DSpace

RI UFBA >
Instituto de Matemática >
Mestrado Multiinstitucional de Pós-Graduação em Ciência da Computação (MMCC) >
Dissertações de Mestrado (MMCC) >

Please use this identifier to cite or link to this item: http://repositorio.ufba.br/ri/handle/ri/18546

Title: Segmentação de Embarcação em Ambientes Fluviais
Authors: Pimentel, Fagner de Assis Moura
???metadata.dc.contributor.advisor???: Ângelo, Michele Fúlvia
???metadata.dc.contributor.advisor-co???: Suárez, Diego Gervasio Frías
Keywords: Segmentação;Classificação;Embarcação;Ambiente Fluvial
Issue Date: 26-Jan-2016
Abstract: Este trabalho apresenta uma pesquisa e o estudo de técnicas de visão computacional voltadas para a segmentação de embarcações utilizando câmeras Pan-Tilt-Zoom de modo a auxiliar a automação e otimização do processo de eclusagem nas represas do rio Tietê no estado de São Paulo, Brasil. São apresentadas e comparadas técnicas de Subtração de Fundo e Classificação utilizando SVM (Support Vector Machine) como classificador. Com este estudo foi possível definir um conjunto de técnicas que melhor se adequam a segmentação de embarcações em ambientes fluviais. Foram realizados testes extensivos para selecionar as melhores técnicas e parâmetros para cada fase e descrever um estudo comparativo das técnicas utilizadas. A metodologia utilizada neste trabalho se divide em coleta e classificação de dados (vídeos), criação de datasets, avaliação de métodos de detecção de movimento da câmera PTZ, avaliação de métodos para segmentação de região de água e avaliação de métodos de detecção de objetos móveis por subtração de fundo. Para a detecção de movimento de câmera visando a reinicialização do método de subtração de fundo usado neste trabalho, foi realizada a comparação de 8 métodos variando seus thresholds. O método BorderTracer (BT) desenvolvido neste trabalho, apresentou os melhores resultados com accuracy (ACC) médio = 99.71% (threshold = 8). Para a segmentação da região de água, usada como informação de contexto para a etapa seguinte, foram realizadas variações de pré-processamento e espaço de cor das imagens selecionadas, além da otimização dos parâmetros para os kernels do classificador SVM em um total de 112 combinações. O espaço de cor YCbCr sem pré-processamento e com o uso do kernel com Função de Base Radial (RBF) apresentou os melhores resultados com Balanced Acurracy (BAC) médio = 94.53%. Para a segmentação das embarcações foi realizada uma otimização de parâmetros dos dois melhores algoritmos pré-selecionados da BGSlibrary em um total de 175 combinações. O algoritmo StaticFrameDifferenceBGS, juntamente com a técnica de histerese (baixo limiar = 15 e e alto limiar = 100) apresentou um Balanced Acurracy (BAC) médio = 88.77% enquanto o DPEigenbackgroundBGS com ℎ𝑖𝑠𝑡𝑜𝑟𝑦𝑆𝑖𝑧𝑒 = 10 e 𝑒𝑚𝑏𝑒𝑑𝑑𝑒𝑑𝐷𝑖𝑚 = 20 juntamente com a técnica de histerese (baixo limiar = 15 e alto limiar = 100) apresentou um melhor Balanced Acurracy (BAC) médio = 91.25%, e portanto foi selecionado para esta etapa. Entre os resultados deste projeto, encontrase também o desenvolvimento de uma ferramenta semi-automática de anotação de vídeos em máscara binária, a criação de um novo dataset, inédito, de embarcações em ambientes fluviais anotados em máscara binária e o desenvolvimento de uma rotina de detecção de movimento da câmera, o BorderTracer apresentado anteriormente;
URI: http://repositorio.ufba.br/ri/handle/ri/18546
Appears in Collections:Dissertações de Mestrado (MMCC)

Files in This Item:

File Description SizeFormat
Dissertacao_Mestrado_Fagner_Pimentel.pdf7.06 MBAdobe PDFView/Open
View Statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

    Universidade Federal da Bahia

Contate-nos. Saiba mais sobre o RI/UFBA