DSpace

RI UFBA >
Instituto de Matemática >
Programa de Pós-Graduação em Ciência da Computação (PGCOMP) >
Dissertações de Mestrado (PGCOMP) >

Please use this identifier to cite or link to this item: http://repositorio.ufba.br/ri/handle/ri/29866

Title: Remoção de expressões faciais em imagens 3D para fins de reconhecimento biométrico
Authors: Barbosa, Lucas Amparo
???metadata.dc.contributor.advisor???: Pamplona Segundo, Maurício
Keywords: Deep Learning;Reconhecimento facial;Imagens 3D
Issue Date: 17-Jun-2019
Abstract: A pesquisa realizada apresenta um modelo de rede neural encoder-decoder para remover deformações causadas por expressões faciais em imagens 3D. Este modelo recebe uma imagem 3D da face com ou sem expressões como entrada e gera uma face neutra como saída. O objetivo não é obter um resultado realístico e sim melhorar a precisão de sistemas de reconhecimento facial 3D. Para realizar isso, foi proposto o uso de uma função de custo baseada em um sistema de reconhecimento durante o processo de treinamento para que a rede aprendesse a manter informações inerentes à identidade do indivíduo na saída. Os experimentos usando a base de dados Bosphorus 3D mostraram que a técnica foi bem sucedida em reduzir a diferença entre imagens do mesmo indivíduo afetadas por diferentes expressões faciais e ampliar a distância entre os valores das intraclasses e interclasses. Eles também mostram que nossas imagens neutras geradas sinteticamente melhoram os resultados de quatro métodos de reconhecimento, atingindo assim o objetivo original.
We present an encoder-decoder neural network to remove deformations caused by expressions from 3D face images. It receives a 3D face with or without expressions as input and outputs its neutral form. Our objective is not to obtain the most realistic results but to enhance the accuracy of 3D face recognition systems. To this end, we propose using a recognition-based loss function during training so that our network can learn to maintain important identity cues in the output. Our experiments using the Bosphorus 3D Face Database show that our approach successfully reduces the difference between face images from the same subject affected by different expressions and increases the gap between intraclass and interclass difference values. They also show that our synthetic neutral images improved the results of four different well-known face recognition methods, thus accomplishing the original objective.
URI: http://repositorio.ufba.br/ri/handle/ri/29866
Appears in Collections:Dissertações de Mestrado (PGCOMP)

Files in This Item:

File Description SizeFormat
dissertacao.pdf2.22 MBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

    Universidade Federal da Bahia

Contate-nos. Saiba mais sobre o RI/UFBA