Torres: Pratos e Recheios. 2. ed. [s.l.] Editora Interciência; 2a edição, 2007. CHEN, D.; LIU, R.; LIN, Q.; MA, S.; LI, G.; YU, Y.; ZHANG, C.; AN, T. Volatile organic compounds in an e-waste dismantling region: From spatial-seasonal variation to human health impact. Chemosphere, v. 275, p. 130022, 2021. CHEW, K. R.; LEONG, H. Y.; KHOO, K. S.; VO, D. V. N.; ANJUM, H.; CHANG, C. K.; SHOW, P. L. Effects of anaerobic digestion of food waste on biogas production and environmental impacts: a review. Environmental Chemistry Letters, v. 19, n. 4, p. 2921–2939, 2021. CHUANG, K. T.; NANDAKUMAR, K. DISTILLATION | Tray Columns: Design. In: Encyclopedia of Separation Science. [s.l: s.n.]. v. 1p. 1135–1140. CREMASCO, M. A. FUNDAMENTOS DE TRANSFERENCIA DE MASSA. 3. ed. [s.l.] Blucher, 2016. DELAHANTY, J. C.; HUGHES, M.; GARIMELLA, S. Desorber and rectifier geometries for ammonia-water absorption systems; Part II: Mass transfer, flooding, and component performance. International Journal of Refrigeration, v. 122, p. 245–255, 2021. DEVKOTA, S.; POKHREL, R.; RAYAMAJHI, B.; UPRETY, B. Design and cost estimation of a CO2 capture plant from cement flue gas for urea production in Nepal. International Journal of Greenhouse Gas Control, v. 111, n. September, p. 103484, 2021. DORAI, F.; MOURA TEIXEIRA, C.; ROLLAND, M.; CLIMENT, E.; MARCOUX, M.; WACHS, A. Fully resolved simulations of the flow through a packed bed of cylinders: Effect of size distribution. Chemical Engineering Science, v. 129, p. 180–192, jun. 2015. ECHENIQUE, J. B. Caracterização Fluidodinâmica de Meios Porosos Formados com Recheios Industriais Projeto de Final de Curso. 2021. ENGEL, V., STICHLMAIR, L. AND GEIPEL, W. New model to predict liquid hold-up in packed columns using data based on capacitance measurement technique. Proc Symp on Distillation and Absorption, IChemE Symp Series, 1997. FERNANDES, M. HETP Evaluation of Structured and Randomic Packing Distillation Column. In: Mass Transfer in Chemical Engineering Processes. [s.l.] InTech, 2011. FILARSKY, F.; SCHMUCK, C.; SCHULTZ, H. J. Development of a gas hydrate absorption for energy storage and gas separation - Proof of Concept based on natural gas. Energy Procedia, v. 158, p. 5367–5373, 2019. FOUST, A. S.; WENZEL, L. A.; CLUMP, C. W.; MAUS, L.; ANDERSEN, L. B. Principles Of Unit Operations. [s.l.] Rio de Janeiro: Editora Guanabara Dois, 1980. FU, Y.; BAO, J.; SINGH, R.; WANG, C.; XU, Z. Investigation of countercurrent flow profile and liquid holdup in random packed column with local CFD data. Chemical Engineering Science, v. 221, p. 115693, 2020. FURTER, W. F.; NEWSTEAD, W. T. Comparative performance of packings for gas‐liquid contacting columns. The Canadian Journal of Chemical Engineering, v. 51, n. 3, p. 326–331, 26 jun. 1973. GAUTO, M. A.; ROSA, G. R. Processos e Operações Unitárias da Indústria Química. [s.l.] Ciência Moderna, 2011. GEANKOPLIS, C. J. Transport Processes and Unit Operations. 3rd. ed. [s.l.] Pearson College Div, 1993. GEANKOPLIS, C. J.; HERSEL, A.; LEPEK, D. H. Transport Processes and Separation Process Principles. 5th. ed. [s.l.] International Series in the Physical and Chemical Engineering Sciences..Pearson College Div., 2018. HANUSCH, F.; REHFELDT, S.; KLEIN, H. Liquid Maldistribution in Random-Packed Columns: Experimental Investigation of Influencing Factors. Chemical Engineering and Technology, v. 41, n. 11, p. 2241–2249, 2018. HAUSHOFER, G.; SCHLAGER, M.; WOLF-ZÖLLNER, V.; LEHNER, M. Automated detection of loading and flooding points in packed columns. Chemical Engineering Research and Design, v. 196, p. 61–70, 2023. HEGELY, L.; ROESLER, J.; ALIX, P.; ROUZINEAU, D.; MEYER, M. Absorption methods for the determination of mass transfer parameters of packing internals: A literature review. AIChE Journal, v. 63, n. 8, p. 3246–3275, 25 ago. 2017. HEMMATI, A.; RASHIDI, H.; BEHRADFAR, K.; KAZEMI, A. A comparative study of different mass transfer and liquid hold-up correlations in modeling CO2 absorption with MEA. Journal of Natural Gas Science and Engineering, v. 62, n. November 2018, p. 92–100, 2018. HEMMATI, A.; FARAHZAD, R.; SURENDAR, A.; AMINAHMADI, B. Validation of mass transfer and liquid holdup correlations for CO2 absorption process with methyldiethanolamine Solvent and piperazine as an activator. Process Safety and Environmental Protection, v. 126, p. 214–222, 2019. HEYMES, F.; MANNO DEMOUSTIER, P.; CHARBIT, F.; LOUIS FANLO, J.; MOULIN, P. Hydrodynamics and mass transfer in a packed column: Case of toluene absorption with a viscous absorbent. Chemical Engineering Science, v. 61, n. 15, p. 5094–5106, 2006. INCROPERA, F. P.; DEWITT, D. P.; BERGMAN, T. L.; LAVINE, A. S. Fundamentos de transferência de calor e de massa. [s.l.] LTC, 2008. KAMAL I. M. AL-MALAH. Aspen plus: chemical engineering applications. 2nd. ed. [s.l.] John Wiley & Sons, 2022. KANG, J. L.; CIOU, Y. C.; LIN, D. Y.; WONG, D. S. H.; JANG, S. S. Investigation of hydrodynamic behavior in random packing using CFD simulation. Chemical Engineering Research and Design, v. 147, n. 2001, p. 43–54, 2019. KHADANGA, S. P.; SAMAL, D. K.; PATNAIK, P. K.; ROY, G. K. Pressure-drop and mass transfer study in multi-stage PSRBC sparger bubble column-An experimental investigation. International Communications in Heat and Mass Transfer, v. 153, p. 107347, abr. 2024. KISTER, H. Z. Distillation Design. [s.l.] McGraw-Hill, New York, USA, 1992. KOHL, A. L.; NIELSEN, R. B. Gas Purification. [s.l.] Elsevier, 1997. KOOIJMAN, H. A.; TAYLOR, R. The ChemSep Book. Second Edi ed. [s.l: s.n.]. LAMPREA PINEDA, P. A.; DEMEESTERE, K.; SABBE, M.; BRUNEEL, J.; VAN LANGENHOVE, H.; WALGRAEVE, C. Effect of (bio)surfactant type and concentration on the gas-liquid equilibrium partitioning of hydrophobic volatile organic compounds. Journal of Hazardous Materials, v. 443, n. PB, p. 130320, 2023. LARACHI, F.; LÉVESQUE, S.; GRANDJEAN, B. P. A. Seamless Mass Transfer Correlations for Packed Beds Bridging Random and Structured Packings. Industrial & Engineering Chemistry Research, v. 47, n. 9, p. 3274–3284, 1 maio 2008. LASO, MANUEL; VON STOCKAR, U. Absorption. Kirk‐Othmer Encyclopedia of Chemical Technology, 2000. LAW, A. M. Simulation Modeling and Analysis. [s.l: s.n.]. LI, W.; YU, K.; YUAN, X.; LIU, B. An anisotropic turbulent mass transfer model for simulation of pilot-scale and industrial-scale packed columns for chemical absorption. International Journal of Heat and Mass Transfer, v. 88, p. 775–789, set. 2015. LIMA, J. C. F.; COSTA, J. C. DA; MATTEDI, S.; GÓIS, L. M. N. DE. Avaliação da separação acetona-água em uma coluna de recheio. Research, Society and Development, v. 10, n. 10, p. e76101018592, 5 ago. 2021. LINEK, V.; MOUCHA, T.; REJL, F. J. Hydraulic and Mass Transfer Characteristics of Packings for Absorption and Distillation Columns. Rauschert-Metall-Sattel-Rings. Chemical Engineering Research and Design, v. 79, n. 7, p. 725–732, out. 2001. MAĆKOWIAK, J. Progress in design of random packing for gas-liquid systems. Chemical Engineering Research and Design, v. 99, p. 28–42, 2015. MACKOWIAK, J.; HALL, C. Fluid_Dynamics_of_Packed_Column: Principles of the Fluid Dynamic Design of Columns for Gas/Liquid and Liquid/Liquid Systems. [s.l.] Springer, 2010. MAHAMOUDOU, A.; LE PIERRÈS, N.; RAMOUSSE, J. Review of coupled heat and mass transfer studies in falling film absorbers: Modeling, experimental and thermodynamic approaches. International Journal of Refrigeration, v. 136, n. January, p. 229–244, 2022. MEZIANE, I.; FENARD, Y.; DELORT, N.; HERBINET, O.; BOURGALAIS, J.; RAMALINGAM, A.; HEUFER, K. A.; BATTIN-LECLERC, F. Experimental and modeling study of acetone combustion. Combustion and Flame, v. 257, p. 112416, nov. 2023. MONAKHOVA, Y. B.; POZHAROV, M. V.; ZAKHAROVA, T. V.; KHVOROSTOVA, E. K.; MARKIN, A. V.; LACHENMEIER, D. W.; KUBALLA, T.; MUSHTAKOVA, S. P. Association/Hydrogen Bonding of Acetone in Polar and Non-polar Solvents: NMR and NIR Spectroscopic Investigations with Chemometrics. Journal of Solution Chemistry, v. 43, n. 11, p. 1963–1980, 30 nov. 2014. MORADI, H.; BAHMANYAR, H.; AZIZPOUR, H. Investigation of solvent extraction of acetic acid and acetone from water in the presence of SiO2 nanoparticles using molecular dynamics simulation. Journal of Molecular Graphics and Modelling, v. 133, p. 108871, dez. 2024. NETO, M. W. Simulação e otimização da absorção do CO 2 com água no tratamento do biogás Simulation and optimization of CO 2 absorption with water in biogas treatment Simulación y optimización de la absorción de CO 2 con agua en el tratamiento del biogás. v. 2022, p. 1–14, 2022. NIEGODAJEW, P.; WILCZYŃSKI, M.; MAREK, M.; DROBNIAK, S.; ASENDRYCH, D.; ELSNER, W.; GNATOWSKA, R.; STEMPKA, J. A study of liquid spreading in laboratory scale random packing column with an optical method supplemented with liquid holdup characteristics. Experimental Thermal and Fluid Science, v. 96, n. June 2017, p. 162–168, 2018. OLIVEIRA, H. N. M. DE. Determinação de dados de Equilíbrio Líquido- Vapor para Sistemas Hidrocarbonetos e Desenvolvimento de uma nova Célula Dinâmica. [s.l: s.n.]. ONDA, K.; SADA, E.; TAKEUCHI, H. Gas absorption with chemical reaction in packed columns. Journal of Chemical Engineering of Japan, v. 1, n. 1, p. 62–66, 1968. OTHMER, D. F.; SCHEIBEL, E. G. Acetone absorption by water in a semicommercial packed tower. Transactions of the American Institute of Chemical Engineers, v. 37, 1941. OTHMER, D. F.; SCHEIBEL, E. G. Gas absorption as a function of diffusivities and flow rates. Transactions of the American Institute of Chemical Engineers, v. 40, 1944. Packed column Flood And Pressure Drop. Disponível em: <https://www.brewiki.org/pressure-drop/packedcolumn-flood-and-pressure-drop.html>. PATUZZO, G. S.; FRARE, L. M. Otimização e análise do processo de absorção por water scrubbing no refino de biogás. 2019. PERRY, R. H.; GREEN, D. W. Perry’s Chemical Engineers’ Handbook. [s.l.] The McGraw-Hill Companies, 2008. PINHEIRO, J. Q.; CAVALCANTI, G. R. C.; BARROS, H. C. L. Global climate changes: Perception bias, time and space. Estudos de Psicologia, v. 23, n. 3, p. 282–292, 2018. PIROLA, C. Experimental and simulated operation of absorption column for the removal of VOC from air. Chemical Engineering Transactions, v. 74, n. February, p. 817–822, 2019. PIROLA, C.; MATTIA, M. Purification of air from volatile organic compounds by countercurrent liquid gas mass transfer absorption process. International Journal of Thermofluids, v. 9, 2021. PLUS, A. User guide Aspen Plus steady state simulation. [s.l.] Aspen Technology Inc, 1999. PÖSCHMANN, R. et al. Will laboratory and pilot plant columns soon become superfluous? – A concept for the determination of structured packing characteristics in a measuring cell under distillation conditions. Separation and Purification Technology, v. 325, n. July, p. 124617, 2023. QUAN, H. et al. Mass transfer mechanism and model of CO2 absorption into a promising DEEA-HMDA solvent in a packed column. Separation and Purification Technology, v. 320, n. March, p. 124095, 2023. RAHBAR, M. S.; KAGHAZCHI, T. Modeling of packed absorption tower for volatile organic compounds emission control. International Journal of Environmental Science & Technology, v. 2, n. 3, p. 207–215, 30 set. 2005. REID, R. C.; PRAUSNITZ, J. M.; POLING, B. E. II. Properties of Gases and Liquids. 4th. ed. [s.l.] New York: McGraw-Hil, 1987. RICHARDSON, J. F.; HARKER, J. H.; BACKHURST, J. R. Coulson and Richardson’s Chemical Engineering. Particle T ed. [s.l: s.n.]. ROCHA, J. A.; BRAVO, J. L.; FAIR, J. R. Distillation columns containing structured packings: a comprehensive model for their performance. 1. Hydraulic models. Industrial & Engineering Chemistry Research, v. 32, n. 4, p. 641–651, 1 abr. 1993. ROW, K. H.; LEE, C. H. Correlation of HETP and experimental variables in preparative liquid chromatography. Korean Journal of Chemical Engineering, v. 16, n. 1, p. 22–27, jan. 1999. SALTEN, A. H. J.; KENIG, E. Y. Model based random packing optimisation for absorption processes using the hydrodynamic analogy concept. Chemical Engineering Science, v. 242, p. 116670, 2021. SANTOS, M. F. C.; ALBUQUERQUE, É. L. DE. Transferência de massa entre fases. SCHLESINGER, S. Terminology for model credibility. SIMULATION, v. 32, n. 3, p. 103–104, 1 mar. 1979. SEADER, J. D.; HENLEY, E. J.; ROPER, D. K. Separation Process Principles- Chemical and Biochemical Operations. 3ed. ed. [s.l.] John Wiley & Sons, 2010. SHEKHAR, S. SIMULATION OF AN ADSORPTION COLUMN FOR THE REMOVAL OF ETHYL ACETATE FROM AIR. [s.l.] National Institute Of Technology Rourkela, 2015. SHERWOOD, T. K. Absorption and Extraction. [s.l.] New York:McGraw-Hill book company, 1937. SHIBATA, F. S. Biogás Utilizando Carbonatos Em Coluna Recheada. [s.l: s.n.]. SHINNAR, R. Chemical Reactor Modeling—The Desirable and the Achievable. In: [s.l: s.n.]. p. 1–36. SILVA, C. D. S. EQUILÍBRIO LÍQUIDO-VAPOR DO SISTEMA TERNÁRIO ETANOL + ÁGUA + 1-ETIL-3-METIL IMIDAZÓLIO CLORETO: EXPERIMENTAL E MODELAGEM TERMODINÂMICA. [s.l.] UNIVERSIDADE FEDERAL RURAL DO RIO DE JANEIRO, 2016. SIRVINSKAS, L. P. Manual do Direito Ambiental. [s.l: s.n.]. SOBOLL, S.; HAGEMANN, I.; KOCKMANN, N. Performance of Laboratory‐Scale Stirred‐Pulsed Extraction Columns with Different Diameters. Chemie Ingenieur Technik, v. 89, n. 12, p. 1611–1618, 14 dez. 2017. SON, Y.; WON, W. Liquid holdup and pressure drop in packed column with structured packing under offshore conditions. Chemical Engineering Science, v. 195, p. 894–903, fev. 2019. STARRANTINO, A.; MCCARLEY, K.; MOHAMMAD, S.; CAI, T.; AICHELE, C. The influence of physical properties on structured packing HETP correlations. Chemical Engineering Research and Design, v. 192, p. 468–476, 2023. STICHLMAIR, J.; BRAVO, J. L.; FAIR, J. R. General model for prediction of pressure drop and capacity of countercurrent gas/liquid packed columns. Gas Separation & Purification, v. 3, n. 1, p. 19–28, mar. 1989. STRIGLE, R. F. Packed Tower Design and Applications: Random Structured Packings. p. 340, 1994. TREYBAL, R. E. Mass transfer operations. [s.l.] McGraw-Hill, 1980. VAN DUC LONG, N.; LEE, D. Y.; PARK, S. Y.; HWANG, B. B.; LEE, M. HETP measurement using industrial-scale batch distillation. Chemical Engineering and Processing - Process Intensification, v. 148, n. October 2019, p. 107800, 2020. VAN NESS, H. C.; SMITH, J. M.; ABBOTT, M. M. Introdução à Termodinâmica da Engenharia Química. [s.l.] 5o edição. Rio de Janeiro: LTC editora, 2000. VELO, A. F.; CARVALHO, D. V. S.; HAMADA, M. M. Liquid distribution and holdup in the random packed column. Flow Measurement and Instrumentation, v. 62, n. May 2017, p. 176–185, 2018. WALLIS, G. B. One-Dimensional Two-Phase Flow. [s.l.] McGraw-Hill, New York, USA, 1969. WANG, C. Mass transfer coefficients and effective area of packing. [s.l.] The University of Texas at Austin, 2015. WANKAT, P. C. Separation Process Engineering Includes Mass Transfer Analysis. [s.l.] Prentice Hall, 2017. v. 7 WHITE, R. E.; OTHMER, D. F. Gas absorption in Stedman packed column. Transactions of the American Institute of Chemical Engineers, v. 38, 1942. WHITMAN, W. G. A preliminary experimental confirmation of the two-film theory of gas adsorption. [s.l.] Chem. Metall. Eng. v. 29, p. 146, 1923. WILKE, C. R.; CHANG, P. Correlation of diffusion coefficients in dilute solutions. AIChE Journal, v. 1, n. 2, p. 264–270, 17 jun. 1955. WOLF-ZÖLLNER, V.; SEIBERT, F.; LEHNER, M. Extended performance comparison of different pressure drop, hold-up and flooding point correlations for packed columns. Chemical Engineering Research and Design, v. 147, p. 699–708, 2019. XIAO, J. Q.; LEVIN, S. M. The diagnosis and management of solvent-related disorders. American Journal of Industrial Medicine, v. 37, n. 1, p. 44–61, jan. 2000. YORK, R.; HOLMES, R. C. Vapor-Liquid Equilibria of the System Acetone-Acetic Acid-Water. p. 345–350, 1942. ZAWADZKI, D.; BLATKIEWICZ, M. Pressure drop model for rotating packed bed structural internals. Chemical Engineering Research and Design, v. 196, p. 89–100, ago. 2023. ZHANG, X.; ZHAO, W.; NIE, L.; SHAO, X.; DANG, H.; ZHANG, W.; WANG, D. A new classification approach to enhance future VOCs emission policies: Taking solvent-consuming industry as an example. Environmental Pollution, v. 268, p. 115868, 2021. ZIELINSKI, J. M.; HANLEY, B. F. Practical friction‐based approach to modeling multicomponent diffusion. AIChE Journal, v. 45, n. 1, p. 1–12, 16 jan. 1999.pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece nas coleções:Dissertação (PPEQ)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Mitsuo Watanabe. Dissertação de Mestrado.pdfDissertação de Mestrado. Mitsuo.2,09 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.