Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/36258
Registro completo de metadados
Campo DCValorIdioma
dc.creatorVeloso , Gabriela Brasil Romão-
dc.date.accessioned2022-11-04T15:03:28Z-
dc.date.available2022-11-04T15:03:28Z-
dc.date.issued2022-10-03-
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/36258-
dc.description.abstractIonic liquids are non-volatile organic salts that, under standardized conditions, remain in a liquid state and are composed of organic cations and organic or inorganic anions. They have a wide industrial application and sustainable profile and, generally, they are called as "green solvents", however, despite this denomination, there is insufficient information about their aspects related to their toxicity to the environment and to humans. In this context, this work aimed to evaluate the toxicological aspects of some ionic liquids through in vitro bioassays, in addition to trying to understand their effects on cells, seeking possible biological applications. For this purpose, seventeen protic ionic liquids were synthesized and analyzed by in vitro assays of: cytotoxicity in metabolizing cells (HepG2) and skin cells (HaCat and HDFa); morphological observation of HaCat cells exposed to these liquids; and eye irritation in chicken egg's chorioallantoic membrane (HET-CAM). In order to study a possible biological application, the wound healing potential in HDFa cells was also evaluated. The results obtained were promising, since, in general, the ionic liquids showed a low cytotoxic effect, obtaining IC50 values between 8 and 390 mM, approximately. In addition, it was possible to observe its effect on cells, causing an increase or decrease in volume and/or rupture of cell membrane in HaCat cells, due to osmotic pressure. The eye irritation test showed that the ionic liquids composed of citric acid did not cause eye irritation, while thirteen of them were characterized as mild or moderate irritants, and it is possible to suggest, based on this test, their safe use in living organisms, although there are reservations. It was also confirmed, from a quantitative analysis by the ImageJ software, the classification of eye irritation by the analysis of grayscale images. In addition, no sample tested was able to prevent the healing process evaluated in vitro, which is another indication of safety and, still, the ionic liquid based on oxalic acid stands out for being able to improve cell migration. Therefore, it was possible to conclude that the protic ionic liquids evaluated in this work are, in general, safe, less toxic to human cells than conventionally used solvents and the collected results contribute significantly to science, as they indicate safety parameters of these compounds, related to their chemical characteristics and concentrations and reinforce the need to continue these studies. Also, in this work, a new direction of research is suggested using protic ionic liquids, seeking biological effects for them.pt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado da Bahia - Fapesbpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.subjectLíquidos iônicos próticospt_BR
dc.subjectToxicidadept_BR
dc.subjectCélulaspt_BR
dc.subjectCicatrizaçãopt_BR
dc.subject.otherProtic ionic liquidspt_BR
dc.subject.otherToxicitypt_BR
dc.subject.otherCellspt_BR
dc.subject.otherWound healingpt_BR
dc.titleEstudo de segurança de líquidos iônicos próticos à saúde humana: uma alternativa aos solventes convencionaispt_BR
dc.title.alternativeSafety study of protic ionic liquids to human health: an alternative to conventional solventspt_BR
dc.typeTesept_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia Industrial (PEI) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::OUTROS::QUIMICA INDUSTRIALpt_BR
dc.contributor.advisor1Iglesias Duro , Miguel Angel-
dc.contributor.advisor1ID0000-0002-5897-0152pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1626030153202401pt_BR
dc.contributor.advisor-co1Andréo, Bruna Galdorfini Chiari-
dc.contributor.advisor-co1ID0000-0001-7959-0207pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/6153974945085893pt_BR
dc.contributor.referee1Iglesias Duro, Miguel Angel-
dc.contributor.referee1ID0000-0002-5897-0152pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1626030153202401pt_BR
dc.contributor.referee2Andrade, Rebecca da Silva-
dc.contributor.referee2ID0000-0001-8915-7220pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/4299693971980688pt_BR
dc.contributor.referee3Eliane, Trovatti-
dc.contributor.referee3ID0000-0002-0495-8115pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/0001438935762110pt_BR
dc.contributor.referee4Rillo Sato, Mariana-
dc.contributor.referee4ID0000-0002-6527-3937pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/2070935538667643pt_BR
dc.contributor.referee5Oshiro, João Augusto-
dc.contributor.referee5ID0000-0001-7247-1598pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/7718234509377672pt_BR
dc.creator.ID0000-0001-8984-2869pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/4908934995460369pt_BR
dc.description.resumoLíquidos iônicos são sais orgânicos não voláteis que, em condições normalizadas, permanecem em estado líquido e são compostos por cátions orgânicos e ânions orgânicos ou inorgânicos. Apresentam uma vasta aplicação industrial e perfil sustentável e, geralmente, são chamados de “solventes verdes”, porém, apesar desta denominação, ainda há informações insuficientes sobre seus aspectos relacionados à sua toxicidade ao meio ambiente e aos seres humanos. Neste contexto, este trabalho teve como objetivo avaliar os aspectos toxicológicos de alguns líquidos iônicos através de bioensaios in vitro, além de tentar compreender seus efeitos em células, buscando possíveis aplicações biológicas. Para isso foram sintetizados dezessete líquidos iônicos próticos e analisados em ensaios in vitro de: citotoxicidade em células metabolizadoras (HepG2) e células de pele (HaCat e HDFa); de observação morfológica de células HaCat em exposição a esses líquidos; e de irritação ocular em membrana cório-alantóide de ovos fecundados de galinha (HET-CAM). Visando estudar uma possível aplicação biológica, o potencial de cicatrização em células HDFa também foi avaliado. Os resultados obtidos foram promissores, uma vez que, em geral, os líquidos mostraram baixo efeito citotóxico, obtendo valores de CI50 entre 8 e 390 mM, aproximadamente. Além disso, foi possível observar seu efeito sobre as células, ocasionando aumento ou diminuição de volume e/ou ruptura da membrana celular em linhagem HaCat, devido à pressão osmótica. O ensaio de irritação ocular demonstrou que os líquidos iônicos compostos de ácido cítrico, não ocasionaram irritação ocular, enquanto treze deles foram caracterizados como irritantes leves ou moderados, sendo possível sugerir, baseando-se neste teste, a sua utilização com segurança em organismos vivos, apesar de haverem ressalvas. Também foi possível confirmar, a partir de uma análise quantitativa pelo software ImageJ, a classificação de irritação ocular a partir da análise das imagens em escala de cinza. Além disso, nenhuma amostra testada foi capaz de impedir o processo de cicatrização avaliado in vitro, sendo este mais um indício de segurança e, ainda, o líquido iônico composto por ácido oxálico se destacou por ser capaz de favorecer a proliferação celular. Portanto, foi possível concluir que os líquidos iônicos próticos avaliados neste trabalho são, de maneira geral, seguros, menos tóxicos às células humanas do que solventes convencionalmente usados e os resultados coletados contribuem significativamente com a ciência, pois indicam parâmetros de segurança destes compostos, relacionados às suas características químicas e concentrações e reforçam a necessidade da continuidade destes estudos. Também, neste trabalho, sugere-se um novo rumo das pesquisas empregando líquidos iônicos próticos, buscando efeitos biológicos para os mesmos.pt_BR
dc.publisher.departmentEscola Politécnicapt_BR
dc.relation.referencesABREU, C. L. C.; PRESGRAVE, O. A. F.; DELGADO, I. F. Metodologias alternativas à experimentação animal: aplicação no controle da qualidade de produtos sujeitos à ação da Vigilância Sanitária. Revista CFMV, v. 45, p. 20-27, 2008. ACTOR, J. K. The Inflammatory Response. Introductory Immunology (2ª ed., p. 17-30). United States, US: Academic Press, 2019. ADAWIYAH, N.; MONIRUZZAMAN, M.; HAWATULAILA, S.; GOTO, M. Ionic liquids as a potential tool for drug delivery systems. Medicinal Chemistry Communications, v. 7, p. 1881-1897, 2016. AJLOO, D.; SANGIAN, M.; GHADAMGAHI, M.; EVINI, M.; SABOURY, A. A. Effect of two imidazolium derivatives of ionic liquids on the structure and activity of adenosine deaminase. International Journal of Biological Macromolecules, v. 55, p. 47-61, 2013. AKESON, M. A.; MUNNS, D. N. Lipid bilayer permeation by neutral aluminum citrate and by three α-hydroxy carboxylic acids. Biochimica et Biophysica Acta (BBA)-Biomembranes, v. 984, n. 2, p. 200-206, 1989. ÁLVAREZ, V. H.; IGLESIAS, M.; DOSIL, N.; GONZALEZ-CABALEIRO, R.; MARTIN-PASTOR, M.; MATTEDI, S.; NAVAZA, J. M. Brønsted ionic liquids for sustainable processes: synthesis and physical properties. Journal of Chemical and Engineering Data, v. 55, p. 625-632, 2010a. ÁLVAREZ, V. H.; MATTEDI, S.; AZNAR, M.; IGLESIAS, M. Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxyethylammonium acetate + (water, methanol, or ethanol)}. Journal of Chemical Thermodynamics, v. 43, p. 997-1010, 2011. ÁLVAREZ, V. H.; MATTEDI, S.; MARTIN-PASTOR, M.; AZNAR, M.; IGLESIAS, M. Synthesis and thermophysical properties of two new protic long-chain ionic liquids with the oleate anion. Fluid Phase Equilibria, v. 299, p. 42-50, 2010b. ANDRADE, R. S.; CAMARGO, D.; MAZZER, H.; CARDOZO FILHO, L.; IGLESIAS, MIGUEL. Rheological Study of Polyelectrolytic Protic Ionic Liquids. International Journal of Engineering Research & Technology, v. 5, p. 419, 2016. ANDRADE, R.; CARRERAS, A.; IGLESIAS, M. Influence of temperature on thermodynamics for binary mixtures of short aliphatic protic ionic liquids. Journal of the Serbian Chemical Society, v. 82, p. 68-68, 2017a. ANDRADE, R. S.; TORRES, D.; RIBEIRO, F. R.; CHIARI-ANDRÉO, B. G.; OSHIRO, J. A. Jr., IGLESIAS, M. Sustainable cotton dyeing in nonaqueous medium applying protic ionic liquids. ACS Sustainable Chemistry & Engineering, v. 5, n. 10, p. 8756-8765, 2017b. AZIMOVA, M.A., MORTON III, S.A., FRYMIER, P.D. Comparison of three bacterial toxicity assays for imidazolium-derived ionic liquids. Journal of Environmental Engineering, 135, 1388–1392, 2009. BALK, A.; HOLZGRABE, U.; MEINEL, L. 'Pro et contra' ionic liquid drugs - Challenges and opportunities for pharmaceutical translation. European Journal of Pharmaceutics and Biopharmaceutics, v. 94, p. 291-304, 2015. BANSODE, P.; PATIL, P.; CHOUDHARI, P.; BHATIA, M.; BIRAJDAR, A.; SOMASUNDARAM, I.; RASHINKAR, G. Anticancer activity and molecular docking studies of ferrocene tethered ionic liquids. Journal of Molecular Liquids, v. 290, p. 111182-111193, 2019. BARROS, S. M.; ANDRADE, R. S.; CHIARI-ANDRÉO, B. G.; VELOSO, G. B. R.; GONZALEZ, C.; IGLESIAS, M. Eco-friendly technology for reactive dyeing of cationized fabrics: protic ionic liquids as innovative media. Cellulose Chemistry and Technology, v. 56, p. 403-425, 2022. BARROS, S.; ANDRADE, R. S.; IGLESIAS, M. Effect of temperature on thermodynamic properties of protic ionic liquids: 2-hydroxy ethylammonium lactate (2-HEAL) + short hydroxylic solvent. International Journal of Thermodynamics, v. 21, p. 70-80, 2018. BASU, A.; BHATTACHARYA, C. S.; KUMAR, G. S. Influence of the ionic liquid 1-butyl-3-methylimidazolium bromide on amyloid fibrillogenesis in lysozyme: Evidence from photophysical and imaging studies. International Journal of Biological Macromolecules, v. 107, Part B, p. 2643-2649, 2018. BERNOT, R. J.; BRUESEKE, M. A; EVANS-WHITE, M. A; LAMBERTI, G. A. Acute and chronic toxicity of imidazolium-based ionic liquids on Daphnia magna. Environmental Toxicology and Chemistry, v. 24, p. 87-92, 2005a. BERNOT, R. J.; KENNEDY, E. E.; LAMBERTI, G. H. Effects of lionic liquids on the survival, movement, and feeding behaviour of the freshwater snail Physa acuta. Environmental Toxicology and Chemistry, v. 24, p. 1759-1765, 2005b. BERTHOD, A.; RUIZ-ÁNGEL, M. J.; BROCH, S. Recent advances on ionic liquid uses in separation techniques. Journal of Chromatography A, v. 1559, p. 2-16, 2018. BERTOTI, A. R.; NETTO-FERREIRA, J. C. Ionic liquid [bmim.PF6]: a convenient solvent for laser flash photolysis studies. Química Nova, v. 32, n. 7, p. 1934-1938, 2009. BHATTACHARJEE, A.; LUÍS, A.; SANTOS, J. H.; LOPES-DA-SILVA, J. A.; COUTINHO, J. A. P. Thermophysical properties of sulfonium- and ammonium-based ionic liquids. Fluid Phase Equilibria, v. 381, p. 36-45, 2014. BIANCHINI, R., CEVASCO, G., CHIAPPE, C., POMELLI, C. S., DOUTON, M. J. R. Ionic liquids can significantly improve textile dyeing: An innovative application assuring economic and environmental benefits. ACS Sustainable Chemistry & Engineering, v. 3, p. 2303-2308, 2015. BICAK, N. A new ionic liquid: 2-hydroxy ethylammonium formate. Journal of Molecular Liquids, v. 116, p. 15-18, 2005. BISHT, M.; VENKATESU, P. Influence of cholinium-based ionic liquids on the structural stability and activity of α-chymotrypsin. New J. Chem., v. 41, p. 13902-13911, 2017. BORRA, E. F.; SEDDIKI, O.; ANGEL, R.; EISENSTEIN, D.; HICKSON, P.; SEDDON, K. R.; WORDEN, S. P. Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature, v. 447, p. 979-981, 2007. BOUKAMP, P.; PETRUSSEVSKA, R. T.; BREITKREUTZ, D.; HORNUNG, J.; MARKHAM, A.; FUSENIG, N. E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. The Journal of cell biology, v. 106, n. 3, p. 761-771, 1988. BRUGGINSSER, R.; VON DAENIKEN K.; JUNDT, G.; SCHAFFNER, W.; TULBERG-REINERT, H. Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Medica, v. 68, n. 5, p. 445-448, 2002. BUBALO, M. C; RADOŠEVIĆ, K.; REDOVNIKOVIĆ, I. R.; SLIVAC, I.; SRČEK, V. G. Toxicity mechanisms of ionic liquids. Arhiv Za Higijenu Rada I Toksikologiju-Archives of Industrial Hygiene and Toxicology, v. 68, p. 171-179, 2017. CALZA, P.; FABBRI, D.; NOÈ, G.; SANTORO, V.; MEDANA, C. Assessment of the photocatalytic transformation of pyridinium-based ionic liquids in water. Journal of Hazardous Materials, v. 341, p. 55-65, 2018. CAMARGO, D.; ANDRADE, R. S.; FERREIRA, G. A.; MAZZER, H.; CARDOZO-FILHO, L.; IGLESIAS, M. Investigation of the rheological properties of protic ionic liquids. Journal of Physical Organic Chemistry (Print), v. 1, p. n/a-n/a, 2016. CARPENTER, C. P., SMYTH, Jr. H. F. Chemical burns of the rabbit cornea. American Journal of Ophthalmology, v. 29, p. 1363–72, 1946. CHANG, L. Y.; LEE,C. P.; LI, C. T.; HO, K. C.; LIN, J. J. Synthesis of a novel amphiphilic polymeric ionic liquid and its application in quasi-solid-state dye-sensitized solar cells. Journal of Materials Chemistry, v. 2, p. 20814-20822, 2014. CHEMNITIUS, J. M.; SADOWSKI, R.; WINKEL, H.; ZECH, R. Organophosphate inhibition of human heart muscle cholinesterase isoenzymes. Chemico-Biological Interactions, v. 120, p. 183–192, 1999. CHEN, C.; MA, Y.; ZHENG, D.; ZHANG, J.; ZHANG, J. Influence of different substitution in pyrazolium ionic liquids on catalytic activity for the fixation of CO2 under solvent- and metal-free conditions. Tetrahedron, v. 74, n. 15, p. 1776-1784, 2018. CHENG, D. H. Application of ionic liquid in silk dyeing. Advanced Materials Research, v. 331, p. 253-256, 2011. CHIAPPE, C.; PIERACCINI, D. Ionic liquids: solvent properties and organic reactivity. Journal of Physical Organic Chemistry, v. 18, n. 4, p. 275-297, 2005. CHO, C. W.; JEON, Y. C.; PHAM, T. P.; VIJAYARAGHAVAN, K.; YUN, Y. S. The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicology and Environmental Safety, v. 71, p. 166–171, 2008. CHO, C. W.; YUN, Y. S. Interpretation of toxicological activity of ionic liquids to acetylcholinesterase inhibition via in silico modelling. Chemosphere, v. 159, p. 178-183, 2016. CHORILLI, M.; TAMASCIA, P.; ROSSIM, C.; SALGADO, H. R. N. Ensaios biológicos para avaliação de segurança de produtos cosméticos. Revista de Ciências Farmacêuticas Básica e Aplicada, v. 30, n. 1, p. 19-30, 2009. CHU, L.; KANG, X.; LI, D.; SONG, X.; ZHAO, X. The toxicological mechanism of two typical imidazole ionic liquids in textile industry on Isatis tinctoria. Chemosphere, v. 275, 130042, 2021. CLARK, K. D.; NACHAM, O.; PURSLOW, J. A.; PIERSON, S. A.; ANDERSON, J. L. Magnetic ionic liquids in analytical chemistry: A review. Analytica Chimica Acta, v. 934, p. 9-21, 2016. CLAUS, J.; SOMMER, F.O.; KRAGL, U. Ionic liquids in biotechnology and beyond. Solid State Ionics, v. 314, p. 119-128, 2018. COLLIN, R. M.; COLLIN, R.W. Encyclopedia of Sustainability. ABC-CLIO, LLC, Santa Barbara, California, 2010. COLLINS, T. J. Image J for microscopy. Biotechniques, v. 43 p. 25–30, 2007. COMMITTED to maintaining high quality and safety. Submission of data by CTFA. (2-5-29). CIR safety data test summary, primary skin irritation and eye irritation of triethanolamine, 1959. COMMITTED to maintaining high quality and safety. Submission of data by CTFA. (2-5-24). CIR safety data test summary, primary skin irritation and eye irritation of diethanolamine, 1979A. COMMITTED to maintaining high quality and safety. Submission of data by CTFA. (2-5-23). CIR safety data test summary, primary skin irritation and eye irritation of monoethanolamine, 1979B. COMMITTED to maintaining high quality and safety. Submission of data by CTFA. (2-5-65). Allergic contact sensitization test (Test No. APTC-128-80), 1980. COMMITTED to maintaining high quality and safety. Submission of data by CTFA. (2-5-61). CIR safety data test summary, primate eye test of shampoo containing 12.6 percent triethanolamine, 1976. COSTA, S. P. F.; MARTINS, B. S. F.; PINTO, P. C. A. G.; SARAIVA, L. M. F. S. Automated cytochrome c oxidase bioassay developed for ionic liquids’ toxicity assessment. Journal of Hazardous Materials, v. 309, p. 165-172, 2016. COTA, I.; MEDINA, F.; GONZALEZ-OLMOS, R.; IGLESIAS, M. Alanine-supported protic ionic liquids as efficient catalysts for aldol condensation reactions, Comptes Rendus Chimie, v. 17, n. 1, p. 18-22, 2014. COULING, D. J.; BERNOT, R. J.; DOCHERTY, K. M.; DIXON, J. K.; MAGINN, E. J. Assessing the factors responsible for ionic liquid toxicity to aquatic organisms via quantitative structure-property relationship modelling. Green Chemistry, v. 8, p. 82-90, 2006. CUNHA, E.; PINTO, P. C. A G.; CARBALHO, J. P. S.; SARAIVA, M. L. M. F. S. Automated carboxylesterase assay for the evaluation of ionic liquids’ humantoxicity. Journal of Hazardous Materials, v. 244-245, p. 563-569, 2013. DECAEN, P.; ROLLAND-SABATÉ, A.; GUILOIS, S.; JURY, V.; LEROY, E. Choline chloride vs choline ionic liquids for starch thermoplasticization. Carbohydrate Polymers, v, 177, p. 424-432, 2018. DEYAB, M. A.; ZAKY, M. T.; NESSIM, M. I. Inhibition of acid corrosion of carbon steel using four imidazolium tetrafluoroborates ionic liquids. Journal of Molecular Liquids, v, 229, p. 396-404, 2017. DOCHERTY, K. M.; DIXON, J. K.; KULPA, C. F. JR. Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial community. Biodegradation, v. 18, p. 481–493, 2007. DOCHERTY, K. M.; KULPA, C. F. Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chemistry, v. 7, p. 185-189, 2005. DONG, Z. Q. Influence of ionic liquids on the sorption of acid dyes by nylon fibers. Advanced Materials Research, v. 175-176, p. 602-607, 2011. DOS SANTOS, R. F.; FALCADE, T.; ANTONINI, L. M.; ORTEGA-V., MARÍA R.; MATTEDI, S.; IGLESIAS, M.; MALFATTI, C. F. Ionic liquids (IL) corrosion on A285 carbon steel. DYNA (Medellín), v. 81, p. 122, 2014. DU, Y. Y.; TIAN, F. L. Protic acidic ionic liquids promoted formation of 1,5-benzodiazepines: remarkable effects of cations and anions on their performances. Journal of Chemical Research-S, v. 8, p. 486-489, 2006. EGOROVA, K. S., ANANIKOV, V. P. Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications. Journal of Molecular Liquids, v. 272, p. 271-300, 2018a. EGOROVA, K. S., ANANIKOV, V. P. Ionic liquids in whole-cell biocatalysis: a compromise between toxicity and efficiency. Biophysical Reviews, v. 10, n. 3, p. 881-900, 2018b. EGOROVA, K. S., ANANIKOV, V. P. Toxicity of ionic liquids: Eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization. ChemSusChem, v. 7, p. 336-360, 2014. EGOROVA, K. S.; GORDEEV, E. G.; ANANIKOV, V. P. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chemical reviews, v. 117, p. 7132-7189, 2017. ELGHARBAWY, A. A.; RIYADI, F. A.; ALAM, M. Z.; MONIRUZZAMAN, M. Ionic liquids as a potential solvent for lipase-catalysed reactions: A review. Journal of Molecular Liquids., v. 251, p. 150-166, 2018. ELSHEIKH, Y. A. Optimization of novel pyrazolium ionic liquid catalysts for transesterification of bitter apple oil. Process Safety and Environmental Protection, v. 92, n. 6, p. 828-834, 2014. FALL, A.; SECK, I.; DIOUF, O.; GAYE, M.; FALL, Y. Synthesis of new triazolium-based ionic liquids and their use in the Morita–Baylis–Hillman reaction. Tetrahedron Letters, v. 56, n. 36, p. 5128-5131, 2015. FAN, Y.; WANG, X.; LI, J.; ZHANG, L.; YANG, L.; GAO, P.; ZHOU, Z. Kinetic study of the inhibition of ionic liquids on the trypsin activity. Journal of Molecular Liquids, v. 252, p. 392-398, 2018. FAZLALI, A.; SHAHEBRAHIMI, Y.; ALIYARI, N.; MOHAMMADI, A. H. Oil products desulfurization by 1-butyl-3-methylimidazolium tetrachloroaluminate ionic liquid: Experimental study and thermodynamic modelling. Journal of Molecular Liquids, v. 237, p. 437-446, 2017. FERRAZ, R.; COSTA‐RODRIGUES, J.; FERNANDES, M. H.; SANTOS, M. M.; MARRUCHO, I. M.; REBELO, L. P. N.; BRANCO, L. C. Antitumor activity of ionic liquids based on ampicillin. Chem Med Chem, v. 10, n. 9, p. 1480-1483, 2015. FERRAZ, R.; TEIXEIRA, V.; RODRIGUES, D.; FERNANDES, R.; PRUDENCIO, C.; NORONHA, J. P.; PETROVSKI, Z.; BRANCO, L. C. Antibacterial activity of Ionic Liquids based on ampicillin against resistant bacteria. The Royal Society of Chemestry, v. 4, p. 4301-4307, 2014. FINAL report on the safety assessment of triethanolamine, diethanolamine, and monoethanolamine. Journal of the American College of Toxicology, v. 2, p. 183–235, 1983. FORSYTH, M.; GIRARD, G. M. A.; BASILE, A.; HILDER, M.; MACFARLANE, D. R.; CHEN, F.; HOWLETT, P. C. Inorganic-Organic Ionic Liquid Electrolytes Enabling High Energy-Density Metal Electrodes for Energy Storage. Electrochimica Acta, v. 220, p. 609-617, 2016. FRADE, R. F. M., ROSATELLA, A. A., MARQUES, C. S., BRANCO, L. C, KULKARNI, P. S., MATEUS, N. M. M., AFONSO, C. A. M., DUARTE, C. M. M. Toxicological evaluation on human colon carcinoma cell line (CaCo-2) of ionic liquids based on imidazolium, guanidinium, ammonium, phosphonium, pyridinium and pyrrolidinium cations. Green Chemistry, v. 11, p. 1660-1665, 2009. FREEMANTLE, M. Introduction to Ionic Liquids. RCS publishing, 2010. FRIIS, M. B.; FRIBORG, C.R.; SCHNEIDER, L.; NIELSEN, N. M-B.; LAMBERT, I. H.; CHRISTENSEN, S. T.; HOFFMANN, E. K. Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts. The Journal of Physiology, v. 567, p. 427–443, 2005. FRONZA, M.; HEINZMAN, B.; HAMBURGER, M.; LAUFER, S.; MERFORT, I. Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts. Journal of Ethnopharmacology, v. 126, p. 463–467, 2009. FULTON, M. H.; KEY, P. B. Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environmental Toxicology and Chemistry, v. 20, p. 37–45, 2001. GEORGE, V. C.; KUMAR, D. R. N.; SURESH, P. K.; KUMAR, R. A. Apoptosis-Induced Cell Death due to Oleanolic Acid in HaCaT Keratinocyte Cells –a Proof-of-Principle Approach for Chemopreventive Drug Development. Asian Pacific Journal of Cancer Prevention, v. 13, p. 2015-2020, 2012. GHANEM, O. B.; MUTALIB, M. I. A.; LÉVÊQUE, J. M.; EL-HARBAWI, M. Development of QSAR model to predict the ecotoxicity of Vibrio fischeri using COSMO-RS descriptors. Chemosphere, v. 170, p. 242–250, 2017. GILBERT, B.; OLIVIER-BOURBIGOU, H.; FAVRE, F. Chloroaluminate Ionic Liquids: from their Structural Properties to their Applications in Process Intensification. Oil & Gas Science and Technology, v. 62, n. 6, p. 745-759, 2007. GREAVES, T. L.; WEERAWARDENA, A.; FONG, C.; KRODKIEWSKA, I.; DRUMMOND, C. J. Protic ionic liquids: solvents with tunable phase behavior and physicochemical properties. Journal of Physical Chemistry B, v. 110, p. 22479-22487, 2006. GREWAL, J.; KHARE, S. K. One-pot bioprocess for lactic acid production from lignocellulosic agro-wastes by using ionic liquid stable Lactobacillus brevis. Bioresource Technology, v. 251, p. 268-273, 2018. GRIFFITH, J. F.; NIXON, G .A.; BRUCE, R. D.; REER, P. J.; BANNAN, E. A. Dose-response studies with chemical irritants in the albino rabbit eye as a basis for selecting optimum testing conditions for predicting hazard to the human eye. Toxicology and Applied Pharmacology, v. 55, p. 501-13, 1980. HAGIWARA, R.; LEE, J. S. Ionic liquids for electrochemical devices. Electrochemistry, v. 75, p. 23-34, 2007. HAN, Q.; BROWN, S. J.; DRUMMOND, C. J. GRAVES, T. L. Protein aggregation and crystallization with ionic liquids: Insights into the influence of solvent properties. Journal of Colloid and Interface Science, v. 609, Part 2, p. 1173-1190, 2022. HANDY, S. (Ed.). Applications of Ionic Liquids in Science and Technology, InTech: Rijeka, 2011. HARMS, C. T.; OERTLI, J. J. The use of osmotically adapted cell cultures to study salt tolerance in vitro. Journal of Plant Physiology, v. 120, n. 1, p. 29-38, 1985. HE, Z.; ALEXANDRIDI, P. Ionic liquid and nanoparticle hybrid systems: Emerging applications. Advances in Colloid and Interface Science, v. 244, p. 54-70, 2017. HIJO, A. A. C. T.; MAXIMO, G. J.; COSTA, M. C.; BATISTA, E. A. C.; MEIRELLES, A. J. A. Applications of ionic liquids in the food and bioproducts industries. ACS Sustainable Chemistry & Engineering, v. 4, p. 5347-5369, 2016. HOU, J.; LIN, S.; ZHANG, M. Ionic-liquid-enhanced solvent extraction mechanism: A novel concept. Journal of Environmental Chemical Engineering, v. 10, 107899, 2022. HU, F.; WEI, L.; ZHENG, C.; SHEN, Y.; MIN, W. Live-cell vibrational imaging of choline metabolites by stimulated Raman scattering coupled with isotope-based metabolic labeling. Analyst, v. 139, n. 10, p. 2312-2317, 2014. HUANG, Z.; TUNNACLIFFE, A. Response of human cells to desiccation: comparison with hyperosmotic stress response. The Journal of Physiology, v. 558, p. 181–191, 2004. HWANG, J., PARK, H., CHOI, D. W., NAM, K. T., LIM, K. M. Investigation of dermal toxicity of ionic liquids in monolayer-cultured skin cells and 3D reconstructed human skin models. Toxicology in vitro, v. 46, p. 194-202, 2018. IGLESIAS, M.; TORRES, A.; GONZALEZ-OLMOS, R., SALVATIERRA, D. Effect of temperature on mixing thermodynamics of a new ionic liquid: {2-hydroxyethylammonium formate (2-HEAF) + short hydroxylic solvents}. The Journal of Chemical Thermodynamics, v. 40, p. 119-133, 2008. IQBAL, B.; MUHAMMAD, N.; JAMAL, A.; AHMAD, P.; HAQ KHAN, Z. U.; RAHIM, A.; KHAN, A. S; GONFA, G.; IQBAL, J.; REHMAN, I. U. An application of ionic liquid for preparation of homogeneous collagen and alginate hydrogels for skin dressing. Journal of Molecular Liquids, v. 243, p. 720-725, 2017. JAITELY, V.; KARATAS, A.; FLORENCE, A. T. Water-immiscible room temperature ionic liquids (RTILs) as drug reservoirs for controlled release. International Journal of Pharmaceutics, v. 54, n. 1-2, p. 168-173, 2008. JOHNSON, W., HELDRETH, B., BERGFELD, W. F., BELSITO, D. V., HILL, R. A., KLAASSEN, C. D., LIEBLER, D. C., MARKS, J. G., SHANK, R. C., SLAGA, T. J., SNYDER, P. W., & ANDERSEN, F. A. Safety assessment of formic acid and sodium formate as used in cosmetics. International Journal of Toxicology, v. 35 (2_suppl), 41S-54S, 2016. JORDAN, A., GATHERGOOD, N. Biodegradation of ionic liquids e a critical review. Chemical Society Reviews, v. 44, p. 8200-8237, 2015. JOURNAL Officiel de la République Française. Arête du 27 décembre 1996 relatif aux méthodes d’analyse nécessaires au contrôle de la composition des produits cosmétiques. Annexe IV: méthode officiel d’évaluation du potentiel irritant par application sur la membrane chorioallantoidienne de l’œuf de poule, p. 19137-8, 1996. KAKAEI, K.; ALIDOUST, E.; GHADIMI, G. Synthesis of N- doped graphene nanosheets and its composite with urea choline chloride ionic liquid as a novel electrode for supercapacitor. Journal of Alloys and Compounds, v. 735, p. 1799-1806, 2018. KANTOUCH, A., KHALIL, E. M., EL-SAYED, H., MOWAFI, S. A novel application of ionic liquid in improvement of the felting resistance of wool. Egyptian Journal of Chemistry, v. 54, p. 481-493, 2011. KAUSHIK, N. K., ATTRI, P., KAUSHIK, N., CHOI, E. H., Synthesis and antiproliferative activity of ammonium and imidazolium ionic liquids against T98G brain cancer cells. Molecules, v. 17, p. 13727-13739, 2012. KISHIMURA, H.; KOHKI, E.; NAKADA, A.; TAMATANI, K.; ABE, H. Ether bond effects in quaternary ammonium and phosphonium ionic liquid-propanol solutions. Chemical Physics, v. 502, p. 87-95, 2018. KLEIN, R.; MÜLLER, E.; KRAUS, B.; BRUNNER, G.; ESTRINE, B.; TOURAUD, D.; KUNZ, W. Biodegradability and cytotoxicity of choline soaps on human cell lines: effects of chain length and the cation. RSC Advances, v. 3, n. 45, p. 23347-23354, 2013. KNUDSEN, G. A.; CHENG, Y.; KUESTER, R. K.; HOOTH, M. J.; SIPES, I. G. Effects of dose and route on the disposition and kinetics of 1-butyl-1-methylpyrrolidinium chloride in male F-344 rats. Drug Metabolism and Disposition, v. 37, n. 11, p. 2171-2177, 2009. KORDALA-MARKIEWICZ, R.; RODAK, H.; MARKIEWICZ, B.; WALKIEWICZ, F.; SZNAJDROWSKA, A.; MATERNA, K.; MARCINKOWSKA, K.; PRACZYK, T.; PERNAK, J. Phenoxy herbicidal ammonium ionic liquids. Tetrahedron, v. 70, n. 32, p. 4784-4789, 2014. KOKORIN, A. (Ed.). Ionic Liquids: Applications and Perspectives. InTech: Rijeka, 2011. KOSINSKI, S.; RYKOWSKA, I.; GONSIOR, M.; KRZYZANOWSKI, P. Ionic liquids as antistatic additives for polymer composites – A review. Polymer Testing, v. 112, 107649, 2022. KRAUSE, A. C. Citric Acid Studies Referring to the Eye. Archives of Ophthalmology, v. 20, p. 530-530, 1938. KULHAVY, J.; ANDRADE, R.; BARROS, S.; SERRA, J.; IGLESIAS, M. Influence of temperature on thermodynamics of protic ionic liquid 2-hydroxy diethylammonium lactate (2-HDEAL)+short hydroxylic solvents. Journal of Molecular Liquids (Print), v. 213, p. 92-106, 2016. KULTZ, D.; CHAKRAVARTY, D. Maintenance of genomic integrity in mammalian kidney cells exposed to hyperosmotic stress. Comparative Biochemistry and Physiology Part A, v. 130, p. 421-428, 2001. KUMAR, A., KUMAR, P. Quantitative structure toxicity analysis of ionic liquids toward acetylcholinesterase enzyme using novel QSTR models with index of ideality of correlation and correlation contradiction index. Journal of Molecular Liquids, v. 318, 114055, 2020. KUMAR, R. A., PAPAÏCONOMOU, N., LEE, J. M., SALMINEN, J., CLARK, D. S., PRAUSNITZ, J. M. In vitro cytotoxicities of ionic liquids: effect of cation rings, functional groups, and anions. Environmental Toxicology, v. 24, p. 388-395, 2009. KUMAR, S.; RUTH, W.; SPRENGER, B.; KRAGL, U. On the biodegradation of ionic liquid 1- Butyl-3-methylimidazolium tetrafluoroborate. Chimica Oggi, n. 24, p. 24–26, 2006. KUMER, A., SARKER, M., PAUL, S. The Simulating Study of HOMO, LUMO, thermo physical and quantitative structure of activity relationship (QSAR) of some anticancer active ionic liquids. Eurasian Journal of Environmental Research, v. 3, p. 1-10, 2019. KUNOV‐KRUSE, A. J.; WEBER, C. C.; ROGERS, R. D.; MYERSON, A. S. The a priori design and selection of ionic liquids as solvents for active pharmaceutical ingredients. Chemistry-A European Journal, v. 23, p. 5498-5508, 2017. LARANGEIRA, P. M.; ROSSO, V. V.; SILVA, V. H. P.; MOURA, C. F. G.; RIBEIRO, D. A. Genotoxicity, mutagenicity and cytotoxicity of carotenoids extracted from ionic liquid in multiples organs of Wistar rats. Experimental and Toxicologic Pathology, V. 68, P. 571-578, 2016. LARRIBA, M.; NAVARRO, P.; DELGADO-MELLADO, N.; STANISCI, V.; GARCÍA, J.; RODRÍGUEZ, F. Separation of aromatics from n-alkanes using tricyanomethanide-based ionic liquids: Liquid-liquid extraction, vapor-liquid separation, and thermophysical characterization. Journal of Molecular Liquids, v. 223, p. 880-889, 2016. LATALA, A.; STEPNOWSKI, P.; NEDZI, M.; MROZIK, W. Marine toxicity assessment of imidazolium ionic liquids: acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana. Aquatic Toxicology, v. 73, p. 91-98, 2005. LE BIDEAU, J.; VIAU, L.; VIOUX, A. Ionogels, ionic liquid based hybrid materials. Chemical Society Reviews, v. 40, p. 907-925, 2011. LEI, H.; TU, J.; YU, Z.; JIAO, S. Exfoliation Mechanism of Graphite Cathode in Ionic Liquids. ACS Applied Materials & Interfaces, v. 9, n. 42, p. 36702-36707, 2017. LENARDÃO, E. J.; FREITAG, R. A.; DABDOUB, M. J.; BATISTA, A. C. F; SILVEIRA, C. C. “Green chemistry” – Os 12 princípios da química verde e sua inserção nas atividades de ensino e pesquisa. Química Nova, v. 26, n. 1, p. 123-129, 2003. LI, K.; CHOUDHARY, H.; ROGERS, R. D. Ionic liquids for sustainable processes: Liquid metal catalysis. Current Opinion in Green and Sustainable Chemistry, v. 11, p. 15-21, 2018. LI, L.; BU, C.; ZHANG, Y.; DU, J.; LU, X.; LIU, X. Composite system based on biomolecules-functionalized multiwalled carbon nanotube and ionic liquid: electrochemistry and electrocatalysis of tryptophane. Electrochimica Acta, v. 58, p. 105-111, 2011. LI, T. H.; JING, C. Q.; GAO, K. L.; YUE, W. Y.; LI, S. F. Cytotoxicity of 1-dodecyl-3-methylimidazolium bromide on HepG2 cells. Genetics and Molecular Research, v. 14, n. 4, p. 13342-13348, 2015. LI, W.; QI, Y., GAO, C.; LIU, Y.; DUAN, J. A sensitive approach for screening acetylcholinesterase inhibition of water samples using ultra-performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography B, v. 1190, 123101, 2022. LI, W.; SUN, D.; ZHANG, T.; S.; PAN, F.; ZHANG, Z. Separation of acetone and methanol azeotropic system using ionic liquid as entrainer. Fluid Phase Equilibria, v. 383, p. 182-187, 2014. LIANG, C. L.; PARK, A. Y.; GUAN, J. L. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nature Protocols, v.2, p. 329-333, 2007. LIBERACKI, A. B.; NEEPER-BRADLEY, T. L.; BRESLIN, W. J.; ZIELKE, G. J. Evaluation of the developmental toxicity of dermally applied monoethanolamine in rats and rabbits. Toxicological Sciences, v. 31, n. 1, p. 117-123. 1996. LIEBERT, M.A. Final report on the safety assessment of cocamide DEA, lauramide DEA, linoleamide DEA, and oleamide DEA. Journal Of The American College Of Toxicology, v. 5, n. 5, p. 415, 1986. LIU, L.; YANG, P.; LI, P.; CUI, M. Y. Application of bis(trifluoromethanesulfonyl)imide lithium-N-methyl-Nbutylpiperidinium-bis(trifluoromethanesulfonyl)imide-poly(vinylidene difluoride-co-hexafluoropropylene) ionic liquid gel polymer electrolytes in Li/LiFePO4 batteries at different temperatures. Electrochimica Acta, v. 85, p. 49-56. 2012. LIU, X. ; JI, C. ; YANG, Q. ; BAO, Z.; FAN, X.; YANG, Y. ; XING, H. Carboxylate ionic liquids combining low cytotoxicity toward HepG2 cell and high separation efficiency for bioactive molecules. ACS Sustainable Chemistry & Engineering, v. 5, n. 2, p. 1974-1981, 2017. LOPES, J. M.; BERMEJO, M. D.; MARTÍN, Á.; COCERO, M. J. Ionic Liquid as Reaction Media for the Production of Cellulose-Derived Polymers from Cellulosic Biomas. Chemical Engineering Journal, v. 1, n. 10, p. 1-28, 2017. LUIS, P., ORTIZ, I., ALDACO, R., IRABIEN, A. A novel group contribution method in the development of a QSAR for predicting the toxicity (Vibrio fischeri EC50) of ionic liquids. Ecotoxicology and Environmental Safety. Saf. 67, 423–429, 2007. MARKUSSON, H.; BELIERES, J. P.; JOHANSSON, P.; ANGELL, C. A.; JACOBSSON, P. Prediction of macroscopic properties of protic ionic liquids by ab initio calculations. Journal of Physical Chemistry A, v.111, p. 8717-8723, 2007. MARTINELLI, A.; MATIC, A.; JACOBSSON, P.; BORJESSON, L.; FERNICOLA, A; PANERO, S.; SCROSATI, B.; OHNO, H. Physical properties of proton conducting membranes based on a protic ionic liquid. Journal of Physical Chemistry B, v. 111, p. 12462-12467, 2007. MASOOMEH, S.; DAVOOD, A.; MARYAM, G. Effect of two ionic liquids on the structure and activity of adenosine deaminase enzyme. Clinical Biochemistry, v. 44, p. S243, 2011. MASSOULIÉ, J.; PEZZEMENTI, L.; BON, S.; KREJCI, E.; VALLETTE, F. M. Molecular and cellular biology of cholinesterases. Progress in Neurobiology, v. 41, p. 31–91, 1993. MATSUMOTO, M.; MOCHIDUKI, K.; FUKUNISHI, K.; KONDO, K. Extraction of organic acids using imidazolium-based ionic liquids and their toxicity to Lactobacillus rhamnosus. Separation and Purification Technology, v. 40, p. 97-101, 2004a. MATSUMOTO, M.; MOCHIDUKI, K.; KONDO, K. Toxicity of ionic liquids and organic solvents to lactic acid-producing bacteria. Journal of Bioscience and Bioengineering, v. 98, p. 344-347, 2004b. MATSUO, A. Y. O; LAMBERTI, G. A. Understanding the mechanism of ionic liquid toxicity to fish and Daphnia. Abstracts of Papers of the American Chemical Society, v. 231, 176-IEC, 2006. MATZKE, M.; ARNING, J.; JOHANNES, R.; JASTORFF, B.; STOLTE, S. Design of inherently safer ionic liquids: toxicology and biodegradation. In: Wasserscheid P, Stark A, editors. Handbook of green chemistry. Vol. 6: Ionic liquids. Weinheim: Wiley-VCH Verlag GmbH & Co.; p. 235-98, 2010. MATZKE, M., STOLTE, S., THIELE, K., JUFFERNHOLZ, T., ARNING, J., RANKE, J., WELZ-BIERMANN, U., JASTORFF, B. The influence of anion species on the toxicity of 1-alkyl-3- methylimidazolium ionic liquids observed in an (eco)toxicological test battery. Green Chem, v. 9, p. 1198–1207, 2007. MAYORAL, M. J.; OVEJERO, P.; CAMPO, J. A.; HERAS, J. V.; CANO, M. Ionic liquid crystals from β-diketonyl containing pyridinium cations and tetrachlorozincate anions. Inorganic Chemistry Communications, v. 12, n. 3, p. 214-218, 2009. MCKENZIE, B.; KAYA, G.; MATTHEWS, K. H; KNOTT, R. M.; CAIRNS, D. The hen’s egg chorioallantoic membrane (HET-CAM) test to predict the ophthalmic irritation potential of a cysteamine-containing gel: Quantification using Photoshop1 and ImageJ. International Journal of Pharmaceutics, v. 490, p. 1-8, 2015. MEENATCHI, B.; RENUGA, V.; MANIKANDAN, A. Cellulose dissolution and regeneration using various imidazolium based protic ionic liquids. Journal of Molecular Liquids, v. 238, p. 582-588, 2017. MEKSI, N.; MOUSSA, A. A review of progress in the ecological application of ionic liquids in textile processes. Journal of Cleaner Production, v. 161, p. 105-126, 2017. MESSALI, M.; ALMTIRI, M. N.; ABDERRAHMAN, B.; SALGHI, R.; AOUAD, M. R.; ALSHAHATEET, S. F.; ALI, A. A. New pyridazinium-based ionic liquids: An eco-friendly ultrasound-assisted synthesis, characterization and biological activity. South African Journal of Chemistry, v. 68, p. 219-225, 2015. MUNNS, R. Comparative physiology of salt and water stress. Plant, Cell & Environment, v. 25, p. 239–250, 2002. MUZALEVSKIY, V. M.; SHASTIN, A. V.; SHIKHALIEV, N. G.; MAGERRAMOV, A. M.; TEYMUROVA, A. N.; NENAJDENKO, V. G. Ionic liquids as a reusable media for copper catalysis. Green access to alkenes using catalytic olefination reaction. Tetrahedron, v. 72, n. 45, p. 7159-7163, 2016. NAWATA, J. DAWIDZIUK, B.; DZIEDZIC, D.; GORDON, D.; POPIEL, S. Applications of ionic liquids in analytical chemistry with a particular emphasis on their use in solid-phase microextraction. TrAC Trends in Analytical Chemistry, v. 105, p. 18-36, 2018. NEALE, A. R.; MURPHY, S.; GOODRICH, P.; SCHÜTTER, C.; HARDACRE, C.; PASSERINI, S.; BALDUCCI, A.; JACQUEMIN, J. An ether-functionalised cyclic sulfonium based ionic liquid as an electrolyte for electrochemical double layer capacitors. Journal of Power Sources, v. 326, p. 549-559, 2016. NEHRA, P.; KHUNGAR, B.; SINGH, R. P.; SIVASUBRAMANIAN, S. C.; JHA, P. N.; SAINI, V. Synthesis, characterization and applications of imidazolium ionic liquid-tagged zinc(II) complex. Inorganica Chimica Acta, v. 478, p. 260-267, 2018. NELSON, D. L.; COX, M. M. Princípios de Bioquímica de Lehninger. 6. ed. Porto Alegre: Artmed, 2014. NIEDERMEYER, H.; HALLETT, J. P.; VILLAR-GARCIA, I, J.; HUNT, P. A.; WELTON, T. Mixtures of ionic liquids. Chemical Society Reviews., v. 41, p. 7780-7802, 2012. NIEMCZAK, M.; KACZMAREK, D.K.; KLEJDYSZ, T.; GWIAZDOWSKA, D.; MARCHWIŃSKA, K.; PERNAK, J. Ionic liquids derived from vitamin C as multifunctional active ingredients for sustainable stored-product management. ACS Sustainable Chemistry & Engineering, v. 7, p. 1072-1084, 2019. NODA, A.; SUSAN, A. B.; KUDO, K.; MITSUSHIMA, S.; HAYAMIZU, K.; WATANABE, M. Bronsted acid-base ionic liquids as proton-conducting nonaqueous electrolytes. Journal of Physical Chemistry B, v. 107, p. 4024-4033, 2003. OCHEDZAN-SIODKAK, W.; DZIUBEK, K.; SIODKAK, D. Biphasic ethylene polymerisation using 1-n-alkyl-3-methylimidazolium tetrachloroaluminate ionic liquid as a medium of the Cp2TiCl2 titanocene catalyst. European Polymer Journal, v. 44, n. 11, p. 3608-3614, 2008. OLIVEIRA, L.; JOSE, N. M.; BOAVENTURA, J.; IGLESIAS, M.; MATTEDI, S. Proton conducting polymer membrane using the ionic liquid 2-hydroxyethylammonium lactate for ethanol fuel cells. AIP Conference Proceedings, v. 1400, p. 149-153, 2011. OLIVEIRA, M. V. S.; VIDAL, B. T.; MELO, C. M.; MIRANDA, R. C. M.; SOARES, C. M. F.; COUTINHO, J. A. P.; VENTURA, S. P. M.; MATTEDI, S.; LIMA, A. S. (Eco)toxicity and biodegradability of protic ionic liquids. Chemophere, v. 147, p. 460-466, 2016. OPWIS, K; BENKEN, R.; KNITTEL, D.; GUTMANN, J. S. Dyeing of PET Fibers in Ionic Liquids. International Journal of New Technology and Research, v. 3, n. 11, p. 101-108, 2017. PERIC, B.; MARTÍ, E.; SIERRA, J.; CRUAÑAS, R.; IGLESIAS, M.; GARAU, M.A. Terrestrial ecotoxicity of short aliphatic protic ionic liquids. Environmental Toxicology and Chemistry, v. 30, n. 12, p. 2802-2809, 2011. PERIC, B.; SIERRA, J.; MARTÍ, E., CRUAÑAS, R; GARAU, M. A. Quantitative structure–activity relationship (QSAR) prediction of (eco)toxicity of short aliphatic protic ionic liquids. Ecotoxicology and Environmental Safety, v. 115, p. 257-262, 2015. PERIC, B.; SIERRA, J.; MARTÍ, E.; CRUAÑAS, R.; GARAU, M.A. A comparative study of the terrestrial ecotoxicity of selected protic and aprotic ionic liquids. Chemosphere, v. 108, p. 418-425, 2014. PERIC, B.; SIERRA, J.; MARTI, E.; CRUAÑAS, R.; GARAU, M.A.; ARNING, J. BOTTIN-WEBER, U.; STOLTE, S. (Eco)toxicity and biodegradability of selected protic and aproticionic liquids. Journal of Hazardous Materials, v. 261, p. 99–105, 2013. PETKOVIC, M.; SEDDON, K. R.; REBELO, L. P.; SILVA PEREIRA, C. Ionic liquids: a pathway to environmental acceptability. Chemical Society Reviews, v. 40, p. 1383-1403, 2011. PIN, T. C.; NAKASU, P. Y. S.; MATTEDI, S.; RABELO, S. C.; COSTA, A. C. Screening of protic ionic liquids for sugarcane bagasse pretreatment. Fuel, v. 235, p. 1506-1514, 2019. PLECHKOVA, N. V.; SEDDON, K. R. Applications of ionic liquids in the chemical industry. Chemical Society Reviews, v. 37, p. 123-150, 2008. POPE, C.; KARANTH, S.; LIU, J. Pharmacology and toxicology of cholinesterase inhibitors: uses and misuses of a common mechanism of action. Environmental Toxicology and Pharmacology, v. 19, p. 433-446, 2005. PRESGRAVE, O. A. F.; CALDEIRA, C.; GIMENES, I.; FREITAS, J. C. B. R.; NOGUEIRA, S. T. B.; OLIVEIRA, N. D. E.; OLIVEIRA, A. G. L.; SILVA, R. S.; ALVES, E. N.; PRESGRAVE, R. F. Métodos alternativos ao uso de animais: uma visão atual. Tropical Animal Science Journal, v. 13, n. 1, p. 106-117, 2010. PRETTI, C., CHIAPPE, C., BALDETTI, I., BRUNINI, S., MONNI, G., INTORRE, L. Acute toxicity of ionic liquids for three freshwater organisms: Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Ecotox. Environ. Saf., v. 72, p. 1170–1176, 2009. QINGDAO UNIVERSITY. Dyeing method of reactive dye containing ionic liquid. CN Patent 102493222 A, 2012. RAMOS, M. A. D. S.; DA SILVA, P. B.; SPÓSITO, L.; DE TOLEDO, L. G.; BONIFACIO, B. V.; RODERO, C. F.; SANTOS, K. C. DOS; CHORILLI, M., BAUAB, T. M. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. International Journal of Nanomedicine, v. 13, p. 1179-1213, 2018. RANKE, J.; MÖLTER, K.; STOCK, F.; BOTTIN-WEBER, U.; POCZOBUTT, J.; HOFFMANN, J.; ONDRUSCHKA, B.; FILSER, J.; JASTORFF, B. Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio Fischeri and WST-1 cell viability assays. Ecotoxicology and Environmental Safety, n. 58, p. 396–404, 2004. RANKE, J.; STOLTE, S.; STO¨RMANN, R.; ARNING, J.; JASTORFF, B. Design of sustainable chemical products – the example of ionic liquids. Chemical Reviews, v. 107, p. 2183–2206, 2007. REACH, REGLAMENTO (CE) nº 1907/2006 DEL PARLAMENTO EUROPEO Y DEL CONSEJO de 18 de diciembre de 2006 relativo al registro, la evaluación, la autorización y la restricción de las sustancias y preparados químicos (REACH), Diario Oficial de la Unión Europea L 396/1 (30.12.2006). REID, J. E. S. J.; PRYDDERCH, H.; SPULAK, M.; SHIMIZU, S.; GATHERGOOD, N. Green profiling of aprotic versus protic ionic liquids: Synthesis and microbial toxicity of analogous structures. Sustainable Chemistry and Pharmacy, v. 7, p. 17-26, 2018. REID, J. E. S. J.; SULLIVAN, N.; SWIFT, L.; HERNBURY, G. A; SHIMIZU, S.; WALKER, A. J. Assessing the mutagenicity of protic ionic liquids using the mini Ames test. Sustainable Chemical Processes, v. 3, n. 17, p. 1-11, 2015. RIDUAN, S. N.; ZHANG, Y. Imidazolium salts and their polymeric materials for biological applications. Chemical Society Reviews, v. 42, p. 9055-9070, 2013. RODRIGUES, R. D. P.; DE LIMA, P. F.; SANTIAGO-AGUIAR, R. S. DE; ROCHA, M. V. P. Evaluation of protic ionic liquids as potential solvents for the heating extraction of phycobiliproteins from Spirulina (Arthrospira) platensis. Algal Research, v. 38, 101391, 2019. ROGALSKY, S.; BARDEAU, J. F.; MAKHNO, S.; BABKINA, N.; BROVKO, O. New proton conducting membrane based on bacterial cellulose/polyaniline nanocomposite film impregnated with guanidinium-based ionic liquid. Polymer Journal, v. 142, p. 183-195, 2018. ROSA, J. M.; FILETI, A. M. F.; TAMBOURGI, E. B.; SANTANA, J. C. C. Dyeing of cotton with reactive dyestuffs: the continuous reuse of textile wastewater effluent treated by ultraviolet/hydrogen peroxide homogeneous photocatalysis, Journal of Cleaner Production, v. 90, p. 60-65, 2015. ROUT, A.; RAMANATHAN, N. Cyphos nitrate: A potential ionic liquid for the extraction and selective separation of plutonium (IV) from other metal ions present in nitric acid. Journal of Ionic Liquids, v. 2, 100029, 2022. ROUETTE, H. K. Encyclopedia of Textile Finishing. Springer, Berlin, Germany. 2001. RYKOWSKA, I.; ZIEMBLIŃSKA, J.; NOWAK, I. Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: A review. Journal of Molecular Liquids, v. 259, p. 319-339, 2018. SALA, M.; GUTIERREZ-BOUZAN, M. C. Electrochemical treatment of industrial wastewater and effluent reuse at laboratory and semi-industrial scale, Journal of Cleaner Production, v. 65, p. 458-464, 2014. SALMINEN, J.; PAPAICONOMOU, N.; KUMARA, R. A.; LEE, J. M.; KERR, J.; NEWMAN, J.; PRAUSNITZ, J. M. Physicochemical properties and toxicities of hydrophobic piperidinium and pyrrolidinium ionic liquids. Fluid Phase Equilibria, v. 261, p. 421-426, 2007. SARDAR, S.; WILFRED, C.D.; MUMTAZ, A.; LEVEQUE, J.; KHAN, A.S.; KRISHNAN, S. Physicochemical properties, Brönsted acidity and ecotoxicity of imidazolium-based organic salts: Non-toxic variants of protic ionic liquids. Journal of Molecular Liquids, v. 269, p. 178-186, 2018. SCHWARZ, H.; KOCH, A.L. Phase and electron microscopic observations of osmotically induced wrinkling and the role of endocytotic vesicles in the plasmolysis of the Gram-negative cell wall. Microbiology, v. 141, n.3, 161-170, 1995. SCHWARZENBACH, R. P.; GSCHWEND P. M.; IMBODEN, D. M. The amazing world of anthropogenic organic chemicals. In:______. Environmental Organic Chemistry, 3. ed. New Jersey: Wiley-Interscience, cap. 3, p. 52, p. 45-79, 2016. SEN, S.; LOSEY, B. P.; GORDON, E. E.; ARGYROPOULOS, D. S.; MARTIN, J. D. Ionic Liquid Character of Zinc Chloride Hydrates Define Solvent Characteristics that Afford the Solubility of Cellulose. Journal of Physical Chemistry B, v. 120, n. 6, p. 1134-41, 2016. SERRA, J. S.; ROSARIO, T. C.; COSTA, K. S.; ANDRADE, R.; IGLESIAS, M. Synthesis of triacetin by protic ionic liquids as catalysts. World Wide Journal of Multidisciplinary Research and Development, v. 2, p. 7-13, 2016. SHANG, D.; LIU, X.; BAI, L.; ZENG, S.; XU, Q.; GAO, H.; ZHANG, X. Ionic liquids in gas separation processing. Current Opinion in Green and Sustainable Chemistry, v. 5, p. 74-81, 2017. SHARMA, A.; GHORAI, P. K. Effect of water on structure and dynamics of [BMIM][PF6] ionic liquid: An all-atom molecular dynamics simulation investigation. The Journal of Chemical Physics, v. 144, p. 114505, 2016. SILVA, P. S.; JUNIOR, C. T. S.; ARAÚJO, E. G.; KANAAN, S.; XAVIER, A. R. Adenosina desaminase: uma enzima extraordinária e onipresente. Pulmão RJ, v. 25, n. 1, p. 11-16, 2016. SKLADANOWSKI, A. C.; STEPNOWSKI, P.; KLESZCZYNSKI, K.; DMOCHOWSKA, B. AMP deaminase in vitro inhibition by xenobiotics. A potential molecular method for risk assessment of synthetic nitro- and polycyclic musks, imidazolium ionic liquids and N-glucopyranosyl ammonium salts. Environmental Toxicology and Pharmacology, v. 19, p. 291–296, 2005. STEPNOWSKI, P., SKLADANOWSKI, A. C., LUDWICZAK, A., LACZYNSKA, E. Evaluating the cytocoxicity of ionic liquids using human cell line HeLa. Human & Experimental Toxicology, v. 23, p. 513-517, 2004. STOLTE, S.; MATZKE, M.; ARNING, J.; BOSCHEN, A.; PITNER, W. R.; WELZ-BIERMANN, U.; JASTORFF, B.; RANKE, J. Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chemistry, v. 9, n. 11, p. 1170-1179, 2007. TANG, B.; GONDOSISWANTO, R.; HIBBERT, D. B.; ZHAO, C. Critical assessment of superbase-derived protic ionic liquids as electrolytes for electrochemical applications. Electrochimica Acta, v. 298, p. 413-420, 2019. TANKOV, I.; YANKOVA, R.; GENIEVA, S.; MITKOVA, M.; STRATIEV, D. Density functional theory study on the ionic liquid pyridinium hydrogen sulfate. Journal of Molecular Structure, v. 1139, p. 400-406, 2017. TARANNUM, A.; RAO, J. R.; FATHIMA, N. N. Insights into protein-ionic liquid interaction: A comprehensive overview on theoretical and experimental approaches. International Journal of Biological Macromolecules, v. 209, Part A, p. 498-505, 2021. THRIEL, C. V. Toxicology of Solvents (Including Alcohol). Reference Module in Biomedical Sciences, 2014. THAMKE, V. R.; CHAUDARI, A. U.; TAPASE, S. R.; PAUL, D.; KODAM, K. M. In vitro toxicological evaluation of ionic liquids and development of effective bioremediation process for their removal. Environmental Pollution, V. 250, p. 567-577, 2019. TIAN, T.; HU, X.; GUAN, P.; WANG, S.; DING, X. Density and thermodynamic performance of energetic ionic liquids based on 1-alkyl/esteryl-4-amino-1,2,4-triazolium. Journal of Molecular Liquids, v. 248, p. 70-80, 2017. TIGELAAR, D. A.; WALDECKER, J. R.; PEPLOWSKI, K. M.; KINDER, J. D. Study of the incorporation of protic ionic liquids into hydrophilic and hydrophobic rigid-rod elastomeric polymers. Polymer Journal, v. 47, p. 4269-4275, 2006. TORRECILLA, J. S.; GARCÍA, J.; ROJO, E.; RODRÍGUEZ, R. Estimation of toxicity of ionic liquids in leukemia rat cell line and acetylcholinesterase enzyme by principal component analysis, neural networks and multiple linear regressions. Journal of Hazardous Materials, v. 164, p. 182–194, 2009. VEKARIYA, R. L. A review of ionic liquids: Applications towards catalytic organic transformations. Journal of Molecular Liquids, v. 227, p. 44-60, 2017. VIJAYARAGHAVAN, R.; ONCSIK, T.; MITSCHKE, B; MACFARLANE, D. R. Base-rich diamino protic ionic liquid mixtures for enhanced CO2 capture. Separation and Purification Technology, v. 196, p. 27-31, 2018. WALDEN, P. Molecular weights and electrical conductivity of several fused salts, Bull. Bulletin of the Imperial Academy of Sciences (Saint Petersburg), v. 1800, p. 405–422, 1914. WALTER, M. N. M.; WRIGHT, K. T.; FULLER, H. R., MACNEIL, S.; JOHNSON, W. E. B. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays. Experimental Cell Research, v. 316, p. 1271-1281, 2010. WANG, X.; OHLIN, C. A.; LU, Q.; FEI, Z.; HUB, J.; DYSONC, P. J. Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa. Green Chemistry, v. 9, n. 11, p. 1191-1191, 2007. WEIL, C. S. ; SCALA, R. A. Study of intra- and interlaboratory variability in the results of rabbit eye and skin irritation tests. Toxicology and Applied Pharmacology, v. 19, p. 276-360, 1971. WELTON, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical Reviews, v. 99, n. 8, p. 2071-2084, 1999. WORTH, A. P.; BALL, M. Alternative (non-animal) methods for chemical testing: current status and future prospects. ATLA, v. 30, n. 1, p. 13-19, 2002. WU, H.; DENG, Z.; ZHOU, B.; QI, M.; HONG, M.; REN, G. Improved transdermal permeability of ibuprofen by ionic liquid technology: Correlation between counterion structure and the physicochemical and biological properties. Journal of Molecular Liquids, v. 283, p. 399-409, 2019. WU, Q.; CHEN, H.; HAN, M. H.; WANG, D. Z.; WANG, J. F. Transesterification of cottonseed oil catalyzed by bronsted acidic ionic liquids. Industrial & Engineering Chemistry Research, v. 46, p. 7955-7960, 2007a. XIA, X.; WAN, R.; WANG, P.; HUO, W.; DONG, H.; DU, Q. Toxicity of imidazoles ionic liquid [C16mim]Cl to Hela cells. Ecotoxicology and Environmental Safety, v. 162, p. 408-414, 2018. XIONG, C.; LI, Y.; WANG, S.; ZHOU, Y. Functionalization of nanosilica via guanidinium ionic liquid for the recovery of gold ions from aqueous solutions. Journal of Molecular Liquids, v. 256, p. 183-190, 2018. YU, M. LI, S. M.; ZHANG, B. J.; WANG, J. J. Acute effects of 1-octyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system of mouse liver. Ecotoxicology and Environmental Safety, v. 71, p. 903-908, 2008. YUAN, J.; WANG, Q.; FAN, X.; WANG, P. Enhancing dye adsorption of wool fibers with 1-butyl-3-methylimidazolium chloride ionic liquid processing. Textile Research Journal, v. 80, p. 1898-1904, 2010a. YUAN, J., WANG, Q., FAN X. Dyeing behaviors of ionic liquid treated wool. Journal of Applied Polymer Science, v. 117, p. 2278-2283, 2010b. ZAKREWSKY, M.; LOVEJOY, K. S.; KERN, T. L.; MILLER, T. E.; LE, V.; NAGY, A.; GOUMASD, A. M.; IYERD, R. S.; SESTOE, R. E. D.; KOPPISCHF, A. T.; FOXD, D. T.; MITRAGOTRIA, S. Ionic liquids as a class of materials for transdermal delivery and pathogen neutralization. Proceedings of the National Academy of Sciences, v. 111, p. 13313–13318, 2014. ZAMFIR, L. G.; ROTARIU, L.; BALA, CAMELIA. Acetylcholinesterase biosensor for carbamate drugs based on tetrathiafulvalene–tetracyanoquinodimethane/ionic liquid conductive gels. Biosensors and Bioeletronics, v. 46, p. 64-67, 2013. ZANONI, B.; BRASIL ROMÃO, G.; ANDRADE, R. S.; BARRETTO CICARELLI, R.; TROVATTI, E. ; CHIARI-ANDRÉO, B.; IGLESIAS, M. Cytotoxic effect of protic ionic liquids in HepG2 and HaCat human cells: In vitro and In silico studies. Toxicology Research, v. 8, p. 447-458, 2019. ZEC, N; VRANES, M.; BESTER-ROGAC, M.; TRTIĆ-PETROVIĆ, T.; GADZURIĆ, S. Influence of the alkyl chain length on densities and volumetric properties of 1,3-dialkylimidazolium bromide ionic liquids and their aqueous solutions. The Journal of Chemical Thermodynamics, v. 121, p. 72-78, 2018. ZHANG, X.; PAN, L.; WANG, L.; ZOU, J. Review on synthesis and properties of high-energy-density liquid fuels: Hydrocarbons, nanofluids and energetic ionic liquids. Chemical Engineering Science, v. 180, p. 95-125, 2018. ZHANG, Y.; WU, L.; TASHIRO, S.; ONODERA, S.; IKEJIMA, T. Evadiamine induces tumor cell death through different pathways: apoptosis and necrosis. Acta Pharmaceutica, v. 25, p. 83-89, 2004. ZHANG, Z.; LIU, J. F.; CAI, X. Q.; JIANG, W. W.; LUO, W. R.; JIANG, G. B. Sorption to dissolved humic acid and its impacts on the toxicity of imidazolium based ionic liquids. Environmental Science & Technology, v. 45, n. 4, p. 1688-1694, 2011. ZHAO, D. B.; LIAO, Y. C.; ZHANG, Z. D. Toxicity of ionic liquids. Clean-Soil Air Water, v. 35, p. 42-48, 2007. ZHENG, D.; DONG, L.; HUANG, W.; WU, X.; NIE, N. A review of imidazolium ionic liquids research and development towards working pair of absorption cycle. Renewable and Sustainable Energy Reviews, v. 37, p. 47-68, 2014. ZHOU, S.; ZHU, G.; KANG, X.; LI, Q.; XU, X. Molecular dynamics simulation of the ionic liquid N-octylpyridinium tetrafluoroborate and acetonitrile: Thermodynamic and structural properties. Chemical Physics Letters, v, 701, p. 1-6, 2018. ZHUANG, L., ZHENG, C., SUN, J., YUAN, A., WANG, G. Performances of ramie fiber pretreated with dicationic imidazolium ionic liquid. Fibers and Polymers, v. 15, p. 226-233, 2014. ZUBAIR, M.; EKHOLM, A.; NYBOM, H.; RENVERT, S.; WIDEN, C.; RUMPUNEN, K. Effects of Plantago major L. leaf extracts on oral epithelial cells in a scratch assay. Journal of Ethnopharmacology, v. 141, p. 825– 830, 2012.pt_BR
dc.type.degreeDoutoradopt_BR
Aparece nas coleções:Tese (PEI)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Tese_Gabriela_Brasil_Romão_Veloso_final.pdfTese de Doutorado5,18 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.