Resumo:
Considerando uma Álgebra de Lie (g,[.,.]) com estrutura complexa J, é possível definir em g um novo colchete Lie [*]J, de modo que se pode mostrar que os subespaços g (1,0) e g(0,1) são subálgebras de Lie isomorfas a (g,[*]J). Para tanto, neste trabalho serão consideradas apenas estruturas complexas integráveis
Será mostrado também, que no caso em que essas subálgebras forem nilpotentes, então (g,[.,.]) será solúvel. Nesse sentido, será feita uma caracterização da Álgebras de Lie (g,[*]J) com estrutura complexa s-passos nilpotente, afim de estudar o comportamento do colchete de Lie original [.,.], permitindo assim a construção de exemplos de Álgebras de Lie de dim=6.
Também, será mencionado o conceito de estrutura hipercomplexa, demonstrado alguns resultados algébricos envolvendo tal estrutura e exemplificando em casos de Álgebras de Lie de dim=8, afim de comentar sua importância em outros contextos matemáticos.