https://repositorio.ufba.br/handle/ri/41844| Campo DC | Valor | Idioma |
|---|---|---|
| dc.creator | Lima, Paulinne Moreira | - |
| dc.date.accessioned | 2025-04-22T12:11:39Z | - |
| dc.date.available | 2029-10-28 | - |
| dc.date.available | 2025-04-22T12:11:39Z | - |
| dc.date.issued | 2024-10-22 | - |
| dc.identifier.uri | https://repositorio.ufba.br/handle/ri/41844 | - |
| dc.description.abstract | Coffee is one of the main tropical crops, with Brazil accounting for more than a third of global production. It contains bioactive compounds such as chlorogenic acids that provide health benefits, such as antimicrobial activity, and is a natural alternative in combating antibiotic resistance, which is currently one of the main global threats to public health. In addition, antimicrobial photodynamic therapy (aPDT) has also emerged as a way to overcome microbial resistance, using photosensitizers, light and oxygen to generate reactive species that kill microorganisms. The objective of the study was to establish the phytochemical profile of the oil and extract of green Coffea arabica L. beans, develop a nanostructured system, and evaluate in vitro its antimicrobial potential associated with PDT against MRSA. The green coffee oil was characterized using gas chromatography and the green coffee extract by high-performance liquid chromatography, both coupled with mass spectrometry. Microemulsions were prepared using the low-energy emulsification method, containing green coffee oil and extract, stabilized by surfactants. The in vitro antimicrobial potential of the developed microemulsion system and the green coffee extract was evaluated through photodynamic therapy, using high-intensity blue LED light. The dispersed systems obtained presented droplet size of approximately 25 to 60 nm, PDI of 0.088 to 0.290 and zeta potential of approximately -12 to -25 mV, at different temperatures and stability tests. In addition, they exhibit the behavior of a Newtonian fluid with a viscosity of approximately 30 cP. Furthermore, they were effective in treating microorganisms at lower doses than previously reported in the literature and were enhanced when associated with photodynamic therapy, acting at a minimum concentration of green coffee extract of 250 µg.ml−1 and when photoactivated, acting at 125 µg.ml−1, in addition to also showing activity without the incorporated extract. This study reveals a product that structures the use of plant-derived substances in the pharmaceutical industry, stimulating the bioeconomy and contributing to family farming, considering the economic importance of coffee in Brazil | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal da Bahia | pt_BR |
| dc.rights | Acesso Restrito/Embargado | pt_BR |
| dc.subject | Nanotecnologia | pt_BR |
| dc.subject | Bioeconomia | pt_BR |
| dc.subject | Compostos bioativos | pt_BR |
| dc.subject | Fotossensibilizadores | pt_BR |
| dc.subject.other | Nanotechnology | pt_BR |
| dc.subject.other | Bioeconomy | pt_BR |
| dc.subject.other | Bioactive compounds | pt_BR |
| dc.subject.other | Photosensitizer | pt_BR |
| dc.title | EXTRATO E ÓLEO DE CAFÉ VERDE: FITOQUÍMICA, DESENVOLVIMENTO DE SISTEMAS NANOESTRUTURADOS E AVALIAÇÃO IN VITRO DO POTENCIAL ANTIMICROBIANO ASSOCIADO À TERAPIA FOTODINÂMICA | pt_BR |
| dc.type | Dissertação | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Biociências (PPGB) | pt_BR |
| dc.publisher.initials | UFBA | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.subject.cnpq | Ciências Biológicas | pt_BR |
| dc.contributor.advisor1 | Amaral, Juliano Geraldo | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0003-1823-1694 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/0143283758300972 | pt_BR |
| dc.contributor.advisor-co1 | da Silva, Robson Amaro Augusto | - |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/2338026579762914 | pt_BR |
| dc.contributor.referee1 | Leite, Mateus Freire | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0002-9020-620X | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/7943677984413994 | pt_BR |
| dc.contributor.referee2 | dos Santos, Milena Soares | - |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/5318217532245729 | pt_BR |
| dc.contributor.referee3 | da Silva, Robson Amaro Augusto | - |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/2338026579762914 | pt_BR |
| dc.contributor.referee4 | Amaral, Juliano Geraldo | - |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/0143283758300972 | pt_BR |
| dc.creator.ID | https://orcid.org/0000-0003-1328-3735 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/4252867932919331 | pt_BR |
| dc.description.resumo | O café é uma das principais culturas tropicais, com o Brasil representando mais de um terço da produção global. Ele contém compostos bioativos, como os ácidos clorogênicos, que proporcionam benefícios à saúde, como atividade antimicrobiana, sendo uma alternativa natural no combate à resistência aos antibióticos, que atualmente é uma das principais ameaças globais à saúde pública. Além disso, a terapia fotodinâmica antimicrobiana (aPDT) também surgiu como uma forma de superar a resistência microbiana, utilizando fotossensibilizadores, luz e oxigênio para gerar espécies reativas que matam microrganismos. O objetivo do estudo foi estabelecer o perfil fitoquímico do óleo e do extrato dos grãos verdes de Coffea arabica L., desenvolver um sistema nanoestruturado e avaliar in vitro o seu potencial antimicrobiano associado a PDT contra MRSA. O óleo de café verde foi caracterizado a partir da cromatografia gasosa e o extrato de café verde pela cromatografia líquida de alta eficiência, ambos acoplados a espectrometria de massas. Microemulsões foram preparadas pelo método de emulsificação de baixa energia, contendo óleo e extrato de café verde, estabilizados por surfactantes. Foi-se avaliado in vitro o potencial antimicrobiano do sistema microemulsionado desenvolvido e do extrato de café verde pela terapia fotodinâmica, utilizando a luz LED azul em intensidade alta. Os sistemas dispersos obtidos apresentaram tamanho de gotícula de aproximadamente 25 a 60 nm, PDI de 0,088 a 0,290 e potencial zeta de aproximadamente -12 a -25 mV, em diferentes temperaturas e testes de estabilidade. Além disso, exibem comportamento de fluxo Newtoniano com viscosidade de aproximadamente 30 cP. Ademais, foram eficazes no tratamento de microrganismos em doses menores do que as previamente relatadas na literatura, com efeito potencializado quando associados à terapia fotodinâmica, atuando a uma concentração mínima de extrato de café verde de 250 µg.ml⁻¹ e, quando fotoativados, atuando a 125 µg.ml⁻¹, além de também apresentarem atividade sem o extrato incorporado. Este estudo também revela um produto que estrutura o uso de substâncias derivadas de plantas na indústria farmacêutica, estimulando a bioeconomia e contribuindo para a agricultura familiar, considerando a importância econômica do café no Brasil | pt_BR |
| dc.publisher.department | Instituto Multidisciplinar em Saúde (IMS) | pt_BR |
| dc.relation.references | ADEPOJU, A. F. et al. Coffee: Botany, Distribution, Diversity, Chemical Composition and Its Management. v. 10, n. 7, p. 57–62, 2017. AGRAWAL, O. P.; AGRAWAL, S. Asian Journal of Pharmaceutical Science & Technology AN OVERVIEW OF NEW DRUG DELIVERY SYSTEM: MICROEMULSION. [s.l: s.n.]. Disponível em: <www.ajpst.com>. AHMAD-MANSOUR, N. et al. Staphylococcus aureus Toxins: An Update on Their Pathogenic Properties and Potential Treatments. Toxins, v. 13, n. 10, p. 677, 23 set. 2021. AKINJOGUNLA, O. J. et al. Fluoroquinolone antibiotics: in vitro antibacterial and time-kill bactericidal evaluation against etiology of bacteremia in human immunodeficiency virus (HIV)-infected patients. Bulletin of the National Research Centre, v. 46, n. 1, p. 135, 12 dez. 2022. ANTHONY, F.; CLIFFORD, M. N.; NOIROT, M. Biochemical diversity in the genus Coffea L.: chlorogenic acids, caffeine and mozambioside contents. Genetic Resources and Crop Evolution, v. 40, n. 2, p. 61–70, 1993. BARTH, T. et al. In vitro metabolism of the lignan (−)‐grandisin, an anticancer drug candidate, by human liver microsomes. Drug Testing and Analysis, v. 7, n. 9, p. 780–786, 15 set. 2015. BARTLETT, J. G.; GILBERT, D. N.; SPELLBERG, B. Seven Ways to Preserve the Miracle of Antibiotics. Clinical Infectious Diseases, v. 56, n. 10, p. 1445–1450, 15 maio 2013. BASTIAN, F. et al. From Plantation to Cup: Changes in Bioactive Compounds during Coffee Processing. Foods, v. 10, n. 11, p. 2827, 17 nov. 2021. BELACHEW, S. A. et al. No prescription? No problem: drivers of non-prescribed sale of antibiotics among community drug retail outlets in low and middle income countries: a systematic review of qualitative studies. BMC Public Health, v. 21, n. 1, p. 1056, 3 dez. 2021. BERNDTSON, A. E. Increasing Globalization and the Movement of Antimicrobial Resistance between Countries. Surgical Infections, v. 21, n. 7, p. 579–585, 1 set. 2020. BHATTACHARJEE, S. DLS and zeta potential – What they are and what they are not? Journal of Controlled Release, v. 235, p. 337–351, ago. 2016. BLUMBERG, L. M. Theory of Gas Chromatography. Em: Gas Chromatography. [s.l.] Elsevier, 2012. p. 19–78. BYRD, A. L.; BELKAID, Y.; SEGRE, J. A. The human skin microbiome. Nature Reviews Microbiology, v. 16, n. 3, p. 143–155, 15 mar. 2018. CALLENDER, S. P. et al. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. International Journal of Pharmaceutics, v. 526, n. 1–2, p. 425–442, jun. 2017. CARNEIRO, S. M.; OLIVEIRA, M. B. P. P.; ALVES, R. C. Neuroprotective properties of coffee: An update. Trends in Food Science & Technology, v. 113, p. 167–179, jul. 2021. CASTELI, V. C. et al. Desenvolvimento e estudos de estabilidade preliminares de emulsões O/A contendo Cetoconazol 2,0%. Acta Scientiarum. Health Science, v. 30, n. 2, 15 dez. 2008. CHAIN-GUADARRAMA, A. et al. Ecosystem services by birds and bees to coffee in a changing climate: A review of coffee berry borer control and pollination. Agriculture, Ecosystems & Environment, v. 280, p. 53–67, ago. 2019. CHAMBERS, E. S.; VUKMANOVIC‐STEJIC, M. Skin barrier immunity and ageing. Immunology, v. 160, n. 2, p. 116–125, 4 jun. 2020. CHEN, H. et al. Exploring the Role of Staphylococcus aureus in Inflammatory Diseases. Toxins, v. 14, n. 7, p. 464, 6 jul. 2022. CIEPLIK, F. et al. Antimicrobial photodynamic therapy – what we know and what we don’t. Critical Reviews in Microbiology, v. 44, n. 5, p. 571–589, 3 set. 2018a. CIEPLIK, F. et al. Antimicrobial photodynamic therapy – what we know and what we don’t. Critical Reviews in Microbiology, v. 44, n. 5, p. 571–589, 3 set. 2018b. CLIFFORD, M. N. Chlorogenic Acids. Em: Coffee. Dordrecht: Springer Netherlands, 1985. p. 153–202. CLIFFORD, M. N. et al. Characterization by LC-MS n of Four New Classes of Chlorogenic Acids in Green Coffee Beans: Dimethoxycinnamoylquinic Acids, Diferuloylquinic Acids, Caffeoyl-dimethoxycinnamoylquinic Acids, and Feruloyl-dimethoxycinnamoylquinic Acids. Journal of Agricultural and Food Chemistry, v. 54, n. 6, p. 1957–1969, 1 mar. 2006a. CLIFFORD, M. N. et al. Characterization by LC-MS n of Four New Classes of p -Coumaric Acid-Containing Diacyl Chlorogenic Acids in Green Coffee Beans. Journal of Agricultural and Food Chemistry, v. 54, n. 12, p. 4095–4101, 1 jun. 2006b. CLIFFORD, M. N.; KAZI, T. The influence of coffee bean maturity on the content of chlorogenic acids, caffeine and trigonelline. Food Chemistry, v. 26, n. 1, p. 59–69, jan. 1987. CLINICAL AND LABORATORY STANDARDS INSTITUTE. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. [s.l: s.n.]. Disponível em: <www.clsi.org.>. COMPANHIA NACIONAL DE ABASTECIMENTO (Conab). Produção de café de 2024 é estimada em 54,79 milhões de sacas, influenciada por clima. 2024. Disponível em: https://www.conab.gov.br/ultimas-noticias/5740-producao-de-cafe-de-2024-e-estimada-em-54-79-milhoes-de-sacas-influenciada-por-clima. Acesso em: 14 nov. 2024. CORTÉS, H. et al. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses. Materials, v. 14, n. 12, p. 3197, 10 jun. 2021. DA CUNHA, M. G. et al. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis. BMC Complementary and Alternative Medicine, v. 13, n. 1, p. 23, 28 dez. 2013. DALTIN, D. TensoaTivos química, propriedades e aplicações. [s.l: s.n.]. DAMASCENO, B. P. G. L. et al. Microemulsão: um promissor carreador para moléculas insolúveis. Journal of Basic and Applied Pharmaceutical Sciences Rev Ciênc Farm Básica Apl, v. 32, n. 1, p. 9–18, 2011. DANIELL, M. D.; HILL, J. S. A HISTORY OF PHOTODYNAMIC THERAPY. Australian and New Zealand Journal of Surgery, v. 61, n. 5, p. 340–348, 21 maio 1991. DE LUCA, S. et al. Simultaneous quantification of caffeine and chlorogenic acid in coffee green beans and varietal classification of the samples by HPLC-DAD coupled with chemometrics. Environmental Science and Pollution Research, v. 25, n. 29, p. 28748–28759, 11 out. 2018. DE MELO PEREIRA, G. V. et al. Chemical composition and health properties of coffee and coffee by-products. Em: [s.l: s.n.]. p. 65–96. DE MORAES, R. C. et al. Desenvolvimento, caracterização e estudo de estabilidade de microemulsões para veiculação de fragrâncias. [s.l: s.n.]. DELEO, F. R. et al. Community-associated meticillin-resistant Staphylococcus aureus. The Lancet, v. 375, n. 9725, p. 1557–1568, maio 2010. DHAVAL, M. et al. Lipid-based emulsion drug delivery systems — a comprehensive review. Drug Delivery and Translational Research, v. 12, n. 7, p. 1616–1639, 5 jul. 2022. DOBSON, J.; DE QUEIROZ, G. F.; GOLDING, J. P. Photodynamic therapy and diagnosis: Principles and comparative aspects. The Veterinary Journal, v. 233, p. 8–18, mar. 2018. DOS SANTOS, D. P. et al. Efficacy of photoactivated Myrciaria cauliflora extract against Staphylococcus aureus infection – A pilot study. Journal of Photochemistry and Photobiology B: Biology, v. 191, p. 107–115, fev. 2019. DUANGJAI, A. et al. Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Integrative Medicine Research, v. 5, n. 4, p. 324–331, dez. 2016. ELMAIDOMY, A. H. et al. Antimicrobial potentials of natural products against multidrug resistance pathogens: a comprehensive review. RSC Advances, v. 12, n. 45, p. 29078–29102, 2022. FEINBERG, M. Validation of analytical methods based on accuracy profiles. Journal of Chromatography A, v. 1158, n. 1–2, p. 174–183, jul. 2007. FERREIRA, E. E. et al. Reologia de suspensões minerais: uma revisão. Rem: Revista Escola de Minas, v. 58, n. 1, p. 83–87, mar. 2005. FREITAS, V. V. et al. Coffee: A comprehensive overview of origin, market, and the quality process. Trends in Food Science & Technology, v. 146, p. 104411, abr. 2024. FROELICH, A. et al. Microemulsion-Based Media in Nose-to-Brain Drug Delivery. Pharmaceutics, v. 13, n. 2, p. 201, 2 fev. 2021. FU, L.; LU, W.; ZHOU, X. Phenolic Compounds and In Vitro Antibacterial and Antioxidant Activities of Three Tropic Fruits: Persimmon, Guava, and Sweetsop. BioMed Research International, v. 2016, p. 1–9, 2016. GARAVAND, F. et al. Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chemistry, v. 364, p. 130376, dez. 2021. GIUDICE, P. Skin Infections Caused by Staphylococcus aureus. Acta Dermato Venereologica, v. 100, n. 9, p. adv00110-215, 2020. GONÇALVES, R. A.; HOLMBERG, K.; LINDMAN, B. Cationic surfactants: A review. Journal of Molecular Liquids, v. 375, p. 121335, abr. 2023. GUIDONI, M. et al. Fatty acid composition of vegetable oil blend and in vitro effects of pharmacotherapeutical skin care applications. Brazilian Journal of Medical and Biological Research, v. 52, n. 2, 2019. HAIDARI, F. et al. Energy restriction combined with green coffee bean extract affects serum adipocytokines and the body composition in obese women. Asia Pacific journal of clinical nutrition, v. 26, n. 6, p. 1048–1054, 2017. HAN, B. et al. The effect of green coffee extract supplementation on blood pressure: A systematic review and meta‐analysis of randomized controlled trials. Phytotherapy Research, v. 33, n. 11, p. 2918–2926, 20 nov. 2019. HARRIS-TRYON, T. A.; GRICE, E. A. Microbiota and maintenance of skin barrier function. Science, v. 376, n. 6596, p. 940–945, 27 maio 2022. HOSEINI, M. et al. Coffee by-products derived resources. A review. Biomass and Bioenergy, v. 148, p. 106009, maio 2021. HU, G. L. et al. The sources and mechanisms of bioactive ingredients in coffee. Food & Function, v. 10, n. 6, p. 3113–3126, 2019. HUNTER, R. J. Zeta Potential in Colloid Science. Em: Zeta Potential in Colloid Science. [s.l.] Elsevier, 1981. p. 1–10. ICH HARMONISED TRIPARTITE GUIDELINE. VALIDATION OF ANALYTICAL PROCEDURES: TEXT AND METHODOLOGY Q2(R1). 2005 KAHLWEIT, M. et al. How to study microemulsions. Journal of Colloid and Interface Science, v. 118, n. 2, p. 436–453, ago. 1987. KALE, S. N.; DEORE, S. L. Emulsion Micro Emulsion and Nano Emulsion: A Review. Systematic Reviews in Pharmacy, v. 8, n. 1, p. 39–47, 19 nov. 2016. KANG, J.; DIETZ, M. J.; LI, B. Antimicrobial peptide LL-37 is bactericidal against Staphylococcus aureus biofilms. PLOS ONE, v. 14, n. 6, p. e0216676, 6 jun. 2019. KHAN, F. et al. Caffeic Acid and Its Derivatives: Antimicrobial Drugs toward Microbial Pathogens. Journal of Agricultural and Food Chemistry, v. 69, n. 10, p. 2979–3004, 17 mar. 2021. KHOCHAPONG, W. et al. Effect of in vitro digestion on bioactive compounds, antioxidant and antimicrobial activities of coffee (Coffea arabica L.) pulp aqueous extract. Food Chemistry, v. 348, p. 129094, jun. 2021. KWIATKOWSKI, S. et al. Photodynamic therapy – mechanisms, photosensitizers and combinations. Biomedicine & Pharmacotherapy, v. 106, p. 1098–1107, out. 2018. L. WAGEMAKER, T. A. et al. Evaluation of antioxidant and antimicrobial activities of green coffee oil in cosmetic formulations. Journal Biomedical and Biopharmaceutical Research, v. 9, n. 2, p. 207–214, jun. 2012. LAWRENCE, M. J.; REES, G. D. Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews, v. 45, n. 1, p. 89–121, dez. 2000. LEE, G. Y.; HAN, S. N. The Role of Vitamin E in Immunity. Nutrients, v. 10, n. 11, p. 1614, 1 nov. 2018. LI, L. et al. Advancements in Characterization Techniques for Microemulsions: From Molecular Insights to Macroscopic Phenomena. Molecules, v. 29, n. 12, p. 2901, 18 jun. 2024a. LI, P. et al. Interactive roles of co-solvents and lemon-oil composition in the fabrication of dilutable clear emulsions. Food Research International, v. 191, p. 114649, set. 2024b. LIMA, V. N. et al. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microbial Pathogenesis, v. 99, p. 56–61, out. 2016. LOBANOVSKA, M.; PILLA, G. Penicillin’s Discovery and Antibiotic Resistance: Lessons for the Future? The Yale journal of biology and medicine, v. 90, n. 1, p. 135–145, mar. 2017. LUCENA NETO. ESTUDO DA INFLUÊNCIA DE TENSOATIVOS EM SISTEMAS MICROEMULSIONADOS NA EXTRAÇÃO DE GÁLIO E ALUMÍNIO. [s.l: s.n.]. MA, R.-H. et al. Structural characterization and stability of glycated bovine serum albumin-kaempferol nanocomplexes. Food Chemistry, v. 415, p. 135778, jul. 2023. MACRAE, R. Nitrogenous Components. Em: Coffee. Dordrecht: Springer Netherlands, 1985. p. 115–152. MANGA, M. S. et al. Exploring effects of polymeric stabiliser molecular weight and concentration on emulsion production via stirred cell membrane emulsification. Polymer Chemistry, v. 14, n. 45, p. 5049–5059, 2023. MANTOVANI, L. M.; PUGLIESE, C. Phytosterol supplementation in the treatment of dyslipidemia in children and adolescents: a systematic review. Revista Paulista de Pediatria, v. 39, 2021. MAREK, G. et al. Detection and Differentiation of Volatile Compound Profiles in Roasted Coffee Arabica Beans from Different Countries Using an Electronic Nose and GC-MS. Sensors, v. 20, n. 7, p. 2124, 9 abr. 2020a. MAREK, G. et al. Detection and Differentiation of Volatile Compound Profiles in Roasted Coffee Arabica Beans from Different Countries Using an Electronic Nose and GC-MS. Sensors, v. 20, n. 7, p. 2124, 9 abr. 2020b. MATOSINHOS, R. C. et al. Coffea arabica extracts and their chemical constituents in a murine model of gouty arthritis: How they modulate pain and inflammation. Journal of Ethnopharmacology, v. 284, p. 114778, fev. 2022. MESQUITA JÚNIOR, G. A. DE et al. Chemical characterisation by UPLC‐Q‐ToF‐MS/MS and antibacterial potential of <scp> Coffea arabica </scp> L. leaves: A coffee by‐product. Phytochemical Analysis, v. 33, n. 7, p. 1036–1044, out. 2022. MIAO, M.; XIANG, L. Pharmacological action and potential targets of chlorogenic acid. Em: [s.l: s.n.]. p. 71–88. MIAO, M.; XIANG, L. Pharmacological action and potential targets of chlorogenic acid. Em: [s.l: s.n.]. p. 71–88. MICHALKE, B. Element speciation definitions, analytical methodology, and some examples. Ecotoxicology and Environmental Safety, v. 56, n. 1, p. 122–139, set. 2003. MOHD ZAFFARIN, A. S. et al. <p>Pharmacology and Pharmacokinetics of Vitamin E: Nanoformulations to Enhance Bioavailability</p>. International Journal of Nanomedicine, v. Volume 15, p. 9961–9974, dez. 2020. MORVARIDI, M. et al. The effect of green coffee extract supplementation on cardio metabolic risk factors: a systematic review and meta-analysis of randomized controlled trials. Journal of Diabetes & Metabolic Disorders, v. 19, n. 1, p. 645–660, 15 jun. 2020. MUNIZ, I. P. R. et al. Antimicrobial photodynamic therapy (aPDT) with curcumin controls intradermal infection by Staphylococcus aureus in mice with type 1 diabetes mellitus: a pilot study. Journal of Photochemistry and Photobiology B: Biology, v. 224, p. 112325, nov. 2021. NAGHAVI, M. et al. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. The Lancet, v. 404, n. 10459, p. 1199–1226, set. 2024. NAVEED, M. et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine & Pharmacotherapy, v. 97, p. 67–74, jan. 2018a. NAVEED, M. et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine & Pharmacotherapy, v. 97, p. 67–74, jan. 2018b. NETO, L. G. FACULDADE DE CIÊNCIAS FARMACÊUTICAS DE RIBEIRÃO PRETO. [s.l: s.n.]. NIEBER, K. The Impact of Coffee on Health. Planta Medica, v. 83, n. 16, p. 1256–1263, 4 nov. 2017. O’BRIEN, J. et al. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry, v. 267, n. 17, p. 5421–5426, 3 set. 2000. OLIVEIRA, D. A. J. et al. Associating chitosan and microemulsion as a topical vehicle for the administration of herbal medicines. Carbohydrate Polymers, v. 255, p. 117482, mar. 2021. ORATA, F. Derivatization Reactions and Reagents for Gas Chromatography Analysis. Em: Advanced Gas Chromatography - Progress in Agricultural, Biomedical and Industrial Applications. [s.l.] InTech, 2012. PARK, C. et al. Development of a novel cannabinoid-loaded microemulsion towards an improved stability and transdermal delivery. International Journal of Pharmaceutics, v. 604, p. 120766, jul. 2021. PATAY, É. B.; BENCSIK, T.; PAPP, N. Phytochemical overview and medicinal importance of Coffea species from the past until now. Asian Pacific Journal of Tropical Medicine, v. 9, n. 12, p. 1127–1135, dez. 2016. POOLE, C. F. Spectroscopic Detectors for Identification and Quantification. Em: The Essence of Chromatography. [s.l.] Elsevier, 2003. p. 719–792. PRAŻMO, E. et al. Photodynamic Therapy As a Promising Method Used in the Treatment of Oral Diseases. Advances in Clinical and Experimental Medicine, v. 25, n. 4, p. 799–807, 2016. RIBANI, M. et al. Validação em métodos cromatográficos e eletroforéticos. Química Nova, v. 27, n. 5, p. 771–780, out. 2004. RIBEIRO, I. S. et al. Characterization of Brazilian green propolis as a photosensitizer for LED light-induced antimicrobial photodynamic therapy (aPDT) against methicillin-resistant Staphylococcus aureus (MRSA) and Vancomycin-intermediate Staphylococcus aureus (VISA). Photochemical & Photobiological Sciences, v. 22, n. 12, p. 2877–2890, 3 dez. 2023. RIBEIRO, I. S. et al. Antimicrobial photodynamic therapy with Brazilian green propolis controls intradermal infection induced by methicillin-resistant Staphylococcus aureus and modulates the inflammatory response in a murine model. Photochemical & Photobiological Sciences, 19 fev. 2024a. RIBEIRO, I. S. et al. Antimicrobial photodynamic therapy with Brazilian green propolis controls intradermal infection induced by methicillin-resistant Staphylococcus aureus and modulates the inflammatory response in a murine model. Photochemical & Photobiological Sciences, v. 23, n. 3, p. 561–573, 19 mar. 2024b. RKEIN, A. M.; OZOG, D. M. Photodynamic Therapy. Dermatologic Clinics, v. 32, n. 3, p. 415–425, jul. 2014. SAUD, S.; SALAMATULLAH, A. M. Relationship between the Chemical Composition and the Biological Functions of Coffee. Molecules, v. 26, n. 24, p. 7634, 16 dez. 2021. SCHULMAN, J. H.; STOECKENIUS, W.; PRINCE, L. M. Mechanism of Formation and Structure of Micro Emulsions by Electron Microscopy. The Journal of Physical Chemistry, v. 63, n. 10, p. 1677–1680, 1 out. 1959. SCOMOROSCENCO, C. et al. Novel Gel Microemulsion as Topical Drug Delivery System for Curcumin in Dermatocosmetics. Pharmaceutics, v. 13, n. 4, p. 505, 7 abr. 2021. SHEN, M. et al. Phytosterols: Physiological Functions and Potential Application. Foods, v. 13, n. 11, p. 1754, 3 jun. 2024. SLOMKOWSKI, S. et al. Terminology of polymers and polymerization processes in dispersed systems (IUPAC Recommendations 2011). Pure and Applied Chemistry, v. 83, n. 12, p. 2229–2259, 10 set. 2011. SMITH, M. C. et al. Zeta potential: a case study of cationic, anionic, and neutral liposomes. Analytical and Bioanalytical Chemistry, v. 409, n. 24, p. 5779–5787, 31 set. 2017. SOCAŁA, K. et al. Neuroprotective Effects of Coffee Bioactive Compounds: A Review. International Journal of Molecular Sciences, v. 22, n. 1, p. 107, 24 dez. 2020. SPELLBERG, B.; GILBERT, D. N. The Future of Antibiotics and Resistance: A Tribute to a Career of Leadership by John Bartlett. Clinical Infectious Diseases, v. 59, n. suppl 2, p. S71–S75, 15 set. 2014. STETEFELD, J.; MCKENNA, S. A.; PATEL, T. R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophysical Reviews, v. 8, n. 4, p. 409–427, 6 dez. 2016. SUBONGKOT, T.; NGAWHIRUNPAT, T. Development of a novel microemulsion for oral absorption enhancement of all-trans retinoic acid. International Journal of Nanomedicine, v. Volume 12, p. 5585–5599, ago. 2017a. SUBONGKOT, T.; NGAWHIRUNPAT, T. Development of a novel microemulsion for oral absorption enhancement of all-trans retinoic acid. International Journal of Nanomedicine, v. 12, p. 5585, 3 ago. 2017b. ŠULER BAGLAMA, Š.; TRČKO, K. Skin and gut microbiota dysbiosis in autoimmune and inflammatory skin diseases. Acta Dermatovenerologica Alpina Pannonica et Adriatica, v. 31, n. 3, 30 set. 2022. SUNIL DHOOT, A. et al. Phase Diagrams for Three Component Mixtures in Pharmaceuticals and its Applications. Journal of Young Pharmacists, v. 10, n. 2, p. 132–137, 10 abr. 2018. SZUMAŁA, P.; MACIERZANKA, A. Topical delivery of pharmaceutical and cosmetic macromolecules using microemulsion systems. International Journal of Pharmaceutics, v. 615, p. 121488, mar. 2022. TARTARO, G. et al. Microemulsion Microstructure(s): A Tutorial Review. Nanomaterials, v. 10, n. 9, p. 1657, 24 ago. 2020. TASEW, T. et al. In Vitro Antibacterial and Antioxidant Activities of Roasted and Green Coffee Beans Originating from Different Regions of Ethiopia. International Journal of Food Science, v. 2020, p. 1–8, 25 ago. 2020. TOLMAN, R. C. The Effect of Droplet Size on Surface Tension. The Journal of Chemical Physics, v. 17, n. 3, p. 333–337, 1 mar. 1949. TOPALA, C. M.; TATARU, L. D. Infrared Spectra of Green Arabica Coffee Extraction using Supercritical Carbon Dioxide and Soxhlet Technique. [s.l: s.n.]. Disponível em: <http://www.revistadechimie.ro>. TRIPATHI, S.; MISHRA, N.; MISHRA, N. Antibacterial Activity of Bioactive Compounds of Green Coffee Beans on Periodontogenic and Nosocomial Bacteria. Journal of Pharmacy and Nutrition Sciences, v. 12, p. 157–164, 27 dez. 2022. VENTOLA, C. L. The antibiotic resistance crisis: part 1: causes and threats. P & T : a peer-reviewed journal for formulary management, v. 40, n. 4, p. 277–83, abr. 2015. WANG, Y. et al. Potent synergy and sustained bactericidal activity of polymyxins combined with Gram-positive only class of antibiotics versus four Gram-negative bacteria. Annals of Clinical Microbiology and Antimicrobials, v. 23, n. 1, p. 60, 4 jul. 2024. WARRIER, A. et al. Photodynamic therapy to control microbial biofilms. Photodiagnosis and Photodynamic Therapy, v. 33, p. 102090, mar. 2021. WOO, S. et al. Recent advances in the discovery of plant-derived antimicrobial natural products to combat antimicrobial resistant pathogens: insights from 2018–2022. Natural Product Reports, v. 40, n. 7, p. 1271–1290, 2023. WORLD HEALTH ORGANIZATION. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022. [s.l: s.n.]. WHO. World leaders and experts call for significant reduction in the use of antimicrobial drugs in global food systems. 2021. Disponível em: https://www.who.int/news/item/24-08-2021-world-leaders-and-experts-call-for-significant-reduction-in-the-use-of-antimicrobial-drugs-in-global-food-systems. Acesso em: 23 out. 2024 WU, P.-Y. et al. Alleviation of Ultraviolet B-Induced Photodamage by Coffea arabica Extract in Human Skin Fibroblasts and Hairless Mouse Skin. International Journal of Molecular Sciences, v. 18, n. 4, p. 782, 7 abr. 2017. | pt_BR |
| dc.type.degree | Mestrado Acadêmico | pt_BR |
| Aparece nas coleções: | Dissertação (PPGB) | |
| Arquivo | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| DISSERTAÇÃO COMPLETA.pdf Until 2029-10-28 | 2,56 MB | Adobe PDF | Visualizar/Abrir Solicitar uma cópia |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.