Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/43583
Registro completo de metadados
Campo DCValorIdioma
dc.creatorCarvalho, Mateus da Silva-
dc.date.accessioned2025-12-01T15:54:53Z-
dc.date.available2025-12-01T15:54:53Z-
dc.date.issued2025-10-03-
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/43583-
dc.description.abstractThe search for sustainable alternatives to fossil fuels has stimulated the valorization of agro-industrial waste through conversion into higher-value chemical products. The abundant and inexpensive peel of Ananas comosus (pineapple) is a promising raw material, but its thermal pyrolysis produces bio-oil rich in oxygenated compounds, giving it undesirable properties. This problem can be overcome by using catalytic pyrolysis, which promotes deoxygenation, cracking, and aromatization, increasing selectivity to target compounds and reducing refining steps. In this context, zeolites stand out as promising catalysts due to their acidity, microporosity, and stability, especially zeolite MCM-22, due to its independent pore system. This study investigated the valorization of pineapple peel and its fractions (cellulose, hemicellulose, and lignin), as well as the extractive-free fraction. Catalytic pyrolysis was performed on desilicated and/or nickel-containing MCM-22 zeolites (3% w/w) to evaluate the influence of these modifications on catalytic activity and selectivity. Nickel reduced the Brønsted to Lewis acid ratio, while desilication produced species more resistant to reduction. Catalytic pyrolysis modifies the product profile compared to thermal pyrolysis, mainly increasing the production of aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylenes (BTEX), followed by a decrease in oxygenated compounds. The use of different biomasses also alters the product distribution profile. Extractive removal increases phenol production, decreases oxygenated compound formation, and virtually eliminates polyaromatic compounds, to a catalyst-dependent extent. The cellulose- and hemicellulose-rich fractions formed mainly oxygenated compounds, BTEX, and phenols, while the lignin-rich fraction predominantly formed BTEX and phenols. The highest BTEX production was observed over the acidic form of the MCM-22-based catalyst during pineapple peel pyrolysis. Modifying the catalysts with nickel or desilication altered the product distribution but did not favor BTEX production. Among these compounds, toluene was the predominant product across all catalysts and biomasses.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectPirólise catalíticapt_BR
dc.subjectCasca do abacaxipt_BR
dc.subjectZeólita MCM-22pt_BR
dc.subjectBiomassapt_BR
dc.subjectDessilicaçãopt_BR
dc.subjectBTEXpt_BR
dc.subject.otherCatalytic Pyrolysispt_BR
dc.subject.otherPineapple Peelpt_BR
dc.subject.otherMCM-22 Zeolitept_BR
dc.subject.otherBiomasspt_BR
dc.subject.otherDesilicationpt_BR
dc.subject.otherBTEXpt_BR
dc.titleValorização da ananas comosus na produção de insumos industriais via pirólise catalítica sobre a zeólita MCM-22pt_BR
dc.title.alternativeValorization of ananas comosus in the production of industrial feedstocks via catalytic pyrolysis over MCM-22 Zeolitept_BR
dc.typeTesept_BR
dc.contributor.refereesSchwanke, Anderson Joel-
dc.contributor.refereesVirgens, Cesário Francisco das-
dc.publisher.programPrograma de Pós-Graduação em Engenharia Quimica (PPEQ) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::FISICO-QUIMICA::CINETICA QUIMICA E CATALISEpt_BR
dc.contributor.advisor1Rangel, Maria do Carmo-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-2497-9837pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0023950321397451pt_BR
dc.contributor.advisor-co1Schwanke, Anderson Joel-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0002-1273-9940pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/5184076681745031pt_BR
dc.contributor.advisor-co2Virgens, Cesário Francisco das-
dc.contributor.advisor-co2Latteshttp://lattes.cnpq.br/6089875159011042pt_BR
dc.contributor.referee1Rangel, Maria do Carmo-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-2497-9837pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/0023950321397451pt_BR
dc.contributor.referee2Fraga, Marco André-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-9768-8360pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1876482890634213pt_BR
dc.contributor.referee3Mayer, Francieli Martins-
dc.contributor.referee3IDhttps://orcid.org/0000-0002-5961-4678pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/4239422994526294pt_BR
dc.contributor.referee4Pacheco Filho, José Geraldo de Andrade-
dc.contributor.referee4IDhttps://orcid.org/0000-0002-8812-5021pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/6315186407922891pt_BR
dc.contributor.referee5Pires, Carlos Augusto de Moraes-
dc.contributor.referee5IDhttps://orcid.org/0000-0003-4231-6495pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/7185462874845405pt_BR
dc.creator.IDhttps://orcid.org/0000-0001-9548-6741pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6186776849451228pt_BR
dc.description.resumoA busca por alternativas sustentáveis às fontes fósseis tem estimulado a valorização de resíduos agroindustriais pela conversão em produtos químicos de maior valor agregado. A casca de Ananas comosus (abacaxi), abundante e de baixo custo, é uma matéria-prima promissora, mas sua pirólise térmica gera bio-óleo rico em compostos oxigenados, conferindo-lhe propriedades indesejáveis. Este problema pode ser superado pelo emprego da pirólise catalítica, que promove a desoxigenação, craqueamento e aromatização, aumentando a seletividade a compostos de interesse e reduzindo as etapas de refino. Nesse contexto, as zeólitas se destacam como catalisadores promissores, por sua acidez, microporosidade e estabilidade, especialmente a zeólita MCM-22, devido ao seu sistema de poros independentes. Neste trabalho, investigou-se a valorização da casca de abacaxi e de suas frações (celulose, hemicelulose e lignina), além da fração isenta de extratos. Empregou-se a pirólise catalítica sobre zeólitas MCM-22 dessilicada e/ou contendo níquel (3%m/m), de modo a avaliar a influência dessas modificações na atividade e seletividade catalíticas. Observou-se que o níquel reduziu a razão entre sítios ácidos de Brønsted e Lewis, enquanto a dessilicação originou espécies mais resistentes à redução. A pirólise catalítica modifica o perfil dos produtos em comparação à pirólise térmica, destacando-se o aumento da produção de hidrocarbonetos aromáticos como benzeno, tolueno, etilbenzeno e xilenos (BTEX), acompanhada pela diminuição de compostos oxigenados. O uso de diferentes biomassas também altera o perfil de distribuição dos produtos. A remoção de extratos aumenta a produção de fenóis, diminui a formação de compostos oxigenados e praticamente elimina os compostos poliaromáticos, em uma extensão dependente do catalisador. As frações ricas em celulose e hemicelulose formaram principalmente compostos oxigenados, BTEX e fenóis, enquanto aquela rica em lignina formou predominantemente BTEX e fenóis. A produção mais elevada de BTEX foi observada sobre a forma ácida do catalisador baseado em MCM-22, durante a pirólise da casca de abacaxi. A modificação dos catalisadores com níquel ou dessilicação alterou a distribuição dos produtos, mas não favoreceu a produção de BTEX. Entre esses compostos, o tolueno foi o produto predominante sobre todos os catalisadores e biomassas.pt_BR
dc.publisher.departmentEscola Politécnicapt_BR
dc.relation.referencesABD GHAPAR, N. F.; ABU SAMAH, R.; ABD RAHMAN, S. Pineapple peel waste adsorbent for adsorption of fe(III). Em: IOP Conference Series: Materials Science and Engineering, 1., 2020, [...]. IOP Publishing Ltd, 2020. v. 991 AHMAD, A.; NAQVI, S. R.; RAFIQUE, M.; NASIR, H.; SAROSH, A. Synthesis, characterization and catalytic testing of MCM-22 derived catalysts for n-hexane cracking. Scientific Reports, v. 10, n. 1, 1 dez. 2020. AL-ANI, A.; HASLAM, J. J. C.; MORDVINOVA, N. E.; LEBEDEV, O. I.; VICENTE, A.; FERNANDEZ, C.; ZHOLOBENKO, V. Synthesis of nanostructured catalysts by surfactantlating of large-pore zeolites. Nanoscale Advances, v. 1, n. 5, p. 2029–2039, 2019. ALBUQUERQUE, E. M.; COELHO, T. L.; FRAGA, M. A. Valorization of sugarcane hemicellulose hydrolysate to green chemicals over BEA zeolites. Catalysis Communications, v. 187, 1 fev. 2024. ALBUQUERQUE, E. M.; PAULINO, P. N.; SADEK, R.; VALENTIN, L.; KRAFFT, J. M.; DZWIGAJ, S.; FRAGA, M. A. One-pot aqueous-phase xylose upgrading on Zr-containing BEA zeolites. Applied Catalysis A: General, v. 604, 25 ago. 2020. AL-HAJ IBRAHIM, H. Introductory Chapter: Pyrolysis. Em: Recent Advances in Pyrolysis. [s.l: s.n.] ALI, F.; DAWOOD, A.; HUSSAIN, A.; ALNASIR, M. H.; KHAN, M. A.; BUTT, T. M.; JANJUA, N. K.; HAMID, A. Fueling the future: biomass applications for green and sustainable energyDiscover SustainabilitySpringer Nature, 1 dez. 2024. ANI, F. N. Utilization of bioresources as fuels and energy generation. [s.l.] Elsevier Inc., 2015. 140–155 p. ANSARI, K. B.; ARORA, J. S.; CHEW, J. W.; DAUENHAUER, P. J.; MUSHRIF, S. H. Fast Pyrolysis of Cellulose, Hemicellulose, and Lignin: Effect of Operating Temperature on Bio-oil Yield and Composition and Insights into the Intrinsic Pyrolysis Chemistry. Industrial and Engineering Chemistry Research, v. 58, n. 35, p. 15838–15852, 2019. AQIL, M.; ABDERRAHIM, B.; ABDERRAHMAN, E.; MOHAMED, A.; FATIMA, T.; ABDESSELAM, T.; KRIM, O. Kinetic Thermal Degradation of Cellulose, Polybutylene Succinate and a Green Composite: Comparative Study. World Journal of Environmental Engineering, v. 3, n. 4, p. 95–110, 2015. Disponível em: <http://pubs.sciepub.com/wjee/3/4/1>. ARAUJO, L. M.; SANTOS, M. A.; BRANDÃO, S. T.; LIMA, S. B.; PIRES, C. A. M. Study of the pectin influence on bio-oil produced from sisal residue pyrolysis. Journal of Analytical and Applied Pyrolysis, v. 170, 1 mar. 2023. ARIAS, S.; GONZÁLEZ, J. F.; SOUSA, L. V.; BARBOSA, C. B. M.; SILVA, A. O. S.; FRÉTY, R.; PACHECO, J. G. A. Influence of Ni/Al ratio on the fast pyrolysis of myristic acid when adsorbed on unsupported mixed oxides derived from layered double hydroxides. Catalysis Today, v. 381, p. 181–191, 1 dez. 2021. ASHTER, S. A. Chemistry of cellulosic polymers. Em: Technology and Applications of Polymers Derived from Biomass. [s.l: s.n.]p. 57–74. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14853: Madeira - Determinação do material solúvel em etanol-tolueno e em diclorometano e em acetona. Em: Associação Brasileira de Normas Técnicas. São Paulo: ABNT, 2010. ASTM. E872-82. Standard Test Method for Volatile Matter in the Analysis of Particulate Wood FuelsWest Conshohocken, PA. ASTM International, 15 ago. 2013. Disponível em: <http://www.astm.org/GCi-bin/resolver.GCi?E872-82R13>. AWOYALE, A. A.; LOKHAT, D.; ELOKA-EBOKA, A. C. Experimental characterization of selected Nigerian lignocellulosic biomasses in bioethanol production. International Journal of Ambient Energy, v. 42, n. 12, p. 1343–1351, 2021. BAJPAI, P. Structure and Properties of Cellulose and Nanocellulose. Em: Pulp and Paper Industry. [s.l: s.n.]p. 27–40. BALASUNDRAM, V.; IBRAHIM, N.; KASMANI, R. M.; KAMARUDDIN ABD HAMID, M.; ISHA, R.; HASBULLAH, H.; ALI, R. R. Catalytic pyrolysis of sugarcane bagasse over cerium (rare earth) loaded HZSM-5 zeolite. Energy Procedia, v. 142, p. 801–808, 2017. Disponível em: <https://doi.org/10.1016/j.egypro.2017.12.129>. BARRETTO, L.; MOREIRA, J.; SANTOS, J.; NARAIN, N.; ANNE RIBEIRO DOS SANTOS, R. Characterization and extraction of volatile compounds from pineapple (Ananas comosus L. Merril) processing residues. Food Sci. Technol, Campinas, v. 33, n. 4, p. 638–645, 2013. BLUME, J.; OLIVEIRA, D. E. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE QUÍMICA. 2021. Universidade Federal do Rio Grande do Sul, Porto Alegre, 2021. BOATENG, A. A. Introduction. Pyrolysis of Biomass for Fuels and Chemicals, p. 1–21, 2020. BRASIL. Lei no 12.305, de 02 de agosto de 2010: Institui a Política Nacional de Resíduos Sólidos; altera a Lei no 9.605, de 12 de fevereiro de 1998; e dá outras providências.Brasília. Brasil., 2010. BURNHAM, A. K.; ZHOU, X.; BROADBELT, L. J. Critical review of the global chemical kinetics of cellulose thermal decomposition. Energy and Fuels, v. 29, n. 5, p. 2906–2918, 2015. CAI, J.; XU, D.; DONG, Z.; YU, X.; YANG, Y.; BANKS, S. W.; BRIDGWATER, A. V. Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk. Renewable and Sustainable Energy Reviews, v. 82, n. September, p. 2705–2715, 2018. CALIXTO, G. Q.; MELO, D. M. A.; MELO, M. A. F.; BRAGA, R. M. Analytical pyrolysis (Py–GC/MS) of corn stover, bean pod, sugarcane bagasse, and pineapple crown leaves for biorefining. Brazilian Journal of Chemical Engineering, v. 39, n. 1, p. 137–146, 1 mar. 2022. CAO, Y.; CHEN, S. S.; ZHANG, S.; OK, Y. S.; MATSAGAR, B. M.; WU, K. C. W.; TSANG, D. C. W. Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefineryBioresource Technology2019. CARVALHO, M. da S. ESTUDO DA INFLUÊNCIA DO TRATAMENTO ALCALINO NA CASCA DO FRUTO DA Pachira aquatica aubl.PARA APLICAÇÃO COMO UM MATERIAL ADSORTIVO NA REMOÇÃO DE ÍONS CÁDMIO II EM SOLUÇÕES AQUOSAS. 2018. Universidade do Estado da Bahia, Salvador, 2018. CARVALHO, M.; OLIVEIRA, A. P.; MAYER, F.; VIRGENS, C.; RANGEL, M. do C. Thermokinetic and Thermodynamic Parameters for Catalytic Pyrolysis of Medium Density Fiber over Ni/Beta Zeolite. Catalysis Research, v. 02, n. 04, p. 1–20, 2 nov. 2022. Disponível em: <https://www.lidsen.com/journals/cr/cr-02-04-038>. CARVALHO, M. S.; VIRGENS, C. F. Effect of alkaline treatment on the fruit peel of Pachira aquatic Aubl.: Physico-chemical evaluation and characterization. Microchemical Journal, v. 143, 2018. CAVALCANTI, R. K. B. de C. GERAÇÃO DE POROSIDADE SECUNDÁRIA EM MCM-22 ATRAVÉS DA SÍNTESE DIRETA COM ADIÇÃO DE POLÍMEROS CATIÔNICOS. 2021. Universidade Federal de Alagoas, Maceió, 2021. ČEPELIOꞱULLAR, Ö.; PÜTÜN, A. E. Products characterization study of a slow pyrolysis of biomass-plastic mixtures in a fixed-bed reactor. Journal of Analytical and Applied Pyrolysis, v. 110, n. 1, p. 363–374, 2014. CHANG, C. D.; MITKO, D. M. US Patent No. 5173281. 1992. CHAUDHARI, A. A.; SHARMA, A. M.; RASTOGI, L.; DEWANGAN, B. P.; SHARMA, R.; SINGH, D.; SAH, R. K.; DAS, S.; BHATTACHARJEE, S.; MELLEROWICZ, E. J.; PAWAR, P. A. M. Modifying lignin composition and xylan O-acetylation induces changes in cell wall composition, extractability, and digestibility. Biotechnology for Biofuels and Bioproducts, v. 17, n. 1, 1 dez. 2024. CHEN, B.; YANG, S.; SHANG, L.; WU, Y.; WANG, Y.; TIAN, J.; HUANG, J.; ZHANG, X.; LI, Q.; ZHAN, G. Catalytic pyrolysis of biomass to aromatics over bifunctional Ni/ZSM-5 catalysts assembled on rice husk-derived silica platform. Chem Catalysis, v. 4, n. 4, 18 abr. 2024. CHEN, X.; CHE, Q.; LI, S.; LIU, Z.; YANG, H.; CHEN, Y.; WANG, X.; SHAO, J.; CHEN, H. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield. Fuel Processing Technology, v. 196, n. August, p. 106180, 2019. Disponível em: <https://doi.org/10.1016/j.fuproc.2019.106180>. CHENG, H.; FENG, Q.; WANG, D.; WANG, P.; LIU, H.; ZHAN, H.; LIU, Y. U.; XIE, Y. SEPARATION, PURIFICATION AND CHARACTERIZATION OF CORN STOVER HEMICELLULOSESCELLULOSE CHEMISTRY AND TECHNOLOGY Cellulose Chem. Technol. [s.l: s.n.]. CHENG, Y. T.; HUBER, G. W. Chemistry of furan conversion into aromatics and olefins over HZSM-5: A model biomass conversion reaction. ACS Catalysis, v. 1, n. 6, p. 611–628, 3 jun. 2011. COLLARD, F. X.; BLIN, J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable and Sustainable Energy Reviews, v. 38, p. 594–608, 2014. Disponível em: <http://dx.doi.org/10.1016/j.rser.2014.06.013>. CORMA, A.; CORELL, C.; PÉREZ-PARIENTE, J. Synthesis and characterization of the MCM-22 zeolite. Zeolites, v. 15, p. 2–8, 1995. CORMA, A.; FORNÉS, V. Delaminated zeolites as active catalysts for processing large molecules. Studies in Surface Science and Catalysis, v. 135, p. 73–82, 2001. CORMA, A.; FORNÉS, V.; FORNÉS, F.; MARTÍNEZ-TRIGUERO, J.; PERGHER, S. B. Delaminated Zeolites: Combining the Benefits of Zeolites and Mesoporous Materials for Catalytic UsesJournal of Catalysis. [s.l: s.n.]. Disponível em: <http://www.idealibrary.comon>. CORREIA, L. A. da S. Caracterização energética dos frutos e sementes da Pachira aquatica Aubl. para aplicação em processos de conversão termoquímica. 2019. Universidade Federal do Rio Grande do Norte, 2019. CZERNIK, S.; BRIDGWATER, A. V. Overview of applications of biomass fast pyrolysis oil. Energy and Fuels, v. 18, n. 2, p. 590–598, 2004. DA SILVA, J. C. G.; ARIAS, S.; PACHECO, J. G. A.; RAYA, F. T.; PEREIRA, G. A. G.; MOCKAITIS, G. Exploring the pyrolysis of Agave species as a novel bioenergy source: Thermo-kinetics, modeling, and product composition insights. Journal of Analytical and Applied Pyrolysis, v. 188, 1 jun. 2025. DABROS, T. M. H.; ZINGLER, M.; HØJ, M.; ARENDT, P.; GRUNWALDT, J.; GABRIELSEN, J.; MORTENSEN, P. M.; DEGN, A. Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation , and catalytic fast hydropyrolysis. v. 68, p. 268–309, 2018. DAI, G.; WANG, S.; ZOU, Q.; HUANG, S. Improvement of aromatics production from catalytic pyrolysis of cellulose over metal-modified hierarchical HZSM-5. Fuel Processing Technology, v. 179, n. June, p. 319–323, 2018a. Disponível em: <https://doi.org/10.1016/j.fuproc.2018.07.023>. DAI, H.; OU, S.; HUANG, Y.; HUANG, H. Utilization of pineapple peel for production of nanocellulose and film application. Cellulose, v. 25, n. 3, p. 1743–1756, 1 mar. 2018b. DAI, L.; WANG, Y.; LIU, Y.; RUAN, R.; DUAN, D.; ZHAO, Y.; YU, Z.; JIANG, L. Catalytic fast pyrolysis of torrefied corn cob to aromatic hydrocarbons over Ni-modified hierarchical ZSM-5 catalyst. Bioresource Technology, v. 272, n. September 2018, p. 407–414, 2019. DAVID, E.; KOPAC, J. Activated carbons derived from residual biomass pyrolysis and their CO2adsorption capacity. Journal of Analytical and Applied Pyrolysis, v. 110, n. 1, p. 322–332, 2014. DE ASSUMPÇÃO, S. M. N.; PONTES, L. A. M.; DE CARVALHO, L. S.; CAMPOS, L. M. A.; DE ANDRADE, J. C. F.; DA SILVA, E. G. Pre-treatment combined H2SO4/H2O2/NaOH to obtain the lignocellulosic fractions of sugarcane bagasse. Revista Virtual de Quimica, v. 8, n. 3, p. 803–822, 2016. DE CARVALHO, N. R.; DE BARROS, J. L.; DA SILVA, D. A.; NAKASHIMA, G. T.; YAMAJI, F. M. Physical and chemical characterization of biomass used as solid fuel in a boiler. Quimica Nova, v. 44, n. 1, p. 35–40, 2021. DELITALA, C.; ALBA, M. D.; BECERRO, A. I.; DELPIANO, D.; MELONI, D.; MUSU, E.; FERINO, I. Synthesis of MCM-22 zeolites of different Si/Al ratio and their structural, morphological and textural characterisation. Microporous and Mesoporous Materials, v. 118, n. 1–3, p. 1–10, 1 fev. 2009. DEMIRBAS, A. Combustion characteristics of different biomass fuelsProgress in Energy and Combustion ScienceElsevier Ltd, 2004. DEMIRBAS, A. Pyrolysis of biomass for fuels and chemicals. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, v. 31, n. 12, p. 1028–1037, jan. 2009. DICKERSON, T.; SORIA, J. Catalytic fast pyrolysis: A review. Energies, v. 6, n. 1, p. 514–538, 2013. DUONG, L. T.; PHAN, A. N. Intensification of hydrodeoxygenation of liquid derived from pyrolysis: Guaiacol as model compound. Chemical Engineering Journal, v. 402, n. March, p. 125793, 2020. EMBRAPA. Abacaxi. Disponível em: <https://www.embrapa.br/en/mandioca-e-fruticultura/cultivos/abacaxi>. Acesso em: 6 maio. 2024. ENERGY AGENCY, I. World Energy Outlook 2022 Sumário executivo. [s.l: s.n.]. Disponível em: <www.iea.org/weo>. ESCOLA, J. M.; AGUADO, J.; SERRANO, D. P.; GARCÍA, A.; PERAL, A.; BRIONES, L.; CALVO, R.; FERNANDEZ, E. Catalytic hydroreforming of the polyethylene thermal cracking oil over Ni supported hierarchical zeolites and mesostructured aluminosilicates. Applied Catalysis B: Environmental, v. 106, n. 3–4, p. 405–415, 2011. Disponível em: <http://dx.doi.org/10.1016/j.apcatb.2011.05.048>. FAHMI, R.; BRIDGWATER, A. V.; DONNISON, I.; YATES, N.; JONES, J. M. The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability. Fuel, v. 87, n. 7, p. 1230–1240, 2008. FEDOROV, A. V.; KUKUSHKIN, R. G.; YELETSKY, P. M.; BULAVCHENKO, O. A.; CHESАLОV, Y. A.; YAKOVLEV, V. A. Temperature-programmed reduction of model CuO, NiO and mixed CuO–NiO catalysts with hydrogen. Journal of Alloys and Compounds, v. 844, 5 dez. 2020. FERMOSO, J.; PIZARRO, P.; CORONADO, J. M.; SERRANO, D. P. Advanced biofuels production by upgrading of pyrolysis bio-oil. Wiley Interdisciplinary Reviews: Energy and Environment, v. 6, n. 4, p. 1–18, 2017. FRENCH, R.; CZERNIK, S. Catalytic pyrolysis of biomass for biofuels production. Fuel Processing Technology, v. 91, n. 1, p. 25–32, 2010. GARCIA, D. P.; CARASCHI, J. C.; VENTORIM, G. Decomposição Térmica De Pellets De Madeira Por Tga. Holos, v. 1, p. 327, 2016. GARCIA, L. Influência dos Parâmetros de Síntese nas Propriedades da Zeólita MCM-22. 2008. Pontifícia Universidade Católica do Rio de Janeiro, 2008. GHOLIZADEH, M.; HU, X.; LIU, Q. A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses. Renewable and Sustainable Energy Reviews, v. 114, n. July, p. 109313, 2019. GOMES, J. F.; SACHSE, A.; GREGÓRIO, J. R.; BERNARDO-GUSMÃO, K.; SCHWANKE, A. J. Sustainable Synthesis of Hierarchical MWW Zeolites Using Silica from an Agro-industrial Waste, Rice Husk Ash. Crystal Growth and Design, v. 20, n. 1, p. 178–188, 2020. GÓMEZ-MONEDERO, B.; RUIZ, M. P.; BIMBELA, F.; FARIA, J. Selective hydrogenolysis of Α–O–4, Β–O–4, 4–O–5 C–O bonds of lignin-model compounds and lignin-containing stillage derived from cellulosic bioethanol processing. Applied Catalysis A: General, v. 541, p. 60–76, 2017. Disponível em: <http://dx.doi.org/10.1016/j.apcata.2017.04.022>. GUEDES, R. E.; LUNA, A. S.; TORRES, A. R. Operating parameters for bio-oil production in biomass pyrolysis: A review. Journal of Analytical and Applied Pyrolysis, v. 129, p. 134–149, 2018. Disponível em: <http://dx.doi.org/10.1016/j.jaap.2017.11.019>. GUPTA, S.; MONDAL, P.; BORUGADDA, V. B.; DALAI, A. K. Advances in upgradation of pyrolysis bio-oil and biochar towards improvement in bio-refinery economics: A comprehensive reviewEnvironmental Technology and InnovationElsevier B.V., 2021. HARTMANN, M.; THOMMES, M.; SCHWIEGER, W. Hierarchically-Ordered Zeolites: A Critical AssessmentAdvanced Materials InterfacesWiley-VCH Verlag, 1 fev. 2021. HERNANDO, H.; FERMOSO, J.; OCHOA-HERNÁNDEZ, C.; OPANASENKO, M.; PIZARRO, P.; CORONADO, J. M.; ČEJKA, J.; SERRANO, D. P. Performance of MCM-22 zeolite for the catalytic fast-pyrolysis of acid-washed wheat straw. Catalysis Today, v. 304, p. 30–38, 15 abr. 2018. HERNANDO, H.; GÓMEZ-POZUELO, G.; BOTAS, J. A.; SERRANO, D. P. Evaluating fractional pyrolysis for bio-oil speciation into holocellulose and lignin derived compounds. Journal of Analytical and Applied Pyrolysis, v. 154, 1 mar. 2021. HERNANDO, H.; JIMÉNEZ-SÁNCHEZ, S.; FERMOSO, J.; PIZARRO, P.; CORONADO, J. M.; SERRANO, D. P. Assessing biomass catalytic pyrolysis in terms of deoxygenation pathways and energy yields for the efficient production of advanced biofuels. Catalysis Science and Technology, v. 6, n. 8, p. 2829–2843, 2016. HERNANDO, H.; MORENO, I.; FERMOSO, J.; OCHOA-HERNÁNDEZ, C.; PIZARRO, P.; CORONADO, J. M.; ČEJKA, J.; SERRANO, D. P. Biomass catalytic fast pyrolysis over hierarchical ZSM-5 and Beta zeolites modified with Mg and Zn oxides. Biomass Conversion and Biorefinery, v. 7, n. 3, p. 289–304, 2017. HIKAL, W. M.; MAHMOUD, A. A.; SAID-AL AHL, H. A. H.; BRATOVCIC, A.; TKACHENKO, K. G.; KAČÁNIOVÁ, M.; RODRIGUEZ, R. M. Pineapple (Ananas comosus L. Merr.), Waste Streams, Characterisation and Valorisation: An Overview. Open Journal of Ecology, v. 11, n. 09, p. 610–634, 2021. HOANG, A. T.; ONG, H. C.; FATTAH, I. M. R.; CHONG, C. T.; CHENG, C. K.; SAKTHIVEL, R.; OK, Y. S. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology, v. 223, n. June, 2021. HU, B.; LU, Q.; ZHANG, Z. X.; WU, Y. T.; LI, K.; DONG, C. Q.; YANG, Y. P. Mechanism insight into the fast pyrolysis of xylose, xylobiose and xylan by combined theoretical and experimental approaches. Combustion and Flame, v. 206, p. 177–188, 1 ago. 2019. HU, M.; CHEN, Z.; WANG, S.; GUO, D.; MA, C.; ZHOU, Y.; CHEN, J.; LAGHARI, M.; FAZAL, S.; XIAO, B.; ZHANG, B.; MA, S. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser-Suzuki deconvolution, and iso-conversional method. Energy Conversion and Management, v. 118, p. 1–11, 2016. HUANG, M.; XU, J.; MA, Z.; YANG, Y.; ZHOU, B.; WU, C.; YE, J.; ZHAO, C.; LIU, X.; CHEN, D.; ZHANG, W. Bio-BTX production from the shape selective catalytic fast pyrolysis of lignin using different zeolite catalysts: Relevance between the chemical structure and the yield of bio-BTX. Fuel Processing Technology, v. 216, n. February, p. 106792, 2021. IBGE. Produção de Abacaxi. Disponível em: <https://www.ibge.gov.br/explica/producao-agropecuaria/abacaxi/br>. Acesso em: 6 maio. 2024. INDIRA, V.; ABHITHA, K. A review on recent developments in Zeolite A synthesis for improved carbon dioxide capture: Implications for the water-energy nexus. Energy Nexus, p. 0–34, 2022. JAFFAR, M. M.; NAHIL, M. A.; WILLIAMS, P. T. Pyrolysis-catalytic hydrogenation of cellulose-hemicellulose-lignin and biomass agricultural wastes for synthetic natural gas production. Journal of Analytical and Applied Pyrolysis, v. 145, n. September 2019, 2020. JEENPADIPHAT, S.; KASIBAN, C.; TUNGASMITA, D. N. Corncob to value-added chemical transformation by metal/beta zeolite and metal/mesoporous SBA-15 catalytic pyrolysis. Journal of Chemical Technology and Biotechnology, v. 91, n. 9, p. 2519–2528, 2016. JI, Y.; YANG, H.; YAN, W. Strategies to enhance the catalytic performance of ZSM-5 zeolite in hydrocarbon cracking: A review. Catalysts, v. 7, n. 12, 2017. JIA, X.; KHAN, W.; WU, Z.; CHOI, J.; YIP, A. C. K. Modern synthesis strategies for hierarchical zeolites: Bottom-up versus top-down strategiesAdvanced Powder TechnologyElsevier B.V., 1 mar. 2019. JIANG, H.; YANG, M.; XIAO, J.; YANG, H.; CHEN, Y.; ZHANG, S.; CHEN, H. Catalytic fast pyrolysis of cellulose over different metal-modified ZSM-5 zeolites for light olefins. Journal of Analytical and Applied Pyrolysis, v. 166, n. July, p. 105628, 2022. JIN, T.; WANG, H.; PENG, J.; WU, Y.; HUANG, Z.; TIAN, X.; DING, M. Catalytic pyrolysis of lignin with metal-modified HZSM-5 as catalysts for monocyclic aromatic hydrocarbons production. Fuel Processing Technology, v. 230, n. February, 2022. KAN, T.; STREZOV, V.; EVANS, T. J. Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renewable and Sustainable Energy Reviews, v. 57, p. 1126–1140, 2016. Disponível em: <http://dx.doi.org/10.1016/j.rser.2015.12.185>. KANTARELIS, E.; JAVED, R.; STEFANIDIS, S.; PSARRAS, A.; ILIOPOULOU, E.; LAPPAS, A. Engineering the Catalytic Properties of HZSM5 by Cobalt Modification and Post-synthetic Hierarchical Porosity Development. Topics in Catalysis, v. 62, n. 7–11, p. 773–785, 15 ago. 2019. KEY, R. E.; BOZELL, J. J. Progress toward Lignin Valorization via Selective Catalytic Technologies and the Tailoring of Biosynthetic Pathways. ACS Sustainable Chemistry and Engineering, v. 4, n. 10, p. 5123–5135, 2016. KIM, J. S.; LEE, Y. Y.; KIM, T. H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology, v. 199, p. 42–48, 2016. KIM, Y. M.; JEONG, J.; RYU, S.; LEE, H. W.; JUNG, J. S.; SIDDIQUI, M. Z.; JUNG, S. C.; JEON, J. K.; JAE, J.; PARK, Y. K. Catalytic pyrolysis of wood polymer composites over hierarchical mesoporous zeolites. Energy Conversion and Management, v. 195, n. May, p. 727–737, 2019. KNAZDTGELIT, H.; RATNASAMY, P. Catalytic Aluminas: Surface Models and Characterization of Surface Sites. Catalysis Reviews, v. 17, n. 1, p. 31–70, 1 jan. 1978. KUMAR, R.; STREZOV, V.; KAN, T.; WELDEKIDAN, H.; HE, J.; JAHAN, S. Investigating the Effect of Mono- And Bimetallic/Zeolite Catalysts on Hydrocarbon Production during Bio-oil Upgrading from Ex Situ Pyrolysis of Biomass. Energy and Fuels, v. 34, n. 1, p. 389–400, 2020a. KUMAR, R.; STREZOV, V.; LOVELL, E.; KAN, T.; WELDEKIDAN, H.; HE, J.; DASTJERDI, B.; SCOTT, J. Bio-oil upgrading with catalytic pyrolysis of biomass using Copper/zeolite-Nickel/zeolite and Copper-Nickel/zeolite catalysts. Bioresource Technology, v. 279, n. December 2018, p. 404–409, 2019a. KUMAR, R.; STREZOV, V.; LOVELL, E.; KAN, T.; WELDEKIDAN, H.; HE, J.; JAHAN, S.; DASTJERDI, B.; SCOTT, J. Enhanced bio-oil deoxygenation activity by Cu / zeolite and Ni / zeolite catalysts in combined in-situ and ex-situ biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, v. 140, n. February, p. 148–160, 2019b. KUMAR, R.; STREZOV, V.; WELDEKIDAN, H.; HE, J.; SINGH, S.; KAN, T.; DASTJERDI, B. Lignocellulose biomass pyrolysis for bio-oil production: A review of biomass pre-treatment methods for production of drop-in fuels. Renewable and Sustainable Energy Reviews, v. 123, n. November 2019, 2020b. KUZHIYIL, N.; DALLUGE, D.; BAI, X.; KIM, K. H.; BROWN, R. C. Pyrolytic sugars from cellulosic biomass. ChemSusChem, v. 5, n. 11, p. 2228–2236, 2012. KWEON, S.; KIM, Y. W.; BAE, J.; KIM, E. J.; PARK, M. B.; MIN, H. K. Nickel on two-dimensional ITQ-2 zeolite as a highly active catalyst for carbon dioxide reforming of methane. Journal of CO2 Utilization, v. 58, 1 abr. 2022a. KWEON, S.; KIM, Y. W.; JO, D.; SHIN, C. H.; PARK, M. B.; MIN, H. K. Defect-induced formation of nickel silicates on two-dimensional MWW-type catalysts promoting catalytic activity for dry reforming of methane. Microporous and Mesoporous Materials, v. 332, 1 fev. 2022b. LANGE, J.-P. Lignocellulose conversion: an introduction to chemistry, process and economics. Biofuels, Bioproducts and Biorefining, v. 1, p. 39–48, 2007. LEE, H.; KIM, H.; YU, M. J.; KO, C. H.; JEON, J. K.; JAE, J.; PARK, S. H.; JUNG, S. C.; PARK, Y. K. Catalytic Hydrodeoxygenation of Bio-oil Model Compounds over Pt/HY Catalyst. Scientific Reports, v. 6, 30 jun. 2016. LENG, E.; GUO, Y.; CHEN, J.; LIU, S.; E, J.; XUE, Y. A comprehensive review on lignin pyrolysis: Mechanism, modeling and the effects of inherent metals in biomass. Fuel, v. 309, n. June 2021, 2022. LEONOWICZ, M. E.; LAWTON, J. A.; LAWTON, S. L.; RUBIN, M. K. MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, v. 16(1), p. 1910–1913, 1994. LI, C.; CHEN, Y.-W. Temperature-programmed-reduction studies of nickel oxide/alumina catalysts: effects of the preparation methodThermochimica Acta. [s.l: s.n.]. LI, G.; HOU, Y.; WU, A. Fourth Industrial Revolution: technological drivers, impacts and coping methods. Chinese Geographical Science, v. 27, n. 4, p. 626–637, 2017. LI, P.; LI, D.; YANG, H.; WANG, X.; CHEN, H. Effects of Fe-, Zr-, and Co-Modified Zeolites and Pretreatments on Catalytic Upgrading of Biomass Fast Pyrolysis Vapors. Energy and Fuels, v. 30, n. 4, p. 3004–3013, 21 abr. 2016. LI, X.; SU, L.; WANG, Y.; YU, Y.; WANG, C.; LI, X.; WANG, Z. Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons. Frontiers of Environmental Science and Engineering in China, v. 6, n. 3, p. 295–303, 2012. LIMA, W. S.; SILVA, F. A. de S.; QUINTELA, P. H. L.; RODRIGUES, M. G. F. Síntese do percursor (P)MCM-22 e modificações térmica, deslaminação e acidificação. Research, Society and Development, v. 10, n. 14, p. e599101422539, 14 nov. 2021. LIU, C.; WANG, H.; KARIM, A. M.; SUN, J.; WANG, Y. Catalytic fast pyrolysis of lignocellulosic biomass. Chemical Society Reviews, v. 43, n. 22, p. 7594–7623, 2014. LIU, J.; HOU, Q.; JU, M.; JI, P.; SUN, Q.; LI, W. Biomass pyrolysis technology by catalytic fast pyrolysis, catalytic co-pyrolysis and microwave-assisted pyrolysis: A reviewCatalysts2020. LIU, S. N.; CAO, J. P.; ZHAO, X. Y.; WANG, J. X.; REN, X. Y.; YUAN, Z. S.; GUO, Z. X.; SHEN, W. Z.; BAI, J.; WEI, X. Y. Effect of zeolite structure on light aromatics formation during upgrading of cellulose fast pyrolysis vapor. Journal of the Energy Institute, v. 92, n. 5, p. 1567–1576, 2019. LOY, A. C. M.; YUSUP, S.; LAM, M. K.; CHIN, B. L. F.; SHAHBAZ, M.; YAMAMOTO, A.; ACDA, M. N. The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production. Energy Conversion and Management, v. 165, p. 541–554, 1 jun. 2018. LUCIA, A.; MARQUES, S.; LUIZ, J.; MONTEIRO, F.; PASTORE, H. O. Static crystallization of zeolites MCM-22 and MCM-49Microporous and Mesoporous Materials. [s.l: s.n.]. Disponível em: <www.elsevier.nl/locate/micmat>. LV, P.; YAN, L.; LIU, Y.; WANG, M.; BAO, W.; LI, F. Catalytic conversion of coal pyrolysis vapors to light aromatics over hierarchical Y-type zeolites. Journal of the Energy Institute, v. 93, n. 4, p. 1354–1363, 2020. MALA, T.; PIAYURA, S.; ITTHIVADHANAPONG, P. Characterization of dried pineapple (Ananas comosus L.) peel powder and its application as a novel functional food ingredient in cracker product. Future Foods, v. 9, 1 jun. 2024. MAMUDU, U.; KABYSHEV, A.; BEKMYRZA, K.; KUTERBEKOV, K. A.; BARATOVA, A.; OMEIZA, L. A.; LIM, R. C. Extraction, Preparation and Characterization of Nanocrystalline Cellulose from Lignocellulosic Simpor Leaf Residue. Molecules, v. 30, n. 7, 1 abr. 2025. MARDIANA, S.; AZHARI, N. J.; ILMI, T.; KADJA, G. T. M. Hierarchical zeolite for biomass conversion to biofuel: A review. Fuel, v. 309, n. September 2021, p. 122119, 2022. Disponível em: <https://doi.org/10.1016/j.fuel.2021.122119>. MATKALA, B.; BOGGALA, S.; BASAVARAJU, S.; SARMA AKELLA, V. S.; AYTAM, H. P. Influence of sulphonation on Al-MCM-41 catalyst for effective bio-glycerol conversion to Solketal. Microporous and Mesoporous Materials, v. 363, 1 jan. 2024. MAYER, F. M.; CARVALHO, M.; MALLMANN, A. R.; DE OLIVEIRA, A. P. S.; RUIZ, D.; BOEIRA, A. C. S.; LIMA, D. dos S.; RANGEL, M. do C. Catalytic pyrolysis of MDF wastes over beta zeolite-supported platinum. Catalysis Today, v. 449, 1 abr. 2025. MAYER, F. M.; DE OLIVEIRA, A. P. S.; DE OLIVEIRA JUNIOR, D. L.; AGUSTINI, B. C.; DA SILVA, G. A.; TANABE, E. H.; RUIZ, D.; RANGEL, M. do C.; ZINI, C. A. Influence of Nickel Modified Beta Zeolite in the Production of BTEX During Analytical Pyrolysis of Medium-Density Fiberboard (MDF). Waste and Biomass Valorization, v. 13, n. 3, p. 1717–1729, 2022. Disponível em: <https://doi.org/10.1007/s12649-021-01593-w>. MAYER, F. M.; OLIVEIRA, A. P. S. de; JÚNIOR, D. L. de O.; SANTOS, A. dos S.; TANABE, E.; ZINI, C. A.; RANGEL, M. do C. Producing High Added Value Chemicals by Analytical Pyrolysis of Cassava Peal over Beta Zeolite-Supported Nickel. Journal of the Brazilian Chemical Society, 2024. MAYER, F. M.; TEIXEIRA, C. M.; ANDRADE PACHECO, J. G.; TELLES DE SOUZA, C.; DE VILA BAUER, D.; BASTOS CARAMÃO, E.; DA SILVEIRA ESPÍNDOLA, J.; TRIERWEILER, J. O.; PEREZ LOPEZ, O. W.; ALCARAZ ZINI, C. Characterization of analytical fast pyrolysis vapors of medium-density fiberboard (mdf) using metal-modified HZSM-5. Journal of Analytical and Applied Pyrolysis, p. 87–95, 1 nov. 2018. MEHRAJ, M.; DAS, S.; FEROZ, F.; WAHEED WANI, A.; DAR, S. Q.; KUMAR, S.; WANI, A. K.; FARID, A. Nutritional Composition and Therapeutic Potential of Pineapple Peel – A Comprehensive ReviewChemistry and BiodiversityJohn Wiley and Sons Inc, 1 maio 2024. MGBEMERE, H. E.; EKPA, I. C.; LAWAL, G. I. Zeolite Synthesis, Characterisation and Application Areas: A Review. International research journal of environmental sciences, v. 6, n. 10, p. 45–59, 2017. MOHAN, D.; PITTMAN, C. U.; STEELE, P. H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy and Fuels, v. 20, n. 3, p. 848–889, 2006. MOURA, L. G. M.; VASCONCELOS, A. F. F. Prospecção Cientíica e Tecnológica sobre Abacaxi ( Scientiic and Technological Prospecting about Pineapple (Ananas Comosus). [s.l: s.n.]. MUTHUSAMY, A. R.; THIAGAMANI, S. M. K.; KRISHNASAMY, S.; MUTHUKUMAR, C.; RANGAPPA, S. M.; SIENGCHIN, S. Lignocellulosic microfibrils from Phaseolus lunatus and Vigna radiata biomass: characterization and properties. Biomass Conversion and Biorefinery, 2022. NASCIMENTO, J. S. Estudo cinético da produção de biocarvão por pirólise da Pachira aquatica aubl. 2018. UNEB, Salvador, 2018. NISHU; LI, Y.; LIU, R. Catalytic pyrolysis of lignin over ZSM-5, alkali, and metal modified ZSM-5 at different temperatures to produce hydrocarbons. Journal of the Energy Institute, v. 101, n. September 2021, p. 111–121, 2022. Disponível em: <https://doi.org/10.1016/j.joei.2022.01.001>. OLIVEIRA, D. R. de. ESTUDO DA DESPOLIMERIZAÇÃO DA LIGNINA OBTIDA DA FIBRA PRENSADA DO MESOCARPO DO DENDÊ ATRAVÉS DA TÉCNICA DE IRRADIAÇÃO POR MICRO-ONDAS. 2016. Universidade Federal do Ceará, Fortaleza, 2016. OSEI, G. K.; NZIHOU, A.; YAYA, A.; MINH, D. P.; ONWONA-AGYEMAN, B. Catalytic Pyrolysis of Waste Engine Oil over Y Zeolite Synthesized from Natural Clay. Waste and Biomass Valorization, v. 12, n. 7, p. 4157–4170, 2021. OSTROUMOVA, V. A.; MAKSIMOV, A. L. MWW-Type Zeolites: MCM-22, MCM-36, MCM-49, and MCM-56 (A Review). Petroleum Chemistry, v. 59, n. 8, p. 788–801, 2019. PANG, H.; YANG, G.; LI, L.; YU, J. Toward the production of renewable diesel over robust Ni nanoclusters highly dispersed on a two-dimensional zeolite. NPG Asia Materials, v. 15, n. 1, 1 dez. 2023. PAYSEPAR, H.; RAO, K. T. V.; YUAN, Z.; SHUI, H.; XU, C. (Charles). Improving activity of ZSM-5 zeolite catalyst for the production of monomeric aromatics/phenolics from hydrolysis lignin via catalytic fast pyrolysis. Applied Catalysis A: General, v. 563, n. June, p. 154–162, 2018. PEREIRA, P.; ARANTES, V.; PEREIRA, B.; ORNAGHI, H. L.; DE OLIVEIRA, D. M.; SANTAGNELI, S. H.; CIOFFI, M. O. H. Effect of the chemical treatment sequence on pineapple peel fiber: chemical composition and thermal degradation behavior. Cellulose, v. 29, n. 16, p. 8587–8598, 1 nov. 2022. PEREIRA, R. G.; VELOSO, C. M.; DA SILVA, N. M.; DE SOUSA, L. F.; BONOMO, R. C. F.; DE SOUZA, A. O.; DA GUARDA SOUZA, M. O.; DA COSTA ILHÉU FONTAN, R. Preparation of activated carbons from cocoa shells and siriguela seeds using H3PO4 and ZnCL2 as activating agents for BSA and α-lactalbumin adsorption. Fuel Processing Technology, v. 126, p. 476–486, 2014. PEREZ, R. F.; SOARES, O. S. G. P.; DE FARIAS, A. M. D.; R. PEREIRA, M. F.; FRAGA, M. A. Conversion of hemicellulose-derived pentoses over noble metal supported on 1D multiwalled carbon nanotubes. Applied Catalysis B: Environmental, v. 232, p. 101–107, 15 set. 2018. PHOSANAM, A.; MOREIRA, J.; ADHIKARI, B.; ADHIKARI, A.; LOSSO, J. N. Stabilization of ginger essential oil Pickering emulsions by pineapple cellulose nanocrystals. Current Research in Food Science, v. 7, 1 jan. 2023. POLETTO, M.; ORNAGHI JÚNIOR, H. L.; ZATTERA, A. J. Native cellulose: Structure, characterization and thermal properties. Materials, v. 7, n. 9, p. 6105–6119, 2014. POVEDA-GIRALDO, J. A.; SOLARTE-TORO, J. C.; CARDONA ALZATE, C. A. The potential use of lignin as a platform product in biorefineries: A review. Renewable and Sustainable Energy Reviews, v. 138, n. October 2019, p. 110688, 2021. PURICELLI, S.; CARDELLINI, G.; CASADEI, S.; FAEDO, D.; VAN DEN OEVER, A. E. M.; GROSSO, M. A review on biofuels for light-duty vehicles in Europe. Renewable and Sustainable Energy Reviews, v. 137, n. September 2020, p. 110398, 2021. QIU, B.; TAO, X.; WANG, J.; LIU, Y.; LI, S.; CHU, H. Research progress in the preparation of high-quality liquid fuels and chemicals by catalytic pyrolysis of biomass: A reviewEnergy Conversion and ManagementElsevier Ltd, 1 jun. 2022. QU, B.; ZHANG, Y. S.; WANG, T.; CHOI, H. S.; ZHANG, Y.; FU, Z.; LI, A.; JI, G. Pyrolysis-catalysis of waste tire to enhance the aromatics selectivity via metal-modified ZSM-5 catalysts. Process Safety and Environmental Protection, v. 190, p. 138–148, 1 out. 2024. RANGEL, M. C.; CARVALHO, M. S.; MARTINS MAYER, F.; SABOIA, G.; MOTTA DE ANDRADE, A.; STELZER DE OLIVEIRA, A. P.; LEAL, P. Improving Fast Pyrolysis by Tailoring High-Quality Products Using Catalysts. Em: Advances in Chemistry Research. [s.l: s.n.]p. 119–168. RANGEL, M. do C.; MAYER, F. M.; CARVALHO, M. da S.; SABOIA, G.; DE ANDRADE, A. M. Selecting Catalysts for Pyrolysis of Lignocellulosic Biomass. Biomass, v. 3, n. 1, p. 31–63, 10 jan. 2023. RAVISHANKAR, R.; BHATTACHARYA, D.; JACOB, N. E.; SIVASANKER, S. Characterization and catalytic properties of zeolite MCM-22. Microporous Materials, v. 4, p. 83–93, 1995. RIVAS, B. L.; ESPINOSA, C.; SÁNCHEZ, J. Application of the liquid-phase polymer-based retention technique to the sorption of molybdenum(VI) and vanadium(V). Polymer Bulletin, v. 76, n. 2, p. 539–552, 6 fev. 2019. RODA, A.; LAMBRI, M. Food uses of pineapple waste and by-products: a reviewInternational Journal of Food Science and TechnologyBlackwell Publishing Ltd, 1 abr. 2019. RODRIGUES SOUZA, D. DE; MABRYSA TORRES GADELHA, A.; ALEXSANDRA SOUSA RIOS, M. DE; TÓFANO CAMPOS LEITE TONELI, J. DE; COLATO ANTONIO, G. COMPARATIVO DA ANALISE ELEMENTAR DE CASCA DE COCO BABAÇU E CASCA DE CASTANHA DE CAJU. Em: Congresso Técnico Científico da Engenharia e da Agronomia CONTECC, 2019, Palmas/TO. [...]. Palmas/TO: 2019. ROSLI, N. A.; AHMAD, M. A.; NOH, T. U.; AHMAD, N. A. Pineapple peel–derived carbon for adsorptive removal of dyes. Materials Chemistry and Physics, v. 306, 15 set. 2023. RUBIN, Mae. K.; CHU, Pochen. US Patent No.4954325. 1990. SAMPAIO, T. Q. S.; LIMA, S. B.; PIRES, C. A. M. Influence of extractives on the composition of bio-oil from biomass pyrolysis – A review. Journal of Analytical and Applied Pyrolysis, v. 186, 1 mar. 2025. SÁNCHEZ, J. D.; RAMÍREZ, G. E.; BARAJAS, M. J. Comparative kinetic study of the pyrolysis of Mandarin and pineapple peel. Journal of Analytical and Applied Pyrolysis, v. 118, p. 192–201, 1 mar. 2016. SANTANA, J. A.; CARVALHO, W. S.; ATAÍDE, C. H. Catalytic effect of ZSM-5 zeolite and HY-340 niobic acid on the pyrolysis of industrial kraft lignins. Industrial Crops and Products, v. 111, n. October 2017, p. 126–132, 2018. SASMAL, S.; DUTTA, U.; LAHIRI, G. K.; MAITI, D. Transition metals and transition metals/lewis acid cooperative catalysis for directing group assisted para-CH functionalizationChemistry LettersChemical Society of Japan, 1 nov. 2020. SCHMITZ, T.; DE ANDRADE, A. M.; MAYER, F. M.; TESSARO, I. C.; MARCILIO, N. R.; DO CARMO RANGEL, M.; SCHWANKE, A. J. Catalytic pyrolysis of polystyrene over rice husk silica-derived traditional and hierarchical green MWW zeolites. Catalysis Today, v. 444, 15 jan. 2025. SCHWANKE, A. J. Zeólitas Hierárquicas MWW por soft e hard templates - inserção de nióbio e atividade catalítica. 2016. 2016. SCHWANKE, A. J.; BALZER, R.; PERGHER, S. Degradation of volatile organic compounds with catalysts-containing zeolite and ordered mesoporous silica. Em: Handbook of Ecomaterials. [s.l.] Springer International Publishing, 2019. p. 607–618. SCHWANKE, A. J.; PERGHER, S. Hierarchical MWW zeolites by soft and hard template routes. Em: Handbook of Ecomaterials. [s.l.] Springer International Publishing, 2019. p. 2537–2559. SCHWANKE, A.; PERGHER, S. LamellarMWW-type zeolites: Toward elegant nanoporous materials. Applied Sciences (Switzerland), v. 8, n. 9, 2018. SEO, M. W.; LEE, S. H.; NAM, H.; LEE, D.; TOKMURZIN, D.; WANG, S.; PARK, Y. K. Recent advances of thermochemical conversieon processes for biorefinery. Bioresource Technology, v. 343, n. October 2021, p. 126109, 2022. SHAHZAD, H. M. A.; ASIM, Z.; KHAN, S. J.; ALMOMANI, F.; MAHMOUD, K. A.; MUSTAFA, M. R. U.; RASOOL, K. Thermochemical and biochemical conversion of agricultural waste for bioenergy production: an updated reviewDiscover EnvironmentSpringer Nature, 1 dez. 2024. SHU, R.; LI, R.; LIN, B.; WANG, C.; CHENG, Z.; CHEN, Y. A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels. Biomass and Bioenergy, v. 132, n. November 2019, p. 105432, 2020. SHU, Y.; MA, D.; XU, L.; XU, Y.; BAO, X. Methane dehydro-aromatization over Mo/MCM-22 catalysts: a highly selective catalyst for the formation of benzeneCatalysis Letters. [s.l: s.n.]. SI, Z.; ZHANG, X.; WANG, C.; MA, L.; DONG, R. An overview on catalytic hydrodeoxygenation of pyrolysis oil and its model compounds. Catalysts, v. 7, n. 6, p. 1–22, 2017. SIDDIQUE, M.; SOOMRO, S. A.; AZIZ, S. Characterization and optimization of lignin extraction from lignocellulosic biomass via green nanocatalyst. Biomass Conversion and Biorefinery, 2022. SILVA, A. Pirólise rápida catalítica de sabugo de milho: seletividade dos catalisadores HZSM-5 e Hβ para a produção de hidrocarbonetos aromáticos. 2020. Universidade Federal de Uberlândia, 2020. Disponível em: <https://repositorio.ufu.br/handle/123456789/29935>. SILVA, N. K. G.; FERREIRA, R. A. R.; RIBAS, R. M.; MONTEIRO, R. S.; BARROZO, M. A. S.; SOARES, R. R. Gas-phase hydrodeoxygenation (HDO) of guaiacol over Pt/Al2O3 catalyst promoted by Nb2O5. Fuel, v. 287, n. November 2020, 2021. SILVA, R.; HARAGUCHI, S.; MUNIZ, E.; RUBIRA, Adley. Aplicações de fibras lignocelulósicas n química de Polímeros e em compositos. Química Nova, v. 32, n. 3, p. 661–671, 2009. SIQUEIRA, L. do N. Fracionamento do bagaço de cana-de-açúcar com solventes apropriados para a dissolução dos constituintes estruturais. 2014. Universidade de São Paulo, Lorena, 2014. SOLTANIAN, S.; LEE, C. L.; LAM, S. S. A review on the role of hierarchical zeolites in the production of transportation fuels through catalytic fast pyrolysis of biomass. Biofuel Research Journal, v. 7, n. 3, p. 1217–1234, 2020. STANCIU, M.-C.; TANASĂ, F.; TEACĂ, C.-A. Crystallinity Changes in Modified Cellulose Substrates Evidenced by Spectral and X-Ray Diffraction Data. Polysaccharides, v. 6, n. 2, p. 30, 4 abr. 2025. STANTON, M. P.; HOOVER, J. M. Copper-Catalyzed Decarboxylative Elimination of Carboxylic Acids to Styrenes. Journal of Organic Chemistry, v. 88, n. 3, p. 1713–1719, 3 fev. 2023. STUMMANN, M. Z.; ELEVERA, E.; HANSEN, A. B.; HANSEN, L. P.; BEATO, P.; DAVIDSEN, B.; WIWEL, P.; GABRIELSEN, J.; JENSEN, P. A.; JENSEN, A. D.; HØJ, M. Catalytic hydropyrolysis of biomass using supported CoMo catalysts – Effect of metal loading and support acidity. Fuel, v. 264, 15 mar. 2020. SUIB, S. L. A review of open framework structures. Annual Review of Materials Science, v. 26, n. 1, p. 135–151, 1996. TAGHAVI, S.; MÄKI-ARVELA, P.; VAJGLOVÁ, Z.; PEURLA, M.; ANGERVO, I.; ERÄNEN, K.; GHEDINI, E.; MENEGAZZO, F.; ZENDEHDEL, M.; SIGNORETTO, M.; MURZIN, D. Y. One-Pot Transformation of Citronellal to Menthol Over H-Beta Zeolite Supported Ni Catalyst: Effect of Catalyst Support Acidity and Ni Loading. Catalysis Letters, v. 153, n. 9, p. 2674–2692, 1 set. 2023. TAN, H.; YANG, M.; CHEN, Y.; CHEN, X.; FANTOZZI, F.; BARTOCCI, P.; TSCHENTSCHER, R.; BARONTINI, F.; YANG, H.; CHEN, H. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate. Chinese Journal of Chemical Engineering, v. 57, p. 1–9, 1 maio 2023. TEKIN, K.; KARAGÖZ, S.; BEKTAŞ, S. A review of hydrothermal biomass processingRenewable and Sustainable Energy Reviews2014. UNFCCC. CONFERENCE OF THE PARTIES (COP). Paris Climate Change ConferenceParis. COP 21, nov. 2015. VICHAPHUND, S.; AHT-ONG, D.; SRICHAROENCHAIKUL, V.; ATONG, D. Production of aromatic compounds from catalytic fast pyrolysis of Jatropha residues using metal/HZSM-5 prepared by ion-exchange and impregnation methods. Renewable Energy, v. 79, n. 1, p. 28–37, 2015. WANG, C.; ZHANG, X.; LIU, Q.; ZHANG, Q.; CHEN, L.; MA, L. A review of conversion of lignocellulose biomass to liquid transport fuels by integrated refining strategiesFuel Processing TechnologyElsevier, 2020. Disponível em: <https://doi.org/10.1016/j.fuproc.2020.106485>. WANG, J.; JIANG, J.; DING, J.; WANG, X.; SUN, Y.; RUAN, R.; RAGAUSKAS, A. J.; OK, Y. S.; TSANG, D. C. W. Promoting Diels-Alder reactions to produce bio-BTX: Co-aromatization of textile waste and plastic waste over USY zeolite. Journal of Cleaner Production, v. 314, 10 set. 2021. WANG, S.; RU, B.; LIN, H.; LUO, Z. Degradation mechanism of monosaccharides and xylan under pyrolytic conditions with theoretic modeling on the energy profiles. Bioresource Technology, v. 143, p. 378–383, 2013. WANG, X.; LIU, Y.; PU, J.; QIN, C.; YAO, S.; WANG, S.; LIANG, C. A comparative study on the structure of lignin-carbohydrate complexes in alkali-soluble hemicellulose from bamboo (Bambusa chungii) fibers and parenchyma cells. Industrial Crops and Products, v. 210, 1 abr. 2024. WANG, X.; YANG, S.; SHEN, B.; YANG, J.; XU, L. Pyrolysis of Biomass Pineapple Residue and Banana Pseudo-Stem: Kinetics, Mechanism and Valorization of Bio-Char. Catalysts, v. 12, n. 8, 1 ago. 2022a. WANG, X.; ZHU, S.; WANG, S.; HE, Y.; LIU, Y.; WANG, J.; FAN, W.; LV, Y. Low temperature hydrodeoxygenation of guaiacol into cyclohexane over Ni/SiO 2 catalyst combined with Hβ zeolite. RSC Advances, v. 9, n. 7, p. 3868–3876, 2019. WANG, Y.; AKBARZADEH, A.; CHONG, L.; DU, J.; TAHIR, N.; AWASTHI, M. K. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review. Chemosphere, v. 297, n. February, p. 134181, 2022b. Disponível em: <https://doi.org/10.1016/j.chemosphere.2022.134181>. WATKINS, D.; NURUDDIN, M.; HOSUR, M.; TCHERBI-NARTEH, A.; JEELANI, S. Extraction and characterization of lignin from different biomass resources. Journal of Materials Research and Technology, v. 4, n. 1, p. 26–32, 1 jan. 2015. WEI, B.; JIN, L.; WANG, D.; SHI, H.; HU, H. Catalytic upgrading of lignite pyrolysis volatiles over modified HY zeolites. Fuel, v. 259, n. August 2019, p. 116234, 2020. WERNER, K.; POMMER, L.; BROSTRÖM, M. Thermal decomposition of hemicelluloses. Journal of Analytical and Applied Pyrolysis, v. 110, n. 1, p. 130–137, 2014. XIA, S.; OU, J.; LIANG, J.; CHEN, S.; WANG, Z.; ZHAO, Z.; ZHAO, K.; ZHENG, A. Synergistic catalysis strategy of Lewis and Brønsted acids for superior aromatic production in biomass pyrolysis. Industrial Crops and Products, v. 226, 1 abr. 2025. XIONG, Q.; ARAMIDEH, S.; KONG, S. C. Modeling effects of operating conditions on biomass fast pyrolysis in bubbling fluidized bed reactors. Energy and Fuels, v. 27, n. 10, p. 5948–5956, 2013. XUE, S.; LUO, Z.; ZHOU, Q.; SUN, H.; DU, L. Regulation mechanism of three key parameters on catalytic characterization of molybdenum modified bimetallic micro-mesoporous catalysts during catalytic fast pyrolysis of enzymatic hydrolysis lignin. Bioresource Technology, v. 337, 1 out. 2021. XUE, X.; LIU, Y.; WU, L.; PAN, X.; LIANG, J.; SUN, Y. Catalytic fast pyrolysis of maize straw with a core–shell ZSM-5@SBA-15 catalyst for producing phenols and hydrocarbons. Bioresource Technology, v. 289, n. June, p. 121691, 2019. YAN, Z.; ALAM, M. A.; LI, J.; XIONG, W.; ZHANG, S.; ZHAN, Z.; XU, J. Effect of Hemicelluloses Fractionated by Graded Ethanol Precipitation from Corn Stover on the Enzymatic Hydrolysis of Lignocellulosic Biomass. Bioenergy Research, v. 17, n. 3, p. 1469–1480, 1 set. 2024. YANG, H.; LI, S.; LIU, B.; CHEN, Y.; XIAO, J.; DONG, Z.; GONG, M.; CHEN, H. Hemicellulose pyrolysis mechanism based on functional group evolutions by two-dimensional perturbation correlation infrared spectroscopy. Fuel, v. 267, n. July 2019, p. 117302, 2020a. Disponível em: <https://doi.org/10.1016/j.fuel.2020.117302>. YANG, H.; YAN, R.; CHEN, H.; LEE, D. H.; ZHENG, C. Characteristics of hemicellulose , cellulose and lignin pyrolysis. v. 86, p. 1781–1788, 2007. YANG, J.; WANG, X.; SHEN, B.; HU, Z.; XU, L.; YANG, S. Lignin from energy plant (Arundo donax): Pyrolysis kinetics, mechanism and pathway evaluation. Renewable Energy, v. 161, p. 963–971, 2020b. YIN, X.; CHU, N.; YANG, J.; WANG, J.; LI, Z. Synthesis of the nanosized MCM-22 zeolite and its catalytic performance in methane dehydro-aromatization reaction. Catalysis Communications, v. 43, p. 218–222, 2014. YU, J.; WANG, D.; SUN, L. The pyrolysis of lignin: Pathway and interaction studies. Fuel, v. 290, n. August 2020, 2021. YU, Y.; LI, X.; SU, L.; ZHANG, Y.; WANG, Y.; ZHANG, H. The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts. Applied Catalysis A: General, v. 447–448, p. 115–123, 2012. ZHANG, C. T.; ZHANG, L.; LI, Q.; WANG, Y.; LIU, Q.; WEI, T.; DONG, D.; SALAVATI, S.; GHOLIZADEH, M.; HU, X. Catalytic pyrolysis of poplar wood over transition metal oxides: Correlation of catalytic behaviors with physiochemical properties of the oxides. Biomass and Bioenergy, v. 124, n. March, p. 125–141, 2019. ZHANG, H.; SAMSUDIN, I. bin; JAENICKE, S.; CHUAH, G. K. Zeolites in catalysis: sustainable synthesis and its impact on properties and applications. Catalysis Science and Technology, v. 12, n. 19, p. 6024–6039, 29 ago. 2022. ZHANG, S.; ZHANG, H.; LIU, X.; ZHU, S.; HU, L.; ZHANG, Q. Upgrading of bio-oil from catalytic pyrolysis of pretreated rice husk over Fe-modified ZSM-5 zeolite catalyst. Fuel Processing Technology, v. 175, n. February, p. 17–25, 2018. ZHANG, X.; YANG, W.; DONG, C. Levoglucosan formation mechanisms during cellulose pyrolysis. Journal of Analytical and Applied Pyrolysis, v. 104, p. 19–27, 2013. ZHANG, Y.; WANG, H.; SUN, X.; WANG, Y.; LIU ZHONG. Separation and Characterization of Biomass Components (Cellulose, Hemicellulose, and Lignin) from Corn Stalk. Bioresource, v. 4, n. 16, p. 7205–7219, 2021. ZHENG, Y.; WANG, J.; LI, D.; LIU, C.; LU, Y.; LIN, X.; ZHENG, Z. Activity and selectivity of Ni–Cu bimetallic zeolites catalysts on biomass conversion for bio-aromatic and bio-phenols. Journal of the Energy Institute, v. 97, p. 58–72, 1 ago. 2021. ZHOU, G.; JENSEN, P. A.; LE, D. M.; KNUDSEN, N. O.; JENSEN, A. D. Direct upgrading of fast pyrolysis lignin vapor over the HZSM-5 catalyst. Green Chemistry, v. 18, n. 7, p. 1965–1975, 2016. ZHOU, Y.; MU, Y.; HSIEH, M. F.; KABIUS, B.; PACHECO, C.; BATOR, C.; RIOUX, R. M.; RIMER, J. D. Enhanced Surface Activity of MWW Zeolite Nanosheets Prepared via a One-Step Synthesis. Journal of the American Chemical Society, v. 142, n. 18, p. 8211–8222, 2020. ZHU, L.; HU, Z.; HUANG, M.; PENG, H.; ZHANG, W.; CHEN, D.; MA, Z. Valorisation of cotton stalk toward bio-aromatics : Effect of wet torrefaction deoxygenation and deminerization pretreatment on catalytic fast pyrolysis using Ga modified hierarchical zeolite. v. 330, n. July, 2022.pt_BR
dc.contributor.refereesLatteshttp://lattes.cnpq.br/5184076681745031pt_BR
dc.contributor.refereesLatteshttp://lattes.cnpq.br/6089875159011042pt_BR
dc.type.degreeDoutoradopt_BR
Aparece nas coleções:Tese (PPEQ)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Tese - PPEQ - Mateus da Silva Carvalho.pdfTese completa versão final4,13 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.