Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/43683
Registro completo de metadados
Campo DCValorIdioma
dc.creatorPatrick, Jordan Correia da Silva-
dc.date.accessioned2025-12-16T17:47:44Z-
dc.date.available2025-12-16T17:47:44Z-
dc.date.issued2025-10-17-
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/43683-
dc.description.abstractThis study evaluated essential oil from Elionurus muticus (EOEM) as an anesthetic in juvenile Nile tilapia (Oreochromis niloticus) under different water pH conditions. Two experiments were conducted. In Experiment 1, fish (25 g) were exposed to EOEM concentrations ranging from 10 to 600 µL L⁻¹ at pHs 5.5, 7.0, and 8.5 to determine induction and recovery times. In Experiment 2, fish (70 g) were transferred from water at pH 7.0 to waters at pHs 5.5, 7.0, or 8.5, anesthetized (600 µL L⁻¹) or not, and sampled after 0 and 1 h for hematological and plasma biochemical analyses. The 600 µL L⁻¹ concentration was effective for anesthesia, with the shortest induction and recovery times at pH 7.0. Acidic and alkaline conditions prolonged recovery, indicating higher physiological stress. In Experiment 2, after 1 h, non-anesthetized fish at pH 5.5 exhibited elevated hemoglobin levels, while anesthetized fish at pH 8.5 had a reduced hematocrit. Leukocyte and heterophil counts were highest at pH 7.0, especially in anesthetized fish. Anesthesia at pH 7.0 reduced plasma total protein and albumin levels. Hyperglycemia was observed in unanesthetized fish at pH levels of 5.5 and 8.5. Plasma total cholesterol, high-density lipoprotein, and low density lipoprotein levels were higher in the interaction between anesthesia and pH 8.5. These results demonstrate that water pH has a strong influence on the anesthetic efficacy and physiological responses of Nile tilapia exposed to EOEM (600 µL L⁻¹). Optimal performance occurred at pH 7.0, while acidic and alkaline (mainly) conditions increased recovery time and hematobiochemical stress.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal Da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectáguas ácidaspt_BR
dc.subjectáguas alcalinaspt_BR
dc.subjecteritrogramapt_BR
dc.subjectleucogramapt_BR
dc.subjecthiperglicemiapt_BR
dc.subjectFisiologia veterináriapt_BR
dc.subjectAquiculturapt_BR
dc.subjectTilápia (Peixe)pt_BR
dc.subject.otheracidic waterspt_BR
dc.subject.otheralkaline waterspt_BR
dc.subject.othererythrogrampt_BR
dc.subject.otherhyperglycemiapt_BR
dc.subject.otherleukogrampt_BR
dc.subject.otherVeterinary physiologypt_BR
dc.subject.otherAquaculturept_BR
dc.subject.otherTilapia (Fish)pt_BR
dc.titleEfeitos do óleo essencial de Elionurus muticus (Spreng.) Kuntze na indução anestésica e no manejo de tilápia do Nilo em diferentes pH da águapt_BR
dc.title.alternativeEffects of Elionurus muticus (Spreng.) Kuntze essential oil on anesthetic induction and management of Nile tilapia in different water pH levels.pt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Biodiversidade e Evolução (antigo Programa de Pós Graduação em Diversidade Animal-PPGDA) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS BIOLOGICAS::FISIOLOGIApt_BR
dc.subject.cnpqCNPQ::CIENCIAS AGRARIAS::RECURSOS PESQUEIROS E ENGENHARIA DE PESCA::AQUICULTURApt_BR
dc.contributor.advisor1Carlos, Eduardo Copatti-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-0114-0334pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2254441871778798pt_BR
dc.contributor.referee1Carlos, Eduardo Copatti-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-0114-0334pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/2254441871778798pt_BR
dc.contributor.referee2Luis, André Luz Barbas-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-2708-8909pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0067206681021272pt_BR
dc.contributor.referee3Luciano, de Oliveira Garcia-
dc.contributor.referee3IDhttps://orcid.org/0000-0001-9133-7212pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9460464215877849pt_BR
dc.creator.IDhttps://orcid.org/0009-0009-0704-0375pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6513814405170074pt_BR
dc.description.resumoEste estudo avaliou o óleo essencial de Elionurus muticus (EOEM) como anestésico em juvenis de tilápia do Nilo (Oreochromis niloticus) sob diferentes condições de pH da água. Dois experimentos foram conduzidos. No Experimento 1, peixes (25 g) foram expostos a concentrações de EOEM variando de 10 a 600 µL L⁻¹ em pHs 5,5, 7,0 e 8,5 para determinar os tempos de indução e recuperação. No Experimento 2, peixes (70 g) foram transferidos de água com pH 7,0 para águas com pHs 5,5, 7,0 ou 8,5, anestesiados (600 µL L⁻¹) ou não, e amostrados após 0 e 1 h para análises hematológicas e bioquímicas plasmáticas. A concentração de 600 µL L⁻¹ foi eficaz para anestesia, com os menores tempos de indução e recuperação em pH 7,0. Condições ácidas e alcalinas prolongaram a recuperação, indicando maior estresse fisiológico. No Experimento 2, após 1 h, peixes não anestesiados em pH 5,5 apresentaram níveis elevados de hemoglobina, enquanto peixes anestesiados em pH 8,5 apresentaram hematócrito reduzido. As contagens de leucócitos e heterófilos foram mais elevadas em pH 7,0, especialmente em peixes anestesiados. A anestesia em pH 7,0 reduziu os níveis plasmáticos de proteína total e albumina. Hiperglicemia foi observada em peixes não anestesiados em níveis de pH de 5,5 e 8,5. Os níveis plasmáticos de colesterol total, lipoproteína de alta densidade (HDL) e lipoproteína de baixa densidade (LDL) foram maiores na interação entre anestesia e pH 8,5. Esses resultados demonstram que o pH da água tem forte influência na eficácia anestésica e nas respostas fisiológicas da tilápia do Nilo exposta ao EOEM (600 µL L⁻¹). O desempenho ideal ocorreu em pH 7,0, enquanto condições ácidas e alcalinas (principalmente) aumentaram o tempo de recuperação e o estresse hematobioquímico.pt_BR
dc.publisher.departmentInstituto de Biologiapt_BR
dc.relation.referencesBaldisserotto, B. (2017). Fisiologia de peixes aplicada à Piscicultura. Santa Maria: UFSM. 41 Barcellos, L.J.G., Nicolaiewsky, S., Souza, S.M.G., Lulhier, F. (1999) Plasmatic levels of cortisol in the response to acute stress in Nile tilapia, Oreochromis niloticus (L.), previously exposed to chronic stress. Aquaculture http://dx.doi.org/10.1046/j.1365-2109.1999.00348.x Research, 30, 437-444. Barton, B. A. (2002). Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology, 42, 517–525. https://doi.org/10.1093/icb/42.3.517 Barton, B. A., & Iwama, G. K. (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of Fish Diseases, 1, 3–26. https://doi.org/10.1016/0959-8030(91)90019-G Castro-Neto, O. P. A., Silva, I. S., Lemos, C. H. P., & Copatti, C. E. (2024). Essential oils from rosemary, lemongrass, and zinziba in the anesthetic induction of freshwater angelfish. Arquivo Brasileiro de Medicina e13098. https://doi.org/10.1590/1678-4162-13098 Veterinária e Zootecnia, 76, Chen, D., Zhang, C., Jiang, P., Jiang, L., & Huang, B. (2023). Comprehensive analysis of physiological, biochemical and flavor characteristics changes in crucian carp (Carassius auratus) under different concentrations https://doi.org/10.3390/foods12152820 of eugenol. Foods, 12, 2820. Cooke, S. J., Suski, C. D., Ostrand, K. G., Tufts, B. L., & Wahl, D. H. (2004). Behavioral and physiological assessment of low concentrations of clove oil anaesthetic for handling and transporting largemouth bass (Micropterus salmoides). Aquaculture, 239, 509–529. https://doi.org/10.1016/j.aquaculture.2004.06.028 Copatti C.E., Amaral, R. (2019). Osmoregulation in piava juveniles, Leporinus obtusidens (Characiformes: Anastomidae), during the exchanges from the water’s pH. Biodiversidade Pampeana, 7, 1−6. 42 Copatti, C. E., Baldisserotto, B., Souza, C. F., & Garcia, L. O. (2019). Protective effect of high hardness in pacu juveniles (Piaractus mesopotamicus) under acidic or alkaline pH: Biochemical and haematological variables. https://doi.org/10.1016/j.aquaculture.2018.12.028 Aquaculture, 502, 250–257. Copatti C.E., Baldisserotto B. (2021). Osmoregulation in Tilapia: Environmental factors and internal mechanisms. In: López-Olmeda, J.F., Sánchez-Vázquez, F.J., Fortes-Silva, R. (Eds.) Biology and Aquaculture of Tilapia, 104−118. https://doi.org/10.1201/9781003004134 Copatti C.E., Baldisserotto B., Souza C.F., Garcia L. (2019). Protective effect of high hardness in pacu juveniles (Piaractus mesopotamicus) under acidic or alkaline pH: Biochemical and haematological variables. https://doi.org/10.1016/j.aquaculture.2018.12.028 Aquaculture, 502, 250–257. Copatti, C.E., Bolner, K.C.S., Rosso, F.L., Loro, V.L., Baldisserotto, B. (2015). Tolerance of piava juveniles to different ammonia concentrations. Semina: Ciências Agrárias, 36, 3991–4002. http://dx.doi.org/10.5433/1679–0359.2015v36n6p3991 Copatti, C. E., Melo, J. F. B., & Camargo, A. C. S. (2024). Essential oils in fish farming: Anesthesia, nutrition and antimicrobial action. In A. C. S. Camargo et al. (Eds.), Piscicultura: suas versatilidades na América Latina (pp. 86–115). Unipampa: Bagé. Costa CRA, Kohn DO, de Lima VM, Gargano AC, Flório JC, Costa M (2011) O sistema GABAérgico contribui para o efeito ansiolítico do óleo essencial de Cymbopogon citratus (capim-limão). Journal of https://doi.org/10.1016/j.jep.2011.07.003 Ethnopharmacology 137, 828–836. Coyle, S. D., Durborow, R. M., & Tidwell, J. H. (2004). Anesthetics in aquaculture (Vol. 3900). Texas: Southern Regional Aquaculture Center. Dzingirai, B., Muchuweti, M., Murenje, T., Chidewe, C., Benhura, M. A. N., & Chagonda, L. S. (2007). Phenolic content and phospholipids peroxidation inhibition by methanolic extracts of two medicinal plants: Elionurus muticus and Hypoxis hemerocallidea. African Journal of Biochemistry Research, 1, 137–141. 43 El-Sayed, A. F. M., & Kawanna, M. (2008). Effects of dissolved oxygen and photoperiod on the survival, growth, and physiology of Nile tilapia (Oreochromis niloticus). Aquaculture Research, 39, 934–942. https://doi.org/10.1111/j.1365-2109.2008.01952.x Fazio, F. (2019). Fish hematology analysis as an important tool of aquaculture: A review. Aquaculture, 500, 237–242. https://doi.org/10.1016/j.aquaculture.2018.10.030 Franklin, C., Cramp, R., & Isaza, D. (2020). Simultaneous exposure to nitrate and low pH reduces the blood oxygen-carrying capacity and functional performance of a freshwater fish. Conservation Physiology, 8, coz092. https://doi.org/10.1093/conphys/coz092 Hacke, A., Miyoshi, E., Marques, J., & Pereira, R. (2020). Anxiolytic properties of Cymbopogon citratus (DC.) Stapf extract, essential oil and its constituents in zebrafish (Danio rerio). Journal of https://doi.org/10.1016/j.jep.2020.113036 Ethnopharmacology, 260, 113036. Hikasa, Y., Takase, K., Ogasawara, T., & Ogasawara, S. (1986). Anesthesia and recovery with tricaine methenesulfonate, eugenol and thiopental sodium in the carp, Cyprinus carpio. Japanese Journal of Veterinary https://doi.org/10.1292/jvms1939.48.341 Science, 48, 341–351. Hohlenwerger, J. C., Baldisserotto, B., Couto, R. D., Heinzmann, B. M., Silva, D. T., Caron, B. O., Schmidt, D., & Copatti, C. E. (2017). Essential oil of Lippia alba in the transport of Nile tilapia. Ciência Rural, 47, e20160631. https://doi.org/10.1590/0103-8478cr20160040 (review). Javahery, S., Nekoubin, H., & Moradlu, A. H. (2012). Effect of anaesthesia with clove oil in fish Fish Physiology https://doi.org/10.1007/s10695-012-9682-5 and Biochemistry, 38, 1545–1552. Johnston, C. E., Henderson, E., Saunders, R. L., Goff, T., & Farmer, G. (1989). Some physiological responses of Atlantic salmon (Salmo salar) exposed to soft, acidic water during smolting. Aquaculture, 82, 229–244. https://doi.org/10.1016/0044-8486(89)90411-0 44 Kilercioglu, S., Ay, O., Oksuz, H., & Yilmaz, M. B. (2020). The effects of the neurotoxic agent emamectin benzoate on the expression of immune and stress-related genes and blood serum profiles in the Rainbow trout. Molecular Biology Reports, 47, 5243–5251. https://doi.org/10.1007/s11033-020-05599-w King, H. R. (2009). Fish transport in the aquaculture sector: An overview of the road transport of Atlantic salmon in Tasmania. Journal of Veterinary Behavior, 4, 163–168. https://doi.org/10.1016/j.jveb.2008.09.034 Kwong, R. W., Kumai, Y., & Perry, S. F. (2014). The physiology of fish at low pH: The zebrafish as a model system. Journal of Experimental Biology, 217, 651–662. https://doi.org/10.1242/jeb.091603 Lemos, C. H. P., Ribeiro, C. V. M., de Oliveira, C. P. B., Couto, R. D., &Copatti, C. E. (2018a). Effects of interaction between pH and stocking density on the growth, haematological and biochemical responses of Nile tilapia juveniles. Aquaculture, 495, 62 67. https://doi.org/10.1016/j.aquaculture.2018.05.037 Lemos, C. H. P., Chung, S., Ribeiro, C. V. M., & Copatti, C. E. (2018b). Growth and biochemical variables in Amazon catfish (Pseudoplatystoma reticulatum ♀ × Leiarius marmoratus ♂) under different water pH. Anais da Academia Brasileira de Ciências, 90, 3573–3581. https://doi.org/10.1590/0001-3765201820180241 Limma-Netto, J. D., Sena, A. C., & Copatti, C. E. (2016). Essential oils of Ocimum basilicum and Cymbopogon flexuosus in the sedation, anesthesia and recovery of tambacu (Piaractus mesopotamicus male × Colossoma macropomum female). Boletim do Instituto de Pesca, 42, 727–733. https://doi.org/10.20950/1678-2305.2016v42n3p727 Majewski, H., Hobden, B., & Giles, M. (1984). Osmoregulatory and hematological responses of rainbow trout (Salmo gairdneri) to extended environmental acidification. Canadian Journal of Fisheries https://doi.org/10.1139/F84-207 and Aquatic Sciences, 41, 1686–1694. 45 Martinazzo, A. P., Braga, R. de O., & Teodoro, C. E. de S. (2022). Alternative control of phytopathogenic bacteria with essential oils of Elionurus latiflorus and Cymbopogon flexuosus. Ciência e Natura, 44, e25. https://doi.org/10.5902/2179460X67338 Marx, M., Souza, C., Almeida, A., Descovi, S., Bianchini, A., Martos-Sitcha, J., Martínez Rodríguez, G., Antoniazzi, A., & Baldisserotto, B. (2022). Expression of ion transporters and Na+/K+-ATPase and H+-ATPase activities in the gills and kidney of silver catfish (Rhamdia quelen) exposed https://doi.org/10.3390/fishes7050261 to different pHs. Fishes, 7, 261. Miron, D. S., Moraes, B., Becker, A. G., Crestani, M., Spanevello, R., Loro, V. L., & Baldisserotto, B. (2008). Ammonia and pH effects on some metabolic parameters and gill histology of silver catfish, Rhamdia quelen (Heptapteridae). Aquaculture, 277, 192–196. https://doi.org/10.1016/j.aquaculture.2008.02.023 Moreira, A. G. L., Coelho, A. A. C., Albuquerque, L. F. G., Moreira, R. T., & Farias, W. R. L. (2015). Eugenol effect as a mitigate agent of stress in transport of Nile tilapia juveniles. Pesquisa Veterinária 736X2015001100004 Brasileira, 35, 893–898. https://doi.org/10.1590/S0100 NIST/EPA/NIH. (2008). Mass Spectral Library and Search/analysis Programs. Hoboken: J. Wiley and Sons. Oliveira, J. R., Carmo, J. L., Oliveira, K. K. C., & Soares, M. do C. F. (2009). Cloreto de sódio, benzocaína e óleo de cravo-da-índia na água de transporte de tilápia-do-Nilo. Revista Brasileira de 35982009000700001 Zootecnia, 38, 1163–1169. https://doi.org/10.1590/S1516 Oliva‐Teles, A., Panserat, S., Enes, P., & Kaushik, S. (2009). Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiology and Biochemistry, 35, 519-539. https://doi.org/10.1007/s10695-008-9259-5. 46 Omarjee, A., Taljaard, S., & Van Niekerk, L. (2021). pH variability in catchment flows to estuaries – A South African perspective. Estuarine, Coastal and Shelf Science, 262, 107605. https://doi.org/10.1016/j.ecss.2021.107605 Parra, J.E.G.; Baldisserotto, B. (2007). Water pH and hardness affect growth of freshwater teleosts. In: Baldisserotto, B., Mancera, J.M., Kapoor, R.G., Fish Osmoregulation, pp. 135 150. https://doi.org/10.1201/b10994-6 Piper, R. G. (2022). Fish hatchery management. Legare Street Press. Purbosari, N., Saputra, F., & Dewi, N. N. (2019). Natural versus synthetic anesthetic for transport of live fish: A review. Aquaculture and Fisheries, 4, 129–133. https://doi.org/10.1016/j.aaf.2019.03.002 Randall, D. J., & Tsui, T. K. N. (2002). Ammonia toxicity in fish. Marine Pollution Bulletin, 45, 17–23. https://doi.org/10.1016/S0025-326X(02)00227-8 Rummer, J., & Brauner, C. (2015). Root Effect Haemoglobins in Fish May Greatly Enhance General Oxygen Delivery Relative to Other Vertebrates. PLoS ONE, 10, e0139477. https://doi.org/10.1371/journal.pone.0139477 Sampaio, F. D. F., & Freire, C. A. (2016). An overview of stress physiology of fish transport: Changes in water quality as a function of transport duration. Fish and Fisheries, 17, 1055 1072. https://doi.org/10.1111/faf.12158 Santos, A., Bianchini, A., Bandeira, G., Garlet, Q., Brasil, M., Heinzmann, B., Baldisserotto, B., Caron, B., & Da Cunha, M. (2021). Essential oil of Aloysia citriodora Paláu and citral: sedative and anesthetic efficacy and safety in Rhamdia quelen and Ctenopharyngodon idella. Veterinary Anaesthesia https://doi.org/10.1016/j.vaa.2021.10.004 and Analgesia, 49, 104–112. Simões-Bueno, L.N., Copatti, C.E., Gomes, L.C., Val, A.L., Amanajás, R.D., Caron, B.O., Heinzmann, B.M., Baldisserotto, B., 2024. Linalool chemotype essential oil from Lippia alba in the anesthesia of fat snook (Centropomus parallelus): ventilatory rate, biochemical, 47 antioxidant, and oxidative status parameters. Neotropical Ichthyology, 22, e230114. https://doi.org/10.1590/1982-0224-2023-0114 Small, B. C. (2003). Anesthetic efficacy of metomidate and comparison of plasma cortisol responses to tricaine methanesulfonate, quinaldine and clove oil anesthetized channel catfish Ictalurus punctatus. Aquaculture, 218, 177–185. https://doi.org/10.1016/S0044 8486(02)00302-2 Souza, C.F., Baldissera, M. D., Bianchini, A. E., da Silva, E. G., Mourão, R. H. V., da Silva, L. V. F., Schmidt, D., Heinzmann, B. M., & Baldisserotto, B. (2018). Citral and linalool chemotypes of Lippia alba essential oil as anesthetics for fish: A detailed physiological analysis of side effects during anesthetic recovery in silver catfish (Rhamdia quelen). Fish Physiology and Biochemistry, 44, 21–34. https://doi.org/10.1007/s10695-017-0410-z Spanghero, D. B. N., Spanghero, E. C. A. M., Pedron, J. S., Chagas, E. C., Chaves, F. C. M., & Zaniboni-Filho, E. (2023). Peppermint essential oil as an anesthetic for and toxicity to juvenile silver catfish. Pesquisa Agropecuária e12345. https://doi.org/10.1590/S0100-204X2023000100001 Brasileira, 58, Sutili, F., Loebens, L., Costa, S., Gressler, L., Lazzari, R., & Baldisserotto, B. (2015). Effect of humic acid on survival, ionoregulation and hematology of the silver catfish, Rhamdia quelen (Siluriformes: Heptapteridae), exposed to different pHs. Zoologia, 32, 215–224. https://doi.org/10.1590/S1984-46702015000300006 Tarkhani R, Imani A, Jamali H, Sarvi MK (2016) Anesthetic efficacy of eugenol on flowerhorn (Amphilophus labiatus) x (Amphilophus trimaculatus). Aquaculture Research, 48, 3207–3215. https://doi. org/10.1111/are.13151 Teixeira, R. R., Souza, R. C., Sena, A. C., Baldisserotto, B., & Copatti, C. E. (2017). Essential oil of Aloysia triphylla in Nile tilapia: Anaesthesia, stress parameters and sensory evaluation of fillets. https://doi.org/10.1111/are.13162 Aquaculture Research, 48, 3383–3392. 48 Teodoro, G., de Oliveira, S., Filho, R., Ventura, A., Povh, J., Jerônimo, G., Cardoso, C., & Gabriel, A. (2020). Natural anesthetics in the transport of Nile tilapia: Hematological and biochemical responses and residual concentration in the fillet. Aquaculture, 526, 735365. https://doi.org/10.1016/j.aquaculture.2020.735365 Tseng, Y., Yan, J., Furukawa, F., & Hwang, P. (2020). Did acidic stress resistance in vertebrates evolve as Na+/H+ exchanger‐mediated ammonia excretion in fish? BioEssays, 42, 1900161. https://doi.org/10.1002/bies.201900161 Wang, T., & Berenbrink, M. (2024). Rapid restoration of intracellular pH in erythrocytes protects oxygen transport. Acta Physiologica, 240. https://doi.org/10.1111/apha.14218 Wang, Q., Mei, J., Cao, J., & Xie, J. (2021). Effects of Melissa officinalis L. essential oil in comparison with anaesthetics on gill tissue damage, liver metabolism and immune parameters in sea bass (Lateolabrax maculatus) during simulated live transport. Biology, 11, 11. https://doi.org/10.3390/biology11010011 Wilson, R. W., Wood, C. M., González, R. J., Patrick, M. L., Bergman, H. L., Narahara, A., & Val, A. L. (1999). Ion and acid–base balance in three species of Amazonian fish during gradual acidification of extremely soft water. Physiological and Biochemical Zoology, 72, 277–285. https://doi.org/10.1086/316672 Yousefi, M., Hoseini, S. M., Weber, R. A., da Silva, E., Rajabiesterabadi, H., Arghideh, M., & Delavar, F.H. (2022). Alleviation of transportation-induced stress in Nile tilapia, Oreochromis niloticus, using brackish water. Aquaculture Reports, 27, 101378. https://doi.org/10.1016/j.aqrep.2022.101378 Zhao, Y., Wang, Y., Zhang, C., Zhou, H., Song, L., Tu, H., & Zhao, J. (2022). Variation in pH, HCO₃⁻, carbonic anhydrases, and HCO₃⁻ transporters in Nile tilapia during carbonate alkalinity stress. Hydrobiologia, 850, 2447–2459. https://doi.org/10.1007/s10750-022 05020-6pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece nas coleções:Dissertação (PPGBioEvo)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Dissertação Patrick Jordan Correia da Silva.pdfA dissertação investigou o uso do óleo essencial de Elionurus muticus (OEEM) como anestésico natural para juvenis de tilápia-do-Nilo (Oreochromis niloticus), examinando sua eficácia em diferentes níveis de pH da água (ácido, neutro e alcalino). No primeiro experimento, testaram-se concentrações variadas de OEEM (de 10 a 600 µL L⁻¹), e a concentração de 600 µL L⁻¹ revelou-se a mais eficaz, especialmente em pH neutro, promovendo anestesia e recuperação rápidas. No segundo experimento, peixes anestesiados ou não foram submetidos a trocas abruptas de pH e suas respostas fisiológicas (parâmetros hematológicos e bioquímicos) foram avaliadas. Os resultados mostraram que alterações de pH aumentam o estresse nos peixes, mas o uso de OEEM ajuda a reduzir parte desses efeitos adversos embora seu desempenho dependa fortemente do pH da água. Dessa forma, o estudo demonstra que OEEM é uma alternativa promissora e natural para anestesia em tilápias, mas ressalta a necessidade de considerar o pH da água para garantir eficácia e segurança no manejo.767,12 kBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.