Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/34744
Tipo: Dissertação
Título: Influence of genetic variants on RANK, RANKL and OPG genes in periodontitis.
Título(s) alternativo(s): Influência de variantes genéticas nos genes RANK, RANKL e OPG na periodontite.
Autor(es): Oliveira, Francine Vilma de
Primeiro Orientador: Carletto, Tatiane de Oliveira Teixeira Muniz
metadata.dc.contributor.advisor-co1: Figueiredo, Camila Alexandrina
metadata.dc.contributor.referee1: Carneiro, Valdirene Leão
metadata.dc.contributor.referee2: Carletto, Tatiane de Oliveira Teixeira Muniz
metadata.dc.contributor.referee3: Figueiredo, Camila Alexandrina
metadata.dc.contributor.referee5: Martins, Gabriela Botelho
Resumo: Introdução: A periodontite é uma doença inflamatória multifatorial que afeta os tecidos de suporte do dente, podendo levar à perda dental. A interação de complexos bacterianos específicos envolvidos na periodontite, fatores de risco que interferem na resposta imunológica do hospedeiro, incluindo, por exemplo, a regulação celular de fibroblastos, osteoblastos e osteoclastos, e a suscetibilidade genética e variantes específicas, podem estar associados à doença e à dificuldade do tratamento. O sistema RANKL/RANK/OPG está envolvido na diferenciação e ativação dos osteoclastos, regulando as respostas celulares e a reabsorção óssea na periodontite. Variantes genéticas podem influenciar na manifestação desses genes, que têm sido associados a doenças, em diferentes populações. Objetivos: Descrever a frequência e o potencial regulatório das variantes do sistema RANK, RANKL e OPG; avaliar o seu potencial como marcadores genéticos informativos de ancestralidade (AIM); avaliar a associação de variantes genéticas em RANK, RANKL e OPG com a presença de periodontite. Metodologia: Estudo transversal com 506 indivíduos adultos participantes de uma coorte, acometidos de asma e periodontite. Estes tiveram o DNA genômico extraído e genotipado, utilizando-se a plataforma Illumina Multi-Ethnic Global Array (MEGA, Illumina). As plataformas NCBI, Regulome DB, Haploview 4.2 e rSNPBase foram consultadas e utilizadas. Para as análises de associação, foram classificados com presença (n=117) ou ausência (n=389) de periodontite; e a análise estatística foi realizada com o software PLINK 1.9, mediante regressão logística ajustada por idade, obesidade, hábito de respirar pela boca, uso de fio dental, asma e componente principal de ancestralidade. Resultados: As variantes mais frequentes na população estudada foram: o rs4941129 em RANK, frequência de menor alelo (MAF) 50%; o rs9525641 em RANKL, MAF 46% e o rs3102724 em OPG, MAF 46%. Os rs 17069898 (1f) em RANK, rs2200287 (1d) em RANKL e rs3134063 (1f) em OPG apresentaram maior impacto funcional. Em OPG e RANK, nove polimorfismos se caracterizaram como AIM, predominando populações YRI (africanos) e CEU (europeus). Foram associados à periodontite no gene RANK, 27 SNV (variante de nucleotídeo único), sendo 20 positivamente (odds ratio >1) e 16 deles apresentam alta correlação entre si, variando entre 81% e 100%; e 7 negativamente (odds ratio<1) e 2 deles com alta correlação (96%), enquanto 2 em perfeito equilíbrio (r2=1,0). Em RANKL, 11 SNV foram associados positivamente à periodontite, sendo que 6 estão em perfeito equilíbrio (r2=1,0) e 4 em alta correlação, variando de 96% a 100%. Em OPG, 2 SNV foram associados positivamente à periodontite. Essas variantes estão em alto desequilíbrio de ligação (r2=0.99). Foi demonstrado, no gene RANK, 1f (rs4941125), 2b (rs55850220) e 3a (rs34432351, rs72931591 e no gene RANKL 3a (rs115675044 e rs443188), que há possibilidade de envolvimento em regiões reguladoras e funcionais. Conclusão: Variantes nos RANK, RANKL e OPG se mostraram frequentes na população estudada e tiveram seus alelos mais frequentes associados a doenças em populações ancestrais; e 40 variantes delas estão associadas e positiva e negativamente à periodontite.
Abstract: Introduction: Periodontitis is a multifactorial inflammatory disease that affects the supporting tissues of the tooth, which can lead to tooth loss. The interaction of specific bacterial complexes involved in periodontitis, risk factors that interfere with the immune response of the host, including, for example, the cellular regulation of fibroblasts, osteoblasts and osteoclasts, and genetic susceptibility and specific variants, may be associated with the disease and to the difficulty of treatment. The RANKL/RANK/OPG system is involved in osteoclast differentiation and activation, regulating cellular responses and bone resorption in periodontitis. Genetic variants can influence the expression of these genes, which have been associated with diseases, in different populations. Objectives: Describe the frequency and regulatory potential of RANK, RANKL and OPG system variants; assess their potential as ancestry informative genetic markers (AIM); to evaluate the association of genetic variants in RANK, RANKL and OPG with the presence of periodontitis. Methodology: Cross-sectional study with 506 adult individuals participating in a cohort, affected by asthma and periodontitis. The genomic DNA was extracted and genotyped using the Illumina Multi-Ethnic Global Array (MEGA, Illumina) platform. The NCBI, Regulome DB, Haploview 4.2 and rSNPBase platforms were consulted and used. For association analyses, they were classified as having the presence (n=117) or absence (n=389) of periodontitis; and statistical analysis was performed using the PLINK 1.9 software, using logistic regression adjusted for age, obesity, mouth breathing habit, flossing, asthma and main component of ancestry. Results: The most frequent variants in the population studied were: rs4941129 in RANK, lowest allele frequency (MAF) 50%; the rs9525641 in RANKL, MAF 46% and the rs3102724 in OPG, MAF 46%. The rs 17069898 (1f) in RANK, rs2200287 (1d) in RANKL and rs3134063 (1f) in OPG had greater functional impact. In OPG and RANK, nine polymorphisms were characterized as AIM, predominantly YRI (African) and CEU (European) populations. They were associated with periodontitis in the RANK 27 SNV gene (single nucleotide variant), 20 of which were positively (odds ratio >1) and 16 of them showed high correlation with each other, ranging from 81% to 100%; and 7 negatively (odds ratio<1) and 2 of them with high correlation (96%), while 2 in perfect balance (r2=1.0). In RANKL, 11 SNV were positively associated with periodontitis, with 6 being in perfect balance (r2=1.0) and 4 in high correlation, ranging from 96% to 100%. In OPG, 2 SNV were positively associated with periodontitis. These variants are in high linkage disequilibrium (r2=0.99). In the RANK gene 1f (rs4941125), 2b (rs55850220) and 3a (rs34432351, rs72931591 and in the RANKL 3a gene (rs115675044 and rs443188) there is a possibility of involvement in regulatory and functional regions. Conclusion: Variants of the RANK, RANKL and OPG genes were frequent in the population studied and had their most frequent alleles associated with diseases in ancestral populations; and 40 variants are positively and negatively associated with periodontitis.
Palavras-chave: Variante de único nucleotídeo
RANK
RANKL
OPG
Periodontite
Single Nucleotide Variant
Periodontitis
CNPq: CNPQ::CIENCIAS DA SAUDE::ODONTOLOGIA::PERIODONTIA
Idioma: por
País: Brasil
Editora / Evento / Instituição: Universidade Federal da Bahia
Sigla da Instituição: UFBA
metadata.dc.publisher.department: Instituto de Ciências da Saúde - ICS
metadata.dc.publisher.program: Programa de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas (PPGORGSISTEM) 
Citação: 1. Zhao B, Ivashkiv LB. Negative regulation of osteoclastogenesis and bone resorption by cytokines and transcriptional repressors. Arthritis Res Ther. 2011;13(4):234. 2. Liu YCG, Lerner UH, Teng YTA. Cytokine responses against periodontal infection: protective and destructive roles. Periodontol 2000. 2010; 52(1):163-206. 3. Kajiya M, Giro G, Taubman MA, Han X, Mayer MPA, Kawai T. Role of periodontal pathogenic bacteria in RANKL mediated bone destruction in periodontal disease. J Oral Microbiol. 2010; 2(1):5532 4. Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen . 2020;40:2. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006158/ 5. Li Y, Guo Y, Wang Q, Ouyang Y, Cao Y, Jin T et al. Osteoprotegerin polymorphisms are associated with alcohol-induced osteonecrosis of femoral head in Chinese Han population from Henan province. J Genet. 2016;95(4):983–9. 6. Abdi S, Bukhari I, Ansari MGA, BinBaz RA, Mohammed AK, Hussain SD et al. Association of polymorphisms in RANK and RANKL genes with osteopenia in Arab postmenopausal women. Dis Markers. 2020;2020:1285216. 7. Zheng H, Wang C, He J-W, Fu W-Z, Zhang Z-L. OPG, RANKL, and RANK gene polymorphisms and the bone mineral density response to alendronate therapy in postmenopausal Chinese women with osteoporosis or osteopenia. Pharmacogenet Genomics. 2016;26(1):12–9. 8. Panach L, Mifsut D, Tarín JJ, Cano A, García-Pérez MÁ. Replication study of three functional polymorphisms associated with bone mineral density in a cohort of Spanish women. J Bone Miner Metab. 2014;32(6):691–8. 9. Zacarias JMV, de Alencar JB, Tsuneto PY, de Souza VH, Silva CO, Visentainer JEL et al. The influence of TLR4, CD14, OPG, and RANKL polymorphisms in periodontitis: A case-control study. Mediators Inflamm. 2019;2019:4029217. 10. Kadkhodazadeh M, Ebadian AR, Gholami GA, Khosravi A, Tabari ZA. Analysis of RANKL gene polymorphism (rs9533156 and rs2277438) in Iranian patients with chronic periodontitis and periimplantitis. Arch Oral Biol. 2013;58(5):530–6. 11. Royal CD, Novembre J, Fullerton SM, Goldstein DB, Long JC, Bamshad MJ, et al. Inferring genetic ancestry: opportunities, challenges, and implications. Am J Hum Genet. 2010;86(5):661–73. 12. Lima-Costa MF, Rodrigues LC, Barreto ML, Gouveia M, Horta BL, Mambrini J et al. Genomic ancestry and ethnoracial self-classification based on 5,871 community-dwelling Brazilians (The Epigen Initiative). Sci Rep. 2015. 13. Magalhães da Silva T, Sandhya Rani MR, de Oliveira Costa GN, Figueiredo MA, Melo PS, Nascimento JF et al. The correlation between ancestry and color in two cities of Northeast Brazil with contrasting ethnic compositions. Eur J Hum Genet. 2015;23(7):984–9. 14. Zacarias JMV, Sippert EA, Tsuneto PY, Visentainer JEL, Silva CO, Sell AM. The influence of interleukin 17A and IL17F polymorphisms on chronic periodontitis disease in Brazilian patients. Mediators of inflammation. 2015, 2015:1-8. 15. Graves DT, Cochran D. The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol. 2003; 74 (3):391-401. 16. Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3:17038. 17. Nędzi-Góra M, Kowalski J, Górska R. The immune response in periodontal tissues. Arch Immunol Ther Exp (Warsz). 2017;65(5):421–9. 18. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25(2):134–44. 19. Amaliya A, Laine ML, Delanghe JR, Loos BG, Van Wijk AJ, Van der Velden U. Java project on periodontal diseases: periodontal bone loss in relation to environmental and systemic conditions. J Clin Periodontol. 2015;42(4):325–32. 20. Lourenço TGB, Heller D, Silva-Boghossian CM, Cotton SL, Paster BJ, Colombo APV. Microbial signature profiles of periodontally healthy and diseased patients. J Clin Periodontol. 2014;41(11):1027–36. 21. Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol 2000. 2015;69(1):7–17. 22. Deng Z-L, Szafrański SP, Jarek M, Bhuju S, Wagner-Döbler I. Dysbiosis in chronic periodontitis: Key microbial players and interactions with the human host. Sci Rep. 2017;7(1):3703. 23. Ali J, Pramod K, Tahir MA, Ansari SH. Autoimmune responses in periodontal diseases. Autoimmun Rev. 2011;10(7):426–31. 24. Alfakry H, Malle E, Koyani CN, Pussinen PJ, Sorsa T. Neutrophil proteolytic activation cascades: a possible mechanistic link between chronic periodontitis and coronary heart disease. Innate Immun. 2016;22(1):85–99. 25. Nakashima T, Hayashi M, Takayanagi H. New insights into osteoclastogenic signaling mechanisms. Trends in Endocrinology & Metabolism. 2012;23(11):582–90. 26. Tompkins KA. The osteoimmunology of alveolar bone loss. Connect Tissue Res. 2016;57(2):69–90. 27. Iqbal J, Yuen T, Sun L, Zaidi M. From the gut to the strut: where inflammation reigns, bone abstains. J Clin Invest. 126(6):2045–8. 28. Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A et al. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiological Reviews. 2017;97(4):1295–349. 29. Sapir-Koren R, Livshits G. Bone mineralization is regulated by signaling cross talk between molecular factors of local and systemic origin: the role of fibroblast growth factor 23. Biofactors. 2014;40(6):555–68. 30. Kalajzic I, Matthews BG, Torreggiani E, Harris MA, Divieti Pajevic P, Harris SE. In vitro and in vivo approaches to study osteocyte biology. Bone. 2013;54(2):296–306. 31. Xiong J, Piemontese M, Onal M, Campbell J, Goellner JJ, Dusevich V, et al. Osteocytes, not Osteoblasts or Lining Cells, are the Main Source of the RANKL Required for Osteoclast Formation in Remodeling Bone. PLoS One. Sep. 22 2015 32. Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018;561(7722):195–200. 33. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42. 34. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139–46. 35. Malcolm J, Awang RA, Oliver-Bell J, Butcher JP, Campbell L, Adrados Planell A et al. IL-33 Exacerbates Periodontal Disease through Induction of RANKL. J Dent Res. 2015;94(7):968–75. 36. Hienz SA, Paliwal S, Ivanovski S. Mechanisms of Bone Resorption in Periodontitis. J Immunol Res. 2015;2015:615486. 37. Kondegowda NG, Fenutria R, Pollack IR, Orthofer M, Garcia-Ocaña A, Penninger JM et al. Osteoprotegerin and Denosumab Stimulate Human Beta Cell Proliferation through Inhibition of the Receptor Activator of NF-κB Ligand Pathway. Cell Metab. 2015;22(1):77–85. 38. Danks L, Komatsu N, Guerrini MM, Sawa S, Armaka M, Kollias G et al. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis. 2016;75(6):1187–95. 39. Meednu N, Zhang H, Owen T, Sun W, Wang V, Cistrone C et al. Production of RANKL by Memory B Cells. Arthritis Rheumatol. 2016;68(4):805–16. 40. Di Benedetto A, Gigante I, Colucci S, Grano M. Periodontal disease: linking the primary inflammation to bone loss. Clin Dev Immunol. 2013;2013:503754. 41. Belibasakis GN, Bostanci N. The RANKL-OPG system in clinical periodontology. J Clin Periodontol. 2012;39(3):239–48. 42. Teodorescu AC, Martu I, Teslaru S, Kappenberg-Nitescu DC, Goriuc A, Luchian I et al. Assessment of salivary levels of RANKL and OPG in aggressive versus chronic periodontitis. J Immunol Res. 2019;2019:6195258. 43. Allam E, Draz A, Hassan A, Neamat A, Galal M, Windsor LJ. Expression of receptor activator of nuclear factor kappaB ligand in ligature-induced periodontitis in osteoporotic and non-osteoporotic rats. J Periodont Res. 2010;45(1):136–42. 44. Crotti T, Smith MD, Hirsch R, Soukoulis S, Weedon H, Capone M, et al. Receptor activator NF kappaB ligand (RANKL) and osteoprotegerin (OPG) protein expression in periodontitis. J Periodont Res. 2003;38(4):380–7. 45. Bartold PM, Cantley MD, Haynes DR. Mechanisms and control of pathologic bone loss in periodontitis. Periodontol 2000. 2010;53:55–69. 46. Gibertoni F, Sommer MEL, Esquisatto MAM, Amaral MEC do, Oliveira CA de, Andrade TAM de, et al. Evolution of Periodontal Disease: Immune Response and RANK/RANKL/OPG System. Brazilian Dental Journal. 2017;28(6):679–87. 47. Suchanecka A, Chmielowiec K, Chmielowiec J, Trybek G, Masiak J, Michałowska-Sawczyn M, et al. Vitamin D Receptor Gene Polymorphisms and Cigarette Smoking Impact on Oral Health: A Case-Control Study. Int J Environ Res Public Health. 2020;17(9). 48. Jiang M, Li Z, Zhu G. The role of autophagy in the pathogenesis of periodontal disease. Oral Dis. 2020;26(2):259–69. 49. Holtzman JS, Atchison KA, Macek MD, Markovic D. Oral Health Literacy and Measures of Periodontal Disease. J Periodontol. 2017;88(1):78–88. 50. Lindhe J, Ranney R, Lamster I, Charles A, Chung CP, Denis TF, Kinane, Listgarten KM, ,Schoor HLR, Seymour G, Somerman M. Consensus Report: Chronic Periodontitis. Annals of Periodontol. 1999;4(1). 51. Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS, et al. Update on Prevalence of Periodontitis in Adults in the United States: NHANES 2009 to 2012. J Periodontol. 2015;86(5):611–22. 52. Persson GR. Periodontal complications with age. Periodontol 2000. 2018;78(1):185–94. 53. Martelli ML, Brandi ML, Martelli M, Nobili P, Medico E, Martelli F. Periodontal disease and women’s health. Curr Med Res Opin. 2017;33(6):1005–15. 54. Shiau HJ, Reynolds MA. Sex differences in destructive periodontal disease: a systematic review. J Periodontol. 2010;81(10):1379–89. 55. Martelli FS, Fanti E, Rosati C, Martelli M, Bacci G, Martelli ML, et al. Long-term efficacy of microbiology-driven periodontal laser-assisted therapy. Eur J Clin Microbiol Infect Dis. 2016;35(3):423–31. 56. Shiau HJ, Aichelmann-Reidy ME, Reynolds MA. Influence of sex steroids on inflammation and bone metabolism. Periodontol 2000. 2014;64(1):81–94. 57. Suri V, Suri V. Menopause and oral health. J Midlife Health. 2014;5(3):115–20. 58. Kim H-N, Jang Y-E, Kim C-B, Kim N-H. Socioeconomic status and self-reported periodontal symptoms in community-dwelling individuals: data from the Korea Community Health Surveys of 2011 and 2013. Int Dent J. 2018;68(6):411–9. 59. Ramseier CA, Anerud A, Dulac M, Lulic M, Cullinan MP, Seymour GJ et al. Natural history of periodontitis: Disease progression and tooth loss over 40 years. J Clin Periodontol. 2017;44(12):1182–91. 60. Hakeem FF, Sabbah W. Is there socioeconomic inequality in periodontal disease among 6adults with optimal behaviours. Acta Odontol Scand. 2019;77(5):400–7. 61. Nociti FH, Casati MZ, Duarte PM. Current perspective of the impact of smoking on the progression and treatment of periodontitis. Periodontol 2000. 2015;67(1):187–210. 62. Nascimento GG, Leite FR, Correa MB, Horta BL, Peres MA, Demarco FF. Relationship between periodontal disease and obesity: the role of life-course events. Braz Dent J. 2014;25(2):87–9. 63. Martinez-Herrera M, Silvestre-Rangil J, Silvestre F-J. Association between obesity and periodontal disease. A systematic review of epidemiological studies and controlled clinical trials. Med Oral Patol Oral Cir Bucal. 2017;22(6):e708–15. 64. Moraschini V, Calasans-Maia J de A, Calasans-Maia MD. Association between asthma and periodontal disease: A systematic review and meta-analysis. J Periodontol. 2018;89(4):440–55. 65. Shen T-C, Chang P-Y, Lin C-L, Wei C-C, Tu C-Y, Hsia T-C, et al. Risk of Periodontal Disease in Patients With Asthma: A Nationwide Population-Based Retrospective Cohort Study. J Periodontol. 2017;88(8):723–30. 66. Thomas MS, Parolia A, Kundabala M, Vikram M. Asthma and oral health: a review. Australian Dental Journal. 2010;55(2):128–33. 67. Weatherspoon DJ, Borrell LN, Johnson CW, Mujahid MS, Neighbors HW, Adar SD. racial and ethnic differences in self-reported periodontal disease in the multi-ethnic study of atherosclerosis (MESA). Oral Health Prev Dent. 2016;14(3):249–57. 68. Köberle B, Koch B, Fischer BM, Hartwig A. Single nucleotide polymorphisms in DNA repair genes and putative cancer risk. Arch Toxicol. 2016;90(10):2369–88. 69. Kinane DF, Shiba H, Hart TC. The genetic basis of periodontitis. Periodontol 2000. 2005;39:91–117. 70. Yu J, Choi YJ, Choi S-H, Jung H-S, Lee JH, Cha J-Y. The effect of genetic polymorphisms on treatment duration following premolar extraction. Sci Rep. 2021;11(1):15942. 71. Liu K, Han B, Hou J, Meng H. Preliminary investigation on the molecular mechanisms underlying the correlation between VDR-FokI genotype and periodontitis. J Periodontol. 2020;91(3):403–12. 72. Lucena KCR, Corrêa MP, Leão JC, Souza PRE; Cimões R, Carvalho AAT. Influência dos polimorfismos da osteoprotegerina na suscetibilidade à doença periodontal em indivíduos com diabetes tipo 2. Rev Odonto Ciencia. 2013;28(2):41-46. 73. Toy VE, Uslu MO. Do genetic polymorphisms affect susceptibility to periodontal disease? A literature review. Niger J Clin Pract. 2019;22(4):445–53. 74 . Gomes-Filho IS, Trindade SC, Passos-Soares J de S, Figueiredo ACMG, Vianna MIP, Hintz AM, et al. Clinical diagnosis criteria for periodontal disease: an update. Journal of Dental Health, Oral Disorders & Therapy. 2018;9(5):354–6. 75. Cochran DL. Inflammation and Bone Loss in Periodontal Disease. Journal of Periodontology. 2008;79(8S):1569–76. 76. da Silva TA, Batista AC, Mendonça EF, Leles CR, Fukada S, Cunha FQ. Comparative expression of RANK, RANKL, and OPG in keratocystic odontogenic tumors, ameloblastomas, and dentigerous cysts. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2008;105(3):333–41. 77. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8(7):481–90. 78. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4(8):638–49. 79. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–5. 80. Mu W, Zhang W. Chapter 8 - Molecular Approaches, Models, and Techniques in Pharmacogenomic Research and Development. In: Lam Y-WF, Cavallari LH, organizadores. San Diego: Academic Press; p. 273–94. Disponível em: https://www.sciencedirect.com/science/article/pii/B9780123919182000081 81. Friedrichs S, Malzahn D, Pugh EW, Almeida M, Liu XQ, Bailey JN. Filtering genetic variants and placing informative priors based on putative biological function. BMC Genet. 2016;17(2):S8. 82. Friedrichs S, Malzahn D, Pugh EW, Almeida M, Liu XQ, Bailey JN. Filtering genetic variants and placing informative priors based on putative biological function. BMC Genet. 2016;17(2):S8. 83. Shriver MD, Smith MW, Jin L, Marcini A, Akey JM, Deka R et al. Ethnic-affiliation estimation by use of population-specific DNA markers. Am J Hum Genet. 1997;60(4):957–64. 84. Fairley S, Lowy-Gallego E, Perry E, Flicek P. The International Genome Sample Resource (IGSR) collection of open human genomic variation resources. Nucleic Acids Res. 2020;48(D1):D941–7. 85. Vidal C, Formosa R, Xuereb-Anastasi A. Functional polymorphisms within the TNFRSF11B (osteoprotegerin) gene increase the risk for low bone mineral density. Journal of Molecular Endocrinology. 2011;47(3):327–33. 86. Borges de Castilhos B, Machado de Souza C, Simas Netta Fontana MLS, Pereira FA, Tanaka OM, Trevilatto PC. Association of clinical variables and polymorphisms in RANKL, RANK, and OPG genes with external apical root resorption. Am J Orthod Dentofacial Orthop. 2019;155(4):529–42. 87. Roshandel D, Holliday KL, Pye SR, Ward KA, Boonen S, Vanderschueren D, et al. Influence of polymorphisms in the RANKL/RANK/OPG signaling pathway on volumetric bone mineral density and bone geometry at the forearm in men. Calcif Tissue Int. dezembro de 2011;89(6):446–55. 88. Mrozikiewicz-Rakowska B, Nehring P, Szymański K, Sobczyk-Kopcioł A, Płoski R, Drygas W et al. Selected RANKL/RANK/OPG system genetic variants in diabetic foot patients. J Diabetes Metab Disord. 2018;17(2):287–96. 89. Qi Y, An F, Wang J, Liu Y, Gao H, Ge Z et al. Association of OPG gene polymorphisms with the risk of knee osteoarthritis among Chinese people. Mol Genet Genomic Med. 2019;7(6):e662. 90. Genre F, López-Mejías R, García-Bermúdez M, Castañeda S, González-Juanatey C, Llorca J et al. Osteoprotegerin CGA haplotype protection against cerebrovascular complications in anti-CCP negative patients with rheumatoid arthritis. PLoS ONE. 2014;9(9):e106823. 91. Wang J, Wang Y, Zhao Y, Li Y, Sun M, Na R, et al. Polymorphisms of genes in the OPG/RANKL/RANK pathway in the Mongols of Inner Mongolia China: Relationship to other populations. 29 de fevereiro de 2016;9:3851–9. 92. Duan P, Wang Z-M, Liu J, Wang L-N, Yang Z, Tu P. Gene polymorphisms in RANKL/RANK/OPG pathway are associated with ages at menarche and natural menopause in Chinese women. BMC Womens Health. 13 de abril de 2015;15:32. 93. Chen Y, Xiong D-H, Yang T-L, Yang F, Jiang H, Zhang F, et al. Variations in RANK gene are associated with adult height in Caucasians. American Journal of Human Biology. 2007;19(4):559–65. 94. Y L, P L, Rr R, Hw D, V D. TNFRSF11A and TNFSF11 are associated with age at menarche and natural menopause in white women. Menopause. 2010;17(5):1048–54. 95. Zhao L-J, Guo Y-F, Xiong D-H, Xiao P, Reker RR, Deng H-W. Is a gene important for bone resorption a candidate for obesity? An association and linkage study on the RANK (receptor activator of nuclear factor-kappaB) gene in a large Caucasian sample. Hum Genet. 2006;120(4):561–70. 96. Gurgel BC de V, Ribeiro EDP, Sallum EA, Sallum AW, Toledo S de, Casati MZ. Infl uência da resposta do hospedeiro e sua modulação na patogênese e terapia periodontal. Rev Int Periodontia Clin. 2005; 2(4):38-44 97. Kinane DF, Hart TC.Genes and polymorphisms associated with periodontal disease. Crit Rev Oral Biol Med. 2003;14(6):430-49. 98. Gomes-Filho IS, Soledade-Marques KR, Seixas da Cruz S, de Santana Passos-Soares J, Trindade SC, Souza-Machado A et al. Does Periodontal Infection Have an Effect on Severe Asthma in Adults? J Periodontol. 2014; 85(6):179-87. 99. Page RC, Eke PI. Case definitions for use in population-based surveillance of periodontitis. Journal of periodontology. 2007; 78(7 Supl):1387-99. 100. Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ, Beck J et al. Prevalence of periodontitis in adults in United States: 2009 and 2010. J Dent Res. 2012; 91(10):914-20. 101. Dvornyk V. Integrated in-depth bioinformatic analysis suggests RELCH/KIAA1468, LINC02341, and AKAP11 as candidate genes for ages at menarche and menopause . Research Results in Biomedicine. 2021;7(3):220-31. 102. Iwashita M, Hayashi M, Nishimura Y, Yamashita A. The Link Between Periodontal Inflammation and Obesity. Curr Oral Health Rep. 2021;1–8. 103. Chung PYJ, Beyens G, Riches PL, Van Wesenbeeck L, de Freitas F, Jennes K, et al. Genetic variation in the TNFRSF11A gene encoding RANK is associated with susceptibility to Paget’s disease of bone. J Bone Miner Res. 2010;25(12):2592–605. 104. Jin Y, Andersen G, Yorgov D, Ferrara TM, Ben S, Brownson KM, et al. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet. 2016;48(11):1418–24. 105. MacInnes SJ, Vescovo ED, Kiss-Toth E, Ollier WER, Kay PR, Gordon A, et al. Genetic variation in inflammatory and bone turnover pathways and risk of osteolytic responses to prosthetic materials. Journal of Orthopaedic Research. 2015;33(2):193–8. 106.STRING. Disponível em: https://string-db.org/. Trata-se de uma plataforma sobre genética. 1. Zhao B, Ivashkiv LB. Negative regulation of osteoclastogenesis and bone resorption by cytokines and transcriptional repressors. Arthritis Res Ther. 2011;13(4):234. 2. Liu YCG, Lerner UH, Teng YTA. Cytokine responses against periodontal infection: protective and destructive roles. Periodontol 2000. 2010; 52(1):163-206. 3. Kajiya M, Giro G, Taubman MA, Han X, Mayer MPA, Kawai T. Role of periodontal pathogenic bacteria in RANKL mediated bone destruction in periodontal disease. J Oral Microbiol. 2010; 2(1):5532 4. Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen . 2020;40:2. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7006158/ 5. Li Y, Guo Y, Wang Q, Ouyang Y, Cao Y, Jin T et al. Osteoprotegerin polymorphisms are associated with alcohol-induced osteonecrosis of femoral head in Chinese Han population from Henan province. J Genet. 2016;95(4):983–9. 6. Abdi S, Bukhari I, Ansari MGA, BinBaz RA, Mohammed AK, Hussain SD et al. Association of polymorphisms in RANK and RANKL genes with osteopenia in Arab postmenopausal women. Dis Markers. 2020;2020:1285216. 7. Zheng H, Wang C, He J-W, Fu W-Z, Zhang Z-L. OPG, RANKL, and RANK gene polymorphisms and the bone mineral density response to alendronate therapy in postmenopausal Chinese women with osteoporosis or osteopenia. Pharmacogenet Genomics. 2016;26(1):12–9. 8. Panach L, Mifsut D, Tarín JJ, Cano A, García-Pérez MÁ. Replication study of three functional polymorphisms associated with bone mineral density in a cohort of Spanish women. J Bone Miner Metab. 2014;32(6):691–8. 9. Zacarias JMV, de Alencar JB, Tsuneto PY, de Souza VH, Silva CO, Visentainer JEL et al. The influence of TLR4, CD14, OPG, and RANKL polymorphisms in periodontitis: A case-control study. Mediators Inflamm. 2019;2019:4029217. 10. Kadkhodazadeh M, Ebadian AR, Gholami GA, Khosravi A, Tabari ZA. Analysis of RANKL gene polymorphism (rs9533156 and rs2277438) in Iranian patients with chronic periodontitis and periimplantitis. Arch Oral Biol. 2013;58(5):530–6. 11. Royal CD, Novembre J, Fullerton SM, Goldstein DB, Long JC, Bamshad MJ, et al. Inferring genetic ancestry: opportunities, challenges, and implications. Am J Hum Genet. 2010;86(5):661–73. 12. Lima-Costa MF, Rodrigues LC, Barreto ML, Gouveia M, Horta BL, Mambrini J et al. Genomic ancestry and ethnoracial self-classification based on 5,871 community-dwelling Brazilians (The Epigen Initiative). Sci Rep. 2015. 13. Magalhães da Silva T, Sandhya Rani MR, de Oliveira Costa GN, Figueiredo MA, Melo PS, Nascimento JF et al. The correlation between ancestry and color in two cities of Northeast Brazil with contrasting ethnic compositions. Eur J Hum Genet. 2015;23(7):984–9. 14. Zacarias JMV, Sippert EA, Tsuneto PY, Visentainer JEL, Silva CO, Sell AM. The influence of interleukin 17A and IL17F polymorphisms on chronic periodontitis disease in Brazilian patients. Mediators of inflammation. 2015, 2015:1-8. 15. Graves DT, Cochran D. The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol. 2003; 74 (3):391-401. 16. Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017;3:17038. 17. Nędzi-Góra M, Kowalski J, Górska R. The immune response in periodontal tissues. Arch Immunol Ther Exp (Warsz). 2017;65(5):421–9. 18. Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL. Microbial complexes in subgingival plaque. J Clin Periodontol. 1998;25(2):134–44. 19. Amaliya A, Laine ML, Delanghe JR, Loos BG, Van Wijk AJ, Van der Velden U. Java project on periodontal diseases: periodontal bone loss in relation to environmental and systemic conditions. J Clin Periodontol. 2015;42(4):325–32. 20. Lourenço TGB, Heller D, Silva-Boghossian CM, Cotton SL, Paster BJ, Colombo APV. Microbial signature profiles of periodontally healthy and diseased patients. J Clin Periodontol. 2014;41(11):1027–36. 21. Meyle J, Chapple I. Molecular aspects of the pathogenesis of periodontitis. Periodontol 2000. 2015;69(1):7–17. 22. Deng Z-L, Szafrański SP, Jarek M, Bhuju S, Wagner-Döbler I. Dysbiosis in chronic periodontitis: Key microbial players and interactions with the human host. Sci Rep. 2017;7(1):3703. 23. Ali J, Pramod K, Tahir MA, Ansari SH. Autoimmune responses in periodontal diseases. Autoimmun Rev. 2011;10(7):426–31. 24. Alfakry H, Malle E, Koyani CN, Pussinen PJ, Sorsa T. Neutrophil proteolytic activation cascades: a possible mechanistic link between chronic periodontitis and coronary heart disease. Innate Immun. 2016;22(1):85–99. 25. Nakashima T, Hayashi M, Takayanagi H. New insights into osteoclastogenic signaling mechanisms. Trends in Endocrinology & Metabolism. 2012;23(11):582–90. 26. Tompkins KA. The osteoimmunology of alveolar bone loss. Connect Tissue Res. 2016;57(2):69–90. 27. Iqbal J, Yuen T, Sun L, Zaidi M. From the gut to the strut: where inflammation reigns, bone abstains. J Clin Invest. 126(6):2045–8. 28. Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A et al. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiological Reviews. 2017;97(4):1295–349. 29. Sapir-Koren R, Livshits G. Bone mineralization is regulated by signaling cross talk between molecular factors of local and systemic origin: the role of fibroblast growth factor 23. Biofactors. 2014;40(6):555–68. 30. Kalajzic I, Matthews BG, Torreggiani E, Harris MA, Divieti Pajevic P, Harris SE. In vitro and in vivo approaches to study osteocyte biology. Bone. 2013;54(2):296–306. 31. Xiong J, Piemontese M, Onal M, Campbell J, Goellner JJ, Dusevich V, et al. Osteocytes, not Osteoblasts or Lining Cells, are the Main Source of the RANKL Required for Osteoclast Formation in Remodeling Bone. PLoS One. Sep. 22 2015 32. Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018;561(7722):195–200. 33. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423(6937):337–42. 34. Boyce BF, Xing L. Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys. 2008;473(2):139–46. 35. Malcolm J, Awang RA, Oliver-Bell J, Butcher JP, Campbell L, Adrados Planell A et al. IL-33 Exacerbates Periodontal Disease through Induction of RANKL. J Dent Res. 2015;94(7):968–75. 36. Hienz SA, Paliwal S, Ivanovski S. Mechanisms of Bone Resorption in Periodontitis. J Immunol Res. 2015;2015:615486. 37. Kondegowda NG, Fenutria R, Pollack IR, Orthofer M, Garcia-Ocaña A, Penninger JM et al. Osteoprotegerin and Denosumab Stimulate Human Beta Cell Proliferation through Inhibition of the Receptor Activator of NF-κB Ligand Pathway. Cell Metab. 2015;22(1):77–85. 38. Danks L, Komatsu N, Guerrini MM, Sawa S, Armaka M, Kollias G et al. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann Rheum Dis. 2016;75(6):1187–95. 39. Meednu N, Zhang H, Owen T, Sun W, Wang V, Cistrone C et al. Production of RANKL by Memory B Cells. Arthritis Rheumatol. 2016;68(4):805–16. 40. Di Benedetto A, Gigante I, Colucci S, Grano M. Periodontal disease: linking the primary inflammation to bone loss. Clin Dev Immunol. 2013;2013:503754. 41. Belibasakis GN, Bostanci N. The RANKL-OPG system in clinical periodontology. J Clin Periodontol. 2012;39(3):239–48. 42. Teodorescu AC, Martu I, Teslaru S, Kappenberg-Nitescu DC, Goriuc A, Luchian I et al. Assessment of salivary levels of RANKL and OPG in aggressive versus chronic periodontitis. J Immunol Res. 2019;2019:6195258. 43. Allam E, Draz A, Hassan A, Neamat A, Galal M, Windsor LJ. Expression of receptor activator of nuclear factor kappaB ligand in ligature-induced periodontitis in osteoporotic and non-osteoporotic rats. J Periodont Res. 2010;45(1):136–42. 44. Crotti T, Smith MD, Hirsch R, Soukoulis S, Weedon H, Capone M, et al. Receptor activator NF kappaB ligand (RANKL) and osteoprotegerin (OPG) protein expression in periodontitis. J Periodont Res. 2003;38(4):380–7. 45. Bartold PM, Cantley MD, Haynes DR. Mechanisms and control of pathologic bone loss in periodontitis. Periodontol 2000. 2010;53:55–69. 46. Gibertoni F, Sommer MEL, Esquisatto MAM, Amaral MEC do, Oliveira CA de, Andrade TAM de, et al. Evolution of Periodontal Disease: Immune Response and RANK/RANKL/OPG System. Brazilian Dental Journal. 2017;28(6):679–87. 47. Suchanecka A, Chmielowiec K, Chmielowiec J, Trybek G, Masiak J, Michałowska-Sawczyn M, et al. Vitamin D Receptor Gene Polymorphisms and Cigarette Smoking Impact on Oral Health: A Case-Control Study. Int J Environ Res Public Health. 2020;17(9). 48. Jiang M, Li Z, Zhu G. The role of autophagy in the pathogenesis of periodontal disease. Oral Dis. 2020;26(2):259–69. 49. Holtzman JS, Atchison KA, Macek MD, Markovic D. Oral Health Literacy and Measures of Periodontal Disease. J Periodontol. 2017;88(1):78–88. 50. Lindhe J, Ranney R, Lamster I, Charles A, Chung CP, Denis TF, Kinane, Listgarten KM, ,Schoor HLR, Seymour G, Somerman M. Consensus Report: Chronic Periodontitis. Annals of Periodontol. 1999;4(1). 51. Eke PI, Dye BA, Wei L, Slade GD, Thornton-Evans GO, Borgnakke WS, et al. Update on Prevalence of Periodontitis in Adults in the United States: NHANES 2009 to 2012. J Periodontol. 2015;86(5):611–22. 52. Persson GR. Periodontal complications with age. Periodontol 2000. 2018;78(1):185–94. 53. Martelli ML, Brandi ML, Martelli M, Nobili P, Medico E, Martelli F. Periodontal disease and women’s health. Curr Med Res Opin. 2017;33(6):1005–15. 54. Shiau HJ, Reynolds MA. Sex differences in destructive periodontal disease: a systematic review. J Periodontol. 2010;81(10):1379–89. 55. Martelli FS, Fanti E, Rosati C, Martelli M, Bacci G, Martelli ML, et al. Long-term efficacy of microbiology-driven periodontal laser-assisted therapy. Eur J Clin Microbiol Infect Dis. 2016;35(3):423–31. 56. Shiau HJ, Aichelmann-Reidy ME, Reynolds MA. Influence of sex steroids on inflammation and bone metabolism. Periodontol 2000. 2014;64(1):81–94. 57. Suri V, Suri V. Menopause and oral health. J Midlife Health. 2014;5(3):115–20. 58. Kim H-N, Jang Y-E, Kim C-B, Kim N-H. Socioeconomic status and self-reported periodontal symptoms in community-dwelling individuals: data from the Korea Community Health Surveys of 2011 and 2013. Int Dent J. 2018;68(6):411–9. 59. Ramseier CA, Anerud A, Dulac M, Lulic M, Cullinan MP, Seymour GJ et al. Natural history of periodontitis: Disease progression and tooth loss over 40 years. J Clin Periodontol. 2017;44(12):1182–91. 60. Hakeem FF, Sabbah W. Is there socioeconomic inequality in periodontal disease among 6adults with optimal behaviours. Acta Odontol Scand. 2019;77(5):400–7. 61. Nociti FH, Casati MZ, Duarte PM. Current perspective of the impact of smoking on the progression and treatment of periodontitis. Periodontol 2000. 2015;67(1):187–210. 62. Nascimento GG, Leite FR, Correa MB, Horta BL, Peres MA, Demarco FF. Relationship between periodontal disease and obesity: the role of life-course events. Braz Dent J. 2014;25(2):87–9. 63. Martinez-Herrera M, Silvestre-Rangil J, Silvestre F-J. Association between obesity and periodontal disease. A systematic review of epidemiological studies and controlled clinical trials. Med Oral Patol Oral Cir Bucal. 2017;22(6):e708–15. 64. Moraschini V, Calasans-Maia J de A, Calasans-Maia MD. Association between asthma and periodontal disease: A systematic review and meta-analysis. J Periodontol. 2018;89(4):440–55. 65. Shen T-C, Chang P-Y, Lin C-L, Wei C-C, Tu C-Y, Hsia T-C, et al. Risk of Periodontal Disease in Patients With Asthma: A Nationwide Population-Based Retrospective Cohort Study. J Periodontol. 2017;88(8):723–30. 66. Thomas MS, Parolia A, Kundabala M, Vikram M. Asthma and oral health: a review. Australian Dental Journal. 2010;55(2):128–33. 67. Weatherspoon DJ, Borrell LN, Johnson CW, Mujahid MS, Neighbors HW, Adar SD. racial and ethnic differences in self-reported periodontal disease in the multi-ethnic study of atherosclerosis (MESA). Oral Health Prev Dent. 2016;14(3):249–57. 68. Köberle B, Koch B, Fischer BM, Hartwig A. Single nucleotide polymorphisms in DNA repair genes and putative cancer risk. Arch Toxicol. 2016;90(10):2369–88. 69. Kinane DF, Shiba H, Hart TC. The genetic basis of periodontitis. Periodontol 2000. 2005;39:91–117. 70. Yu J, Choi YJ, Choi S-H, Jung H-S, Lee JH, Cha J-Y. The effect of genetic polymorphisms on treatment duration following premolar extraction. Sci Rep. 2021;11(1):15942. 71. Liu K, Han B, Hou J, Meng H. Preliminary investigation on the molecular mechanisms underlying the correlation between VDR-FokI genotype and periodontitis. J Periodontol. 2020;91(3):403–12. 72. Lucena KCR, Corrêa MP, Leão JC, Souza PRE; Cimões R, Carvalho AAT. Influência dos polimorfismos da osteoprotegerina na suscetibilidade à doença periodontal em indivíduos com diabetes tipo 2. Rev Odonto Ciencia. 2013;28(2):41-46. 73. Toy VE, Uslu MO. Do genetic polymorphisms affect susceptibility to periodontal disease? A literature review. Niger J Clin Pract. 2019;22(4):445–53. 74 . Gomes-Filho IS, Trindade SC, Passos-Soares J de S, Figueiredo ACMG, Vianna MIP, Hintz AM, et al. Clinical diagnosis criteria for periodontal disease: an update. Journal of Dental Health, Oral Disorders & Therapy. 2018;9(5):354–6. 75. Cochran DL. Inflammation and Bone Loss in Periodontal Disease. Journal of Periodontology. 2008;79(8S):1569–76. 76. da Silva TA, Batista AC, Mendonça EF, Leles CR, Fukada S, Cunha FQ. Comparative expression of RANK, RANKL, and OPG in keratocystic odontogenic tumors, ameloblastomas, and dentigerous cysts. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2008;105(3):333–41. 77. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8(7):481–90. 78. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4(8):638–49. 79. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–5. 80. Mu W, Zhang W. Chapter 8 - Molecular Approaches, Models, and Techniques in Pharmacogenomic Research and Development. In: Lam Y-WF, Cavallari LH, organizadores. San Diego: Academic Press; p. 273–94. Disponível em: https://www.sciencedirect.com/science/article/pii/B9780123919182000081 81. Friedrichs S, Malzahn D, Pugh EW, Almeida M, Liu XQ, Bailey JN. Filtering genetic variants and placing informative priors based on putative biological function. BMC Genet. 2016;17(2):S8. 82. Friedrichs S, Malzahn D, Pugh EW, Almeida M, Liu XQ, Bailey JN. Filtering genetic variants and placing informative priors based on putative biological function. BMC Genet. 2016;17(2):S8. 83. Shriver MD, Smith MW, Jin L, Marcini A, Akey JM, Deka R et al. Ethnic-affiliation estimation by use of population-specific DNA markers. Am J Hum Genet. 1997;60(4):957–64. 84. Fairley S, Lowy-Gallego E, Perry E, Flicek P. The International Genome Sample Resource (IGSR) collection of open human genomic variation resources. Nucleic Acids Res. 2020;48(D1):D941–7. 85. Vidal C, Formosa R, Xuereb-Anastasi A. Functional polymorphisms within the TNFRSF11B (osteoprotegerin) gene increase the risk for low bone mineral density. Journal of Molecular Endocrinology. 2011;47(3):327–33. 86. Borges de Castilhos B, Machado de Souza C, Simas Netta Fontana MLS, Pereira FA, Tanaka OM, Trevilatto PC. Association of clinical variables and polymorphisms in RANKL, RANK, and OPG genes with external apical root resorption. Am J Orthod Dentofacial Orthop. 2019;155(4):529–42. 87. Roshandel D, Holliday KL, Pye SR, Ward KA, Boonen S, Vanderschueren D, et al. Influence of polymorphisms in the RANKL/RANK/OPG signaling pathway on volumetric bone mineral density and bone geometry at the forearm in men. Calcif Tissue Int. dezembro de 2011;89(6):446–55. 88. Mrozikiewicz-Rakowska B, Nehring P, Szymański K, Sobczyk-Kopcioł A, Płoski R, Drygas W et al. Selected RANKL/RANK/OPG system genetic variants in diabetic foot patients. J Diabetes Metab Disord. 2018;17(2):287–96. 89. Qi Y, An F, Wang J, Liu Y, Gao H, Ge Z et al. Association of OPG gene polymorphisms with the risk of knee osteoarthritis among Chinese people. Mol Genet Genomic Med. 2019;7(6):e662. 90. Genre F, López-Mejías R, García-Bermúdez M, Castañeda S, González-Juanatey C, Llorca J et al. Osteoprotegerin CGA haplotype protection against cerebrovascular complications in anti-CCP negative patients with rheumatoid arthritis. PLoS ONE. 2014;9(9):e106823. 91. Wang J, Wang Y, Zhao Y, Li Y, Sun M, Na R, et al. Polymorphisms of genes in the OPG/RANKL/RANK pathway in the Mongols of Inner Mongolia China: Relationship to other populations. 29 de fevereiro de 2016;9:3851–9. 92. Duan P, Wang Z-M, Liu J, Wang L-N, Yang Z, Tu P. Gene polymorphisms in RANKL/RANK/OPG pathway are associated with ages at menarche and natural menopause in Chinese women. BMC Womens Health. 13 de abril de 2015;15:32. 93. Chen Y, Xiong D-H, Yang T-L, Yang F, Jiang H, Zhang F, et al. Variations in RANK gene are associated with adult height in Caucasians. American Journal of Human Biology. 2007;19(4):559–65. 94. Y L, P L, Rr R, Hw D, V D. TNFRSF11A and TNFSF11 are associated with age at menarche and natural menopause in white women. Menopause. 2010;17(5):1048–54. 95. Zhao L-J, Guo Y-F, Xiong D-H, Xiao P, Reker RR, Deng H-W. Is a gene important for bone resorption a candidate for obesity? An association and linkage study on the RANK (receptor activator of nuclear factor-kappaB) gene in a large Caucasian sample. Hum Genet. 2006;120(4):561–70. 96. Gurgel BC de V, Ribeiro EDP, Sallum EA, Sallum AW, Toledo S de, Casati MZ. Infl uência da resposta do hospedeiro e sua modulação na patogênese e terapia periodontal. Rev Int Periodontia Clin. 2005; 2(4):38-44 97. Kinane DF, Hart TC.Genes and polymorphisms associated with periodontal disease. Crit Rev Oral Biol Med. 2003;14(6):430-49. 98. Gomes-Filho IS, Soledade-Marques KR, Seixas da Cruz S, de Santana Passos-Soares J, Trindade SC, Souza-Machado A et al. Does Periodontal Infection Have an Effect on Severe Asthma in Adults? J Periodontol. 2014; 85(6):179-87. 99. Page RC, Eke PI. Case definitions for use in population-based surveillance of periodontitis. Journal of periodontology. 2007; 78(7 Supl):1387-99. 100. Eke PI, Dye BA, Wei L, Thornton-Evans GO, Genco RJ, Beck J et al. Prevalence of periodontitis in adults in United States: 2009 and 2010. J Dent Res. 2012; 91(10):914-20. 101. Dvornyk V. Integrated in-depth bioinformatic analysis suggests RELCH/KIAA1468, LINC02341, and AKAP11 as candidate genes for ages at menarche and menopause . Research Results in Biomedicine. 2021;7(3):220-31. 102. Iwashita M, Hayashi M, Nishimura Y, Yamashita A. The Link Between Periodontal Inflammation and Obesity. Curr Oral Health Rep. 2021;1–8. 103. Chung PYJ, Beyens G, Riches PL, Van Wesenbeeck L, de Freitas F, Jennes K, et al. Genetic variation in the TNFRSF11A gene encoding RANK is associated with susceptibility to Paget’s disease of bone. J Bone Miner Res. 2010;25(12):2592–605. 104. Jin Y, Andersen G, Yorgov D, Ferrara TM, Ben S, Brownson KM, et al. Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nat Genet. 2016;48(11):1418–24. 105. MacInnes SJ, Vescovo ED, Kiss-Toth E, Ollier WER, Kay PR, Gordon A, et al. Genetic variation in inflammatory and bone turnover pathways and risk of osteolytic responses to prosthetic materials. Journal of Orthopaedic Research. 2015;33(2):193–8. 106.STRING. Disponível em: https://string-db.org/. Trata-se de uma plataforma sobre genética.
Tipo de Acesso: Acesso Aberto
URI: https://repositorio.ufba.br/handle/ri/34744
Data do documento: 26-Nov-2021
Aparece nas coleções:Dissertação (PPGPIOS)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Francine V. de Oliveira - Dissertação Final.pdf1,77 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.