dc.relation.references | [1] ADLER, Roy L.; KONHEIM, Alan G.; MCANDREW, M. Harry. Topological entropy.
Transactions of the American Mathematical Society, v. 114, n. 2, p. 309-319, 1965.
[2] ALSEDA, Luis; LLIBRE, Jaume; MISIUREWICZ, Michal. Combinatorial dynamics
and entropy in dimension one. World Scientific Publishing Company, 2000.
[3] ALVES, José F.; BONATTI, Christian; VIANA, Marcelo. SRB measures for partially
hyperbolic systems whose central direction is mostly expanding. Inventiones mathe-
maticae, v. 140, n. 2, p. 351-398, 2000.
[4] BARWELL, Andrew David. Omega-limit sets of discrete dynamical systems. 2011.
Tese de Doutorado. University of Birmingham.
[5] BLOCK, Louis; COVEN, Ethan M. Topological conjugacy and transitivity for a class
of piecewise monotone maps of the interval. Transactions of the American Mathema-
tical Society, v. 300, n. 1, p. 297-306, 1987.
[6] BLOKH, LLIBRE, Jaume; MISIUREWICZ, Micha l. Horseshoes, entropy and periods
for graph maps. Topology, v. 32, n. 3, p. 649-664, 1993.
[7] BOWEN, Rufus. Equilibrium states and the ergodic theory of Anosov diffeo-
morphisms. Lect. Notes Math, v. 470, p. 487-508, 1975.
[8] BRUIN, Henk; TODD, Mike. Equilibrium States for Interval Maps: Potentials with
sup ϕ−inf ϕ < h top (f ). Communications in mathematical physics, v. 283, p. 579-611,
2008.
[9] BUZZI, Jrme. No or Infinitely Many ACIP for Piecewise Expanding Cr Mapsin
Higher Dimensions. Communications in Mathematical Physics, v. 3, n. 222, p. 495-
501, 2001.
[10] BUZZI, Jérôme; SARIG, Omri. Uniqueness of equilibrium measures for countable
Markov shifts and multidimensional piecewise expanding maps. Ergodic Theory and
Dynamical Systems, v. 23, n. 5, p. 1383-1400, 2003.
99100
[11] HOFBAUER, Franz. On intrinsic ergodicity of piecewise monotonic transformations
with positive entropy. Israel Journal of Mathematics, v. 34, p. 213-237, 1979.
[12] IOMMI, Godofredo; JORDAN, Thomas; TODD, Mike. Recurrence and transience
for suspension flows. Israel Journal of Mathematics, v. 209, n. 2, p. 547-592, 2015.
[13] LI, Huaibin; RIVERA-LETELIER, Juan. Equilibrium states of interval maps for
hyperbolic potentials. Nonlinearity, v. 27, n. 8, p. 1779, 2014.
[14] MARTENS, Marco. Distortion results and invariant Cantor sets of unimodal maps.
Ergodic Theory and Dynamical Systems, v. 14, n. 2, p. 331-349, 1994.
[15] OLIVEIRA, Krerley. Every expanding measure has the nonuniform specification pro-
perty. Proceedings of the American Mathematical Society, v. 140, n. 4, p. 1309-1320,
2012.
[16] OLIVEIRA, Krerley; VIANA, Marcelo. Fundamentos da teoria ergodica. IMPA, Bra-
zil, 2014.
[17] PINHEIRO, MARIANA. Medidas SRB para aplicações com alguma expansão. Orien-
tador:Prof. Dr. Vilton Jeovan Viana Pinheiro ,Dissertação (Mestrado)-Matemática,
UFBA, Salvador, 2007.
[18] PINHEIRO, Vilton. Expanding measures. In: Annales de l’IHP Analyse non linéaire.
2011. p. 889-939.
[19] PINHEIRO, Vilton. Lift and synchronization. arXiv preprint arXiv:1808.03375, 2018.
[20] PINHEIRO, Vilton. Topological and statistical attractors for interval maps. arXiv
preprint arXiv:2109.04579, 2021.
[21] PINHEIRO, Vilton; VARANDAS, Paulo. Thermodynamic formalism for expanding
measures. arXiv preprint arXiv:2202.05019, 2022.
[22] PURVES, Roger. Bimeasurable functions. Fundamenta Mathematicae, v. 58, n. 2, p.
149-157, 1966.
[23] ROGERS, Claude Ambrose. Hausdorff measures. Cambridge University Press, 1998.
[24] RUELLE, David. Statistical mechanics of a one-dimensional lattice gas. Communi-
cations in Mathematical Physics, v. 9, p. 267-278, 1968.
[25] RUELLE, David. Thermodynamic formalism (Encyclopedia of Mathematics and its
Applications, 5). Addisan-Wesley Publicating Company, 1978.Referências
101
[26] SARIG, Omri M. Lecture notes on thermodynamic formalism for topological Markov
shifts. Penn State, 2009.
[27] SARIG, Omri M. Thermodynamic formalism for countable Markov shifts. Ergodic
Theory and Dynamical Systems, v. 19, n. 6, p. 1565-1593, 1999.
[28] ZWEIMÜLLER, Roland. Invariant measures for general (ized) induced transforma-
tions. Proceedings of the American Mathematical Society, v. 133, n. 8, p. 2283-2295,
2005. | pt_BR |