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Abstract

Using a Galilean metric approach, based on an embedding of the Euclidean space into a
(4+1)-Minkowski space, we analyze a gauge invariant Lagrangian associated with a Riemannian
manifold R, with metric g. With a speci5c choice of the gauge condition, the Euler–Lagrange
equations are written covariantly in R, and then the Fokker–Planck equation is derived, such
that the drift and the di7usion terms are obtained from g. The analysis is carried out for both,
Abelian and non-Abelian symmetries, and an example with the su(2) symmetry is presented.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we show that the Fokker–Planck equation can be derived via a gauge
invariant theory. The basic ingredient in the derivation is Galilean covariance, which
has been recently developed in di7erent perspectives, providing a metric, and thus a
tensor, structure for non-relativistic theory based in a 4+1 Minkowski space [1–8]. As
a consequence, a geometric uni5cation of the non-relativistic and relativistic physics
is accomplished [4,6]. One interesting result is that the possibility to use ideas and
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concepts of particles physics in transport theory, such as topological terms, symmetry
breaking, gauge symmetries, and so on [1,2,9], can be investigated in a systematic
and covariant way paralleling the relativistic physics [4,10]. In this context, it would
be of interest to analyze typical stochastic processes such as those described by the
Fokker–Planck dynamics.
The Fokker–Planck equation is often derived in the analysis of Markov processes.

From a physical standpoint, it can be introduced either as the distribution of probability
version of the Langevin equation, describing a classical particle under the inIuence of
dissipative and stochastic forces [11–13], or as an approximation of the Boltzmann
equation [14]. In this latter case, the collision term is approximated to consider the
transition rate, say W (p1; k), where p1 = p + k, terms up to the second order in
k, resulting then in the drift and the di7usion terms of the Fokker–Planck equation
[15]. Here we proceed in a di7erent way, by analyzing (5rst) a U (1) gauge invariant
Lagrangians, in the (4+1)-dimensional Minkowski space (to be referred to as G). Using
a suitable gauge condition and a proper de5nition of each component for the gauge
5eld, the Euler–Lagrange equations result in the Fokker–Planck equation. The de5nition
of the gauge 5eld is based on the existence of a Riemannian manifold, say R(G),
with metric g, in which G is taken as a local Iat space. Taking the 5ve-dimensional
equations covariantly written in R(G), the gauge 5eld is de5ned with the use of the
metric tensor, which gives rise to the drift and di7usion terms of the Fokker–Planck
equation. The analysis of the connection, de5ned by g; establishes whether the di7usion
tensor is a constant or not by a proper coordinate transformation. These results, in
addition to improving the study of symmetries of the Fokker–Planck systems [16],
opens the possibility to include in the description of stochastic processes non-Abelian
gauge symmetry. This aspect is developed here by using, in particular, the SU (2)
gauge symmetry, following the methods of 5eld theory, rather than the generalization
of symplectic structures and Liouville equation [17].
The presentation is organized as it follows. In Section 2, to make the presentation

self-contained and to 5x the notation, a brief outline on the Galilei covariance is
presented. The Fokker–Planck equation is derived from an Abelian gauge invariant
Lagrangian in Section 3, and in Section 4 the non-Abelian situation is addressed.
Concluding remarks are presented in Section 5.

2. Outline on the Galilei covariance

Let us begin with a brief outline of the Galilean covariant methods (for more de-
tails see for instance Refs. [5–7]). Let G be a 5ve-dimensional metric space, with an
arbitrary vector denoted by x = (x1; x2; x3; x4; x5) = (x; x4; x5). The inner product in G
is then de5ned by

(x|y) = �
�x
y� =
n=3∑
i=1

xiyi − x4y5 − x5y4 (1)

with x; y∈G and �
� being given by

�= �ijdxj ⊗ dxi − dx4 ⊗ dx5 − dx5 ⊗ dx4 : (2)
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The set of linear transformations in G of the type Lx
 = G

� x� + a
 (that leaves

(dx|dy) invariant), such that |G| = 1, with G

� = �
� + �
� , admits 15 generators of

transformations, and 11 of them provide the Lie Galilei algebra with the usual central
extension, describing the mass of a particle, being a generator of the group.
Consider now the embedding of the Euclidean space E in G, given by

A �→ A=
(
A; A4;

A2

2A4

)
; (3)

where A = (A1; A2; A3)∈E; A∈G. It follows that A is a null-like vector, since

(A|A) = �
�A
A�

=
3∑
i=1

AiAi − 2A4A5 = 0 :

In other words, according to Eq. (3), each vector in E is in homomorphic correspon-
dence with null-like vectors in G. As an example, consider x= (x; kt; x2=2kt), where k
is a constant with units of velocity (we consider k = 1). Under the subgroup of linear
transformations in G, given by the generators

Ki = e−viBi ; Rij = e�ijkLk ; Ti = ea
iPi ; T4 = ebH ;

where a5 = 0, H = P4, the vector x= (x; t; x2=2t) transforms as a Galilean vector; that
is

Lxi = Rijx
j − vix4 + a ; (4)

Lx4 = x4 + b ; (5)

Lx5 = x5 − vi(Rijx
j) +

1
2
v2x4 : (6)

There are at least two other types of embeddings which will be useful here:

A �→ A= (A; A4; 0) (7)

and

A �→ A= (A;
1√
2
A4;

1√
2
A4) : (8)

We take G to be a frame of the following form:

F = dJ + %J ∧ J (9)

satisfying the Bianchi identities dF+%[J; F]=0 and the equation regarding the sources
which are considered to be non-existent, that is d ∗ F + %[J; ∗F] = 0.

3. Abelian gauge symmetry

We consider % = 0 in Eq. (9) and write the following U (1)-gauge invariant
Lagrangian, in terms of the components of F (say F
�),

L=− 1
4 F


�F
� ; (10)
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where F
� is written in terms of the Abelian gauge 5elds as

F
� = 9
J� − 9�J
 ; (11)

where J remains to be speci5ed. Following the usual procedure, we can also write
down the Lagrangian as

L=
1
2
(9
J�9�J 
 − 9
J�9
J �) (12)

resulting in the Euler–Lagrange equations

9
9
J � − 9�9
J 
 = 0 : (13)

The Lagrangian L is invariant under the gauge transformation J 
 → LJ 
=J 
+9
h(x),
and in the ordinary procedure, we take 9
J 
 = 0 as the (Lorentz) gauge condition in
order to derive, from Eq. (13), the wave equation for the electromagnetic 5eld, that is
9
9
J �=0: Here, we are not interested in interpreting J � as a vector potential, so that
we have the freedom to explore a di7erent gauge condition. We take then the gauge
condition to be 9
9
J �=0, such that h(x) ful5lls the constraint equation 9
9
h(x)=',
where ' is an arbitrary constant. As a result 9
J 
 = (, where ( is another arbitrary
constant, which can be assumed to be zero. The Euler–Lagrange equations can then be
written as

9
J 
 = 0 : (14)

In order to specify the 5ve-dimensional vector 5eld theory, we assume the existence
of a Riemannian manifold, R(G), with metric g
�(x), such that at each point of R(G)
there is a Iat space G. The covariant form of Eq. (14) is

9
(g1=2J 
) = 0 ; (15)

such that J 
 is considered as a covariant current density in R(G). We can construct
J as an explicit derivative of a tensor of the theory; and the natural candidate for
such a proposal is g
�(x). In this way, the physical content of J as a current can be
emphasized. Using a general expression for a (covariant-like) derivative, say 9�+f�(x),
we de5ne J 
=g−1=2S
, where S
=(f�(x)+9�)g
�(x), with f� being a 5ve-vector given
by f�(x) = (fi(x; t); f4(x; t); 0) (we have taken f5(x; t) = 0 for sake of convenience).
The 5ve-vector S plays the role of the current density in the Minkowski space, and
J the covariant gravitational counterpart. Nevertheless, it is worth noting that here we
are working in the 5ve-dimensional space G without use of the equivalence principle
of the general relativity. The physical meaning of the Riemannian manifold R(G) will
be discussed in the following:
Using Eq. (15) we 5nd

9
S
 = 9
f
 + 9
9�g
�

= 94f4 + 9ifi + 9
9�g
� = 0 : (16)

This equation can be converted into a Fokker–Planck equation if we de5ne

fi(x; t) = Di(x; t)P(x; t) ;

f4(x; t) = P(x; t)
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and the metric tensor as

g= P(x)Dij(x) dxj ⊗ dxi − dx4 ⊗ dx5 − dx5 ⊗ dx4 ; (17)

where P(x)=P(x; t) is a scalar function and Dij(x) are the components of a Riemannian
metric associated with the Euclidean space. The components of S are given by

Si = Di(x)P(x) + 9jP(x)Dij(x) ;

S4 = P(x) ;

S5 = 0 :

Using Eq. (16), with the embedding x = (x; t; x2=2t), we obtain

9tP(x; t) =
9
9xi

[
−Di(x; t)P(x; t) +

9
9xj D

ij(x; t)P(x; t)
]
: (18)

This is the Fokker–Planck equation with Di(x; t) standing for the drift term and Dij(x; t)
the di7usion tensor, since we can take P(x; t) as a real positive and normalized function,
such that it can be interpreted as a (covariant) probability density. This probability
attribute of P(x) is consistent with the fact that P(x) cannot be zero, providing then
that g
�(x) has an inverse, say g
�(x).
The Riemannian space R(G) has been used to introduce the drift and the di7usion

tensor in Fokker–Planck dynamics. Regarding the metric Dij(x; t), the connection in
the Euclidean part of R(G) is given by

+ijk =
1
2

(
9Djk

9xi +
Dik

9xj −
Dij

9xk

)
:

If +ijk =0; we recover the Euclidean Iat space, and therefore there exists a transformation
U (x) such that

UgU−1 = P(x)D�ij dxj ⊗ dxi − dx4 ⊗ dx5 − dx5 ⊗ dx4 ; (19)

where D is a constant. Hence, the di7usion tensor can be diagonalized. This is a result
derived by Graham [18] in a work analyzing the invariance properties of the Fokker–
Planck equation. In our case, the invariance has been used, from the beginning, as
a central ingredient to write the Lagrangian given in Eq. (10) and the corresponding
covariant Eq. (15).
Let us brieIy discuss the case of relativistic Fokker–Planck equation. This can be

obtained if we use Eq. (8) with x� = (xi; ct=
√
2; ct=

√
2), where c is the speed of light,

and f�(x)=(fi(x; t); P=
√
2; P=

√
2). In this case, for instance, we have x
x
=xixi−(ct)2;

which is a vector in Minkowski space. Then we have the following correspondence of
5ve-tensors in G into four-tensors in the Minkowski space,

9
 → 9
 = (90 = 9ct ; 9i) ;

S
 → S
 = (S0 = P(x); Si = Di(x)P(x) + 9jP(x)Dij(x)) ;

� → �= �ij dxj ⊗ dxi − dx0 ⊗ dx0 :
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Using these de5nitions and Eq. (14) (but now in the Minkowski space), we derive a
relativistic Fokker–Planck equation which has the same form as Eq. (18) for t → ct (we
consider c= 1). Therefore, the usual Fokker–Planck equation can be taken as Lorentz
invariant, provided there exists a drift four-vector given by f�(x) = (P(x; t); fi(x; t)),
and a Riemannian metric given by

g= P(x)Dij(x) dxj ⊗ dxi − dx0 ⊗ dx0 :

In the next section we consider non-Abelian symmetries.

4. Non-Abelian gauge symmetry

Generalization of these results for non-Abelian gauge 5elds can be addressed as well.
(From this point on, the covariant notation means relativistic or non-relativistic theory.)
In 5ve dimensions a pure Yang–Mills 5eld can be described by the Lagrangian

L=−1
4
Fa
�Fa
� ; (20)

where the Latin index, a, stands for the gauge group, with generators ta; a=1; 2; : : : ; n,
satisfying the Lie algebra [ta; tb]=Cab

c t
c; where Cab

c are structure constants of the gauge
group (sum over repeated Latin indices is assumed). The 5eld strength tensor Fa


� is
given by

F
�a = 9
J�a − 9�J
a − %Cbc
a J
bJ�c

for which the equation of motion is written as

D
b
a F
�b = 0 ;

where Db

a is the covariant derivative given by D
b

a = 9
�ba+ %Cbc
a J



c . The equations of

motion for each component of J are

9�9
J 
a = %Cbc
a 9
(J 
c J�b) + %Cbc

a J


c 9
J�b

+ %Ccb
a J



c 9�J
b + %2Ccb

a C
de
b J



c J
dJ�e ; (21)

where use has been made of the aforementioned gauge condition 9
9
J�a = 0. Despite
the non-linear structure of these equations, a Fokker–Planck system can be recognized,
if we assume J is de5ned as before (in terms of S), and discard all the non-linear
terms in Eq. (21), such that 9
9�J
a = 0. As a consequence

9
J 
a = ( ; (22)

where ( is a constant. Taking ( = 0, we obtain Eq. (14), and so a Fokker–Planck
equation, for each gauge index a. On the other hand, consider (�1, then Eq. (21)
reduces, up to second order terms in %(, to

9�(9
J 
a + %Cbc
a J



c J
b) = 2%Cbc

a J


c 9
J�b + %Cbc

a (9�J 
c )J
b : (23)

The left-hand side of this equation can be integrated for each � = 1; : : : ; 5, so that
the right-hand side results in a non-local term along each direction. Discarding this
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non-local term we obtain the following non-linear equation:

9
J 
a + %Cbc
a J



c J
b = 0 : (24)

Let us consider as an example the su(2) symmetry with J 
a de5ned by

J ia = �aij(Dk
j Pk + Dnk

j 9kPn) ;

J 4a = Pa ;

J 5a = 0 ;

where both gauge and tensor indices are of the same tensor nature (i; j; k; a; b; c =
1; 2; 3); Dk

j =D
k
j (x) describes the drift term (which is now a second rank tensor, taking

into account the vector and the gauge index), whilst Dnk
j , independent of x, stands for

the di7usion term. Notice that this de5nition can be developed with the reasoning used
in the Abelian case. With Eq. (24), we see that �abcJ



c J
b = �abcJicJib = 0: Hence,

9tPa = �aji[9i(Db
jPb) + Dcb

j 9i9bPc] : (25)

The content of this Fokker–Planck-like equation can be analyzed in a simple partic-
ular situation. Consider the stationary situation 9tPa = 0; and de5ne

P2 = P3 = P ;

D1
2 = kx3 = kz ;

D1
3 = kx2 = ky ;

D13
2 = D12

3 =
D
2
;

where P;D and k are constant and the other components of Db
j and D

cb
j are zero. (The

expressions for D1
2 and D1

3; the drift terms, and D13
2 = D12

3 ; the di7usion tensor assure
we have an Ornstein–Uhlenbeck-like process [11,13] for this color theory.) Writing
P1(y; z) = ’(y)2(z); we derive

1
2(z)

[
D
2

d2

dz2
2(z) +

d
dz

(kz2(z))
]
=

1
’(y)

[
D
2

d2

dy2
’(y) +

d
dy

[kz’(y)]
]
:

Therefore, we can write

D
2

d2

dy2
’(y) +

d
dy

[ky’(y)] = ’(y)F ;

where F is a constant. If F 
= 0; a solution is given with F = 3k; such that

’(y) = a0

(
y2 +

D
k

)
+ a1exp(−ky2=D) ;

where a0; a1 are constant; and similarly for 2(z). However, these type of solution
diverges for y; z → ∞. A non-divergent solution is found for F = 0: In this case,
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we recover a known result for P1(y; z), that is

P1(y; z) =’(y)2(z)

=
1
N
exp(−k(y2 + z2)=D)

with N being a normalization constant.

5. Concluding remarks

Summarizing, our main goal in this work has been to derive the Fokker–Planck
dynamics via a variational principle, considering gauge invariant Lagrangians written
in a (4+1) Minkowski space G. First we consider the U (1) symmetry with a suitable
choice for the gauge condition, and a Riemannian manifold R(G) speci5ed by the
metric g given in Eq. (17). Then using Eq. (14) the Fokker–Planck equation has been
derived. The physical meaning of the manifold R(G) is crucial for the de5nition of
the di7usion and drift terms, which are derived from the metric tensor g. This is why
the equivalence principle was no longer invoked.
The analysis has been extended to deal with non-Abelian symmetries and the rela-

tivistic case, taking the advantage of proper embeddings in this 5ve-dimensional for-
malism. For non-Abelian groups, despite the diPculties imposed with the non-linearity,
we have been able to recognize a Fokker–Planck dynamics and discuss, as an exam-
ple, a solution for the su(2) gauge symmetry. Other possibilities for the gauge group
remain to be studied, and a situation involving the su(3) symmetry will be addressed
elsewhere.
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