Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSantana, Ademir Eugênio de-
dc.contributor.authorMontigny, M. de-
dc.contributor.authorKhanna, Faqir C.-
dc.creatorSantana, Ademir Eugênio de-
dc.creatorMontigny, M. de-
dc.creatorKhanna, Faqir C.-
dc.descriptionTexto completo: acesso restrito. p. 327–335pt_BR
dc.description.abstractUsing a Galilean metric approach, based on an embedding of the Euclidean space into a (4+1)-Minkowski space, we analyze a gauge invariant Lagrangian associated with a Riemannian manifold View the MathML source, with metric g. With a specific choice of the gauge condition, the Euler–Lagrange equations are written covariantly in View the MathML source, and then the Fokker–Planck equation is derived, such that the drift and the diffusion terms are obtained from g. The analysis is carried out for both, Abelian and non-Abelian symmetries, and an example with the su(2) symmetry is presented.pt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectFokker-Planck equationpt_BR
dc.subjectSymmetry in field theorypt_BR
dc.subjectRiemannian geometrypt_BR
dc.titleGauge symmetry in Fokker–Planck dynamicspt_BR
dc.title.alternativePhysica A: Statistical Mechanics and its Applicationspt_BR
dc.typeArtigo de Periódicopt_BR
dc.identifier.numberv. 323, n. 15pt_BR
Appears in Collections:Artigo Publicado em Periódico (FIS)

Files in This Item:
File Description SizeFormat 
A.E. Santana.pdf123,69 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.