https://repositorio.ufba.br/handle/ri/42974| Campo DC | Valor | Idioma |
|---|---|---|
| dc.creator | Pedreira, Clarissa de Castro Carvalho | - |
| dc.date.accessioned | 2025-09-19T17:57:55Z | - |
| dc.date.available | 2027-09-17 | - |
| dc.date.available | 2025-09-19T17:57:55Z | - |
| dc.date.issued | 2025-08-12 | - |
| dc.identifier.citation | PEDREIRA, Clarissa de Castro Carvalho. Efeitos da terapia hormonal de afirmação de gênero na conectividade cerebral. Orientadora: Luciana Mattos Barros Oliveira. 2025. 149 f. Dissertação (Mestrado em Ciências da Saúde) - Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador (BA), 2025. | pt_BR |
| dc.identifier.uri | https://repositorio.ufba.br/handle/ri/42974 | - |
| dc.description.abstract | Background: There has been an increase in the number of transgender and gender diverse (TGD) people seeking gender-affirming hormone therapy (GAHT). Few studies have examined the effects of GAHT on brain connectivity. The hormonal effects on the brain may be through its influence on intrinsic connectivity. Objectives: To characterize the effects of GAHT on patterns of brain’s intrinsic connectivity of the default mode network (DMN) and salience network (SN) in TGD individuals. Methods: A prospective study of TGD individuals, assigned male at birth (AMAB) and assigned female at birth (AFAB), before and after GAHT was conducted. Participants were scanned using functional magnetic imaging at rest baseline and 6 months after GAHT. restingstate Functional Connectivity (rs-FC) maps were generated for each participant. Regions of interest were generated for key nodes anchoring DMN and SN, specifically the posterior cingulate cortex (PCC) and the dorsal anterior insula (dAI). Baseline and 6-month rs-FC maps were then compared, generating a single group level map of significant differences between timepoints for each seed, PCC and dAI, at p < 0.05, uncorrected. Results: 14 TGD individuals (AMAB n = 7, AFAB n = 7), mean age 27.68 (23.44 – 30.52) were enrolled. In the AMAB group, there was an increase in rs-FC from the PCC seed to the precuneus (within DMN) and a decrease in rs-FC from the dAI seed to the mid cingulate cortex and orbitofrontal cortex (within SN) after estradiol and antiandrogen use 93 (p_uncorr < 0.05). In the AFAB group, there was a significant decrease in rs-FC from the PCC seed to the precuneus, superior frontal gyrus, parahippocampal gyrus, and insula (within the DMN and between the DMN and SN) after testosterone use (p_uncorr < 0.05). Additionally, rs-FC from the dAI seed to the amygdala, insula, and anterior cingulate cortex (within the SN) significantly decreased after GAHT with testosterone (p_uncorr < 0.05). Conclusions: Our findings suggest that GAHT can influence patterns of intrinsic connectivity within brain networks involved in emotional and cognitive process in TGD individuals. This study highlights the brain's remarkable capacity to adapt in response to GAHT. | pt_BR |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Processo No 88887.508977/2020-00 | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Programa de Pós-Graduação em Ciências da Saúde | pt_BR |
| dc.rights | Acesso Restrito/Embargado | pt_BR |
| dc.subject | Pessoas transgênero e de gênero diverso | pt_BR |
| dc.subject | Terapia hormonal de afirmação de gênero | pt_BR |
| dc.subject | Conectividade funcional | pt_BR |
| dc.subject | Rede de modo padrão | pt_BR |
| dc.subject | Rede de Saliência | pt_BR |
| dc.subject.other | Transgender and gender diverse people | pt_BR |
| dc.subject.other | Gender-affirming hormone therapy | pt_BR |
| dc.subject.other | Functional Connectivity | pt_BR |
| dc.subject.other | Default mode network | pt_BR |
| dc.subject.other | Salience network | pt_BR |
| dc.title | Efeitos da terapia hormonal de afirmação de gênero na conectividade cerebral | pt_BR |
| dc.title.alternative | The effects of gender-affirming hormone therapy on the connectivity of intrinsic brain networks | pt_BR |
| dc.type | Tese | pt_BR |
| dc.publisher.program | Pós-Graduação em Ciências da Saúde (POS_CIENCIAS_SAUDE) | pt_BR |
| dc.publisher.initials | PPGCS | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.subject.cnpq | CNPQ::CIENCIAS DA SAUDE | pt_BR |
| dc.contributor.advisor1 | Oliveira, Luciana Mattos Barros | - |
| dc.contributor.advisor1ID | https://orcid.org/0000-0001-5346-8449 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5013927300968139 | pt_BR |
| dc.contributor.referee1 | Oliveira Filho, Jamary | - |
| dc.contributor.referee1ID | https://orcid.org/0000-0003-1915-0423 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/0078761969684137 | pt_BR |
| dc.contributor.referee2 | Oliveira, Luciana Mattos Barros | - |
| dc.contributor.referee2ID | https://orcid.org/0000-0001-5346-8449 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/5013927300968139 | pt_BR |
| dc.contributor.referee3 | Adan, Luis Fernando Fernandes | - |
| dc.contributor.referee3ID | https://orcid.org/0000-0003-4549-2582 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/3138201233194495 | pt_BR |
| dc.contributor.referee4 | Silva, Maria de Lourdes Lima de Souza e | - |
| dc.contributor.referee4ID | https://orcid.org/0000-0002-2081-4162 | pt_BR |
| dc.contributor.referee4Lattes | http://lattes.cnpq.br/1099103977707024 | pt_BR |
| dc.contributor.referee5 | Fighera, Tayane Muniz | - |
| dc.contributor.referee5ID | https://orcid.org/0000-0001-7751-0197 | pt_BR |
| dc.contributor.referee5Lattes | http://lattes.cnpq.br/0388036347987228 | pt_BR |
| dc.creator.ID | https://orcid.org/0000-0003-1267-3344 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/5042815917021755 | pt_BR |
| dc.description.resumo | Introdução: O número de pessoas transgênero e de gênero diverso (TGD) em busca de terapia hormonal de afirmação de gênero (THAG) aumentou significativamente. Poucos estudos avaliaram os efeitos da THAG na conectividade cerebral em indivíduos TGD. A influência da terapia afirmativa de gênero na conectividade funcional em repouso (rs-FC) em pessoas TGD além de pouco conhecidos, não estão claramente estabelecidos, representando uma lacuna a ser explorada. Objetivos: Caracterizar os impactos da THAG nos padrões de conectividade cerebral na rede Default Mode Network (DMN) e Salience Network (SN) em indivíduos TGD. Métodos: Um estudo prospectivo com indivíduos TGD, sexo masculino designado ao nascimento (AMAB) e sexo feminino designado ao nascimento (AFAB), antes e depois da THAG. Os participantes foram submetidos a ressonância magnética funcional em repouso antes e seis meses após THAG. Foram gerados mapas de rs-FC para cada participante. Regiões de interesse foram definidas para sementes que ancoram as redes DMN e SN, especificamente córtex cingulado posterior (CCP) e a ínsula anterior dorsal (IAd). Mapas de rs-FC antes e seis meses após THAG foram comparados, gerando um único mapa para cada semente, CCP e IAd, dos subgrupos (AMAB e AFAB), sendo considerada uma diferença significativa um valor de p < 0,05, não corrigido. Resultados: Quatorze indivíduos TGD, (AMAB n = 7, AFAB n = 7), com idade média de 27,7 (23,4 - 30,5) anos, foram incluídos no estudo. No grupo AMAB, houve aumento significativo na rs-FC da semente 22 CCP para o pré-cúneo (nó da rede DMN) e redução significativa da rs-FC da semente IAd para o córtex cingulado médio e córtex orbitofrontal (nós da rede SN) após uso de estradiol e antiandrógeno (p < 0,05, não corrigido). No grupo AFAB, houve redução significativa da rs-FC da semente CCP para o pré-cúneo, giro frontal superior e giro parahipocampal (nós da rede DMN) e da semente CCP para a ínsula (entre as redes DMN e SN) após uso de testosterona (p < 0,05, não corrigido). Adicionalmente, a rs-FC da semente IAd para a amígdala, ínsula e córtex cingulado anterior (nós da rede SN) reduziu significativamente após THAG com testosterona (p < 0,05, não corrigido). Conclusões: Nossos resultados sugerem que a THAG pode modificar os padrões de conectividade nas redes cerebrais envolvidas nos processos emocionais e cognitivos em indivíduos TGD. Este estudo destaca a capacidade notável do cérebro de se adaptar em resposta à THAG. | pt_BR |
| dc.publisher.department | Faculdade de Medicina da Bahia | pt_BR |
| dc.relation.references | 1. Conron KJ, Scott G, Stowell GS, Landers SJ. Transgender Health in Massachusetts: Results From a Household Probability Sample of Adults. Am J Public Health 2012;102(1):118–22. 2. Spizzirri G, Eufrásio R, Lima MCP, et al. Proportion of people identified as transgender and non-binary gender in Brazil. Sci Rep 2021;11(1):2240. 3. T’Sjoen G, Arcelus J, Gooren L, Klink DT, Tangpricha V. Endocrinology of transgender medicine. Endocr Rev. 2018;40(1):97–117. 4. Nguyen HB, Loughead J, Lipner E, Hantsoo L, Kornfield SL, Epperson CN. What has sex got to do with it? The role of hormones in the transgender brain. Neuropsychopharmacology. 2019;44(1):22–37. 5. Drescher J, Cohen-Kettenis P, Winter S. Minding the body: Situating gender identity diagnoses in the ICD-11. International Review of Psychiatry 2012;24(6):568–77. 6. Winter S, Diamond M, Green J, et al. Transgender people: health at the margins of society. Lancet 2016;388(10042):390–400. 7. Nguyen HB, Chavez AM, Lipner E, et al. Gender-Affirming Hormone Use in Transgender Individuals: Impact on Behavioral Health and Cognition. Curr Psychiatry Rep. 2018;20(12). 8. Bao A-M, Swaab DF. Sexual differentiation of the human brain: relation to gender identity, sexual orientation and neuropsychiatric disorders. Front Neuroendocrinol 2011;32(2):214–26. 9. Swaab DF. Sexual differentiation of the brain and behavior. Best Pract Res Clin Endocrinol Metab 2007;21(3):431–44. 10. Zhou JN, Hofman MA, Gooren LJ, Swaab DF. A sex difference in the human brain and its relation to transsexuality. Nature 1995;378(6552):68–70. 11. Savic I, Arver S. Sex dimorphism of the brain in male-to-female transsexuals. Cerebral Cortex. 2011;21(11):2525–33. 12. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association; 2013. 13. Coleman E, Bockting W, Botzer M, et al. Standards of Care for the Health of Transsexual, Transgender, and Gender-Nonconforming People, Version 7. International Journal of Transgenderism 2012;13(4):165–232. 14. Dhejne C, Van Vlerken R, Heylens G, Arcelus J. Mental health and gender dysphoria: A review of the literature. International Review of Psychiatry 2016;28(1):44–57. 15. Reisner SL, White JM, Mayer KH, Mimiaga MJ. Sexual risk behaviors and psychosocial health concerns of female-to-male transgender men screening for STDs at an urban community health center. AIDS Care 2014;26(7):857–64. 16. Clements-Nolle K, Marx R, Katz M. Attempted suicide among transgender persons: The influence of gender-based discrimination and victimization. J Homosex 2006;51(3):53–69. 17. Bockting WO, Miner MH, Swinburne Romine RE, Hamilton A, Coleman E. Stigma, mental health, and resilience in an online sample of the US transgender population. Am J Public Health 2013;103(5):943–51. 95 18. Terada S, Matsumoto Y, Sato T, Okabe N, Kishimoto Y, Uchitomi Y. Suicidal ideation among patients with gender identity disorder. Psychiatry Res 2011;190(1):159–62. 19. Colizzi M, Costa R, Todarello O. Transsexual patients’ psychiatric comorbidity and positive effect of cross-sex hormonal treatment on mental health: results from a longitudinal study. Psychoneuroendocrinology 2014;39:65–73. 20. Fisher AD, Castellini G, Ristori J, et al. Cross-Sex Hormone Treatment and Psychobiological Changes in Transsexual Persons: Two-Year Follow-Up Data. J Clin Endocrinol Metab 2016;101(11):4260–9. 21. Defreyne J, T’Sjoen G, Bouman WP, Brewin N, Arcelus J. Prospective Evaluation of Self-Reported Aggression in Transgender Persons. J Sex Med 2018;15(5):768– 76. 22. Turan Ş, Aksoy Poyraz C, Usta Sağlam NG, et al. Alterations in Body Uneasiness, Eating Attitudes, and Psychopathology Before and After Cross-Sex Hormonal Treatment in Patients with Female-to-Male Gender Dysphoria. Arch Sex Behav 2018;47(8):2349–61. 23. Lindgren TW, Pauly IB. A body image scale for evaluating transsexuals. Arch Sex Behav 1975;4(6):639–56. 24. van de Grift TC, Elaut E, Cerwenka SC, et al. Effects of Medical Interventions on Gender Dysphoria and Body Image: A Follow-Up Study. Psychosom Med 2017;79(7):815–23. 25. Gorin-Lazard A, Baumstarck K, Boyer L, et al. Hormonal therapy is associated with better self-esteem, mood, and quality of life in transsexuals. J Nerv Ment Dis 2013;201(11):996–1000. 26. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 2005;102(27):9673–8. 27. White Hughto JM, Reisner SL. A Systematic Review of the Effects of Hormone Therapy on Psychological Functioning and Quality of Life in Transgender Individuals. Transgend Health 2016;1(1):21–31. 28. van Leerdam TR, Zajac JD, Cheung AS. The Effect of Gender-Affirming Hormones on Gender Dysphoria, Quality of Life, and Psychological Functioning in Transgender Individuals: A Systematic Review. Transgend Health. 2023;8(1):6–21. 29. Hembree WC, Cohen-Kettenis PT, Gooren L, et al. Endocrine Treatment of Gender-Dysphoric/Gender-Incongruent Persons: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2017;102(11):3869–903. 30. Pallayova M, Brandeburova A, Tokarova D. Update on Sexual Dimorphism in Brain Structure–Function Interrelationships: A Literature Review. Applied Psychophysiology Biofeedback. 2019;44(4):271–84. 31. Murphy DG, DeCarli C, McIntosh AR, et al. Sex differences in human brain morphometry and metabolism: an in vivo quantitative magnetic resonance imaging and positron emission tomography study on the effect of aging. Arch Gen Psychiatry 1996;53(7):585–94. 32. Filipek PA, Richelme C, Kennedy DN, Caviness VS. The young adult human brain: an MRI-based morphometric analysis. Cereb Cortex 1994;4(4):344–60. 33. Goldstein JM, Seidman LJ, Horton NJ, et al. Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cereb Cortex 2001;11(6):490–7. 96 34. Neufang S, Specht K, Hausmann M, et al. Sex differences and the impact of steroid hormones on the developing human brain. Cerebral Cortex 2009;19(2):464–73. 35. Ingalhalikar M, Smith A, Parker D, et al. Sex differences in the structural connectome of the human brain. Proc Natl Acad Sci U S A 2014;111(2):823–8. 36. Duarte-Carvajalino JM, Jahanshad N, Lenglet C, et al. Hierarchical topological network analysis of anatomical human brain connectivity and differences related to sex and kinship. Neuroimage 2012;59(4):3784–804. 37. Ritchie SJ, Cox SR, Shen X, et al. Sex Differences in the Adult Human Brain: Evidence from 5216 UK Biobank Participants. Cereb Cortex 2018;28(8):2959–75. 38. Van Goozen SH, Cohen-Kettenis PT, Gooren LJ, Frijda NH, Van de Poll NE. Activating effects of androgens on cognitive performance: causal evidence in a group of female-to-male transsexuals. Neuropsychologia 1994;32(10):1153–7. 39. Palmiero M, Nori R, Rogolino C, D’amico S, Piccardi L. Sex differences in visuospatial and navigational working memory: the role of mood induced by background music. Exp Brain Res 2016;234(8):2381–9. 40. Miller DI, Halpern DF. The new science of cognitive sex differences. Trends Cogn Sci 2014;18(1):37–45. 41. Gouchie C, Kimura D. The relationship between testosterone levels and cognitive ability patterns. Psychoneuroendocrinology 1991;16(4):323–34. 42. Hyde JS. The gender similarities hypothesis. Am Psychol 2005;60(6):581–92. 43. Schöning S, Engelien A, Kugel H, et al. Functional anatomy of visuo-spatial working memory during mental rotation is influenced by sex, menstrual cycle, and sex steroid hormones. Neuropsychologia 2007;45(14):3203–14. 44. Hausmann M. Why sex hormones matter for neuroscience: A very short review on sex, sex hormones, and functional brain asymmetries. J Neurosci Res. 2017;95(1– 2):40–9. 45. Van Goozen SH, Cohen-Kettenis PT, Gooren LJ, Frijda NH, Van de Poll NE. Gender differences in behaviour: activating effects of cross-sex hormones. Psychoneuroendocrinology 1995;20(4):343–63. 46. Slabbekoorn D, van Goozen SH, Megens J, Gooren LJ, Cohen-Kettenis PT. Activating effects of cross-sex hormones on cognitive functioning: a study of short-term and long-term hormone effects in transsexuals. Psychoneuroendocrinology 1999;24(4):423–47. 47. Szadvári I, Ostatníková D, Babková Durdiaková J. Sex differences matter: Males and females are equal but not the same. Physiol Behav 2023;259:114038. 48. Smith ES, Junger J, Derntl B, Habel U. The transsexual brain--A review of findings on the neural basis of transsexualism. Neurosci Biobehav Rev 2015;59:251–66. 49. Zubiaurre-Elorza L, Junque C, Gómez-Gil E, et al. Cortical thickness in untreated transsexuals. Cereb Cortex 2013;23(12):2855–62. 50. Luders E, Sánchez FJ, Tosun D, et al. Increased Cortical Thickness in Male-toFemale Transsexualism. J Behav Brain Sci 2012;02(03):357–62. 51. Simon L, Kozák LR, Simon V, et al. Regional grey matter structure differences between transsexuals and healthy controls - A voxel based morphometry study. PLoS One 2013;8(12). 52. Rametti G, Carrillo B, Gómez-Gil E, et al. White matter microstructure in female to male transsexuals before cross-sex hormonal treatment. A diffusion tensor imaging study. J Psychiatr Res 2011;45(2):199–204. 53. Kranz GS, Hahn A, Kaufmann U, et al. White matter microstructure in transsexuals and controls investigated by diffusion tensor imaging. Journal of Neuroscience 2014;34(46):15466–75. 97 54. Yokota Y, Kawamura Y, Kameya Y. Callosal Shapes at the Midsagittal Plane: MRI Differences of Normal Males, Normal Females, and GID. In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE; 2005. p. 3055–8. 55. Hahn A, Kranz GS, Küblböck M, et al. Structural connectivity networks of transgender people. Cerebral Cortex 2015;25(10):3527–34. 56. Zheng P. Neuroactive steroid regulation of neurotransmitter release in the CNS: Action, mechanism and possible significance. Prog Neurobiol 2009;89(2):134–52. 57. Cooke B, Hegstrom CD, Villeneuve LS, Breedlove SM. Sexual differentiation of the vertebrate brain: principles and mechanisms. Front Neuroendocrinol 1998;19(4):323–62. 58. Garcia-Falgueras A, Swaab DF. A sex difference in the hypothalamic uncinate nucleus: Relationship to gender identity. Brain 2008;131(12):3132–46. 59. Wharton W, E. Gleason C, Sandra O, M. Carlsson C, Asthana S. Neurobiological Underpinnings of the Estrogen - Mood Relationship. Curr Psychiatry Rev 2012;8(3):247–56. 60. Shively CA, Bethea CL. Cognition, Mood Disorders, and Sex Hormone. ILAR J 2004;45(2):189–99. 61. Archer J. Testosterone and human aggression: an evaluation of the challenge hypothesis. Neurosci Biobehav Rev 2006;30(3):319–45. 62. Inoue Y, Burriss RP, Hasegawa T, Kiyonari T. Testosterone promotes dominance behaviors in the Ultimatum Game after players’ status increases. Sci Rep 2023;13(1):18029. 63. Shanmugan S, Loughead J, Nanga RPR, et al. Lisdexamfetamine Effects on Executive Activation and Neurochemistry in Menopausal Women with Executive Function Difficulties. Neuropsychopharmacology 2017;42(2):437–45. 64. Shanmugan S, Epperson CN. Estrogen and the prefrontal cortex: towards a new understanding of estrogen’s effects on executive functions in the menopause transition. Hum Brain Mapp 2014;35(3):847–65. 65. Toffoletto S, Lanzenberger R, Gingnell M, Sundström-Poromaa I, Comasco E. Emotional and cognitive functional imaging of estrogen and progesterone effects in the female human brain: a systematic review. Psychoneuroendocrinology 2014;50:28–52. 66. Navarro-Pardo E, Holland CA, Cano A. Sex Hormones and Healthy Psychological Aging in Women. Front Aging Neurosci 2017;9:439. 67. Siddiqui AN, Siddiqui N, Khan RA, et al. Neuroprotective Role of Steroidal Sex Hormones: An Overview. CNS Neurosci Ther 2016;22(5):342–50. 68. Azcoitia I, Arevalo M-A, De Nicola AF, Garcia-Segura LM. Neuroprotective actions of estradiol revisited. Trends Endocrinol Metab 2011;22(12):467–73. 69. Ali SA, Begum T, Reza F. Hormonal Influences on Cognitive Function. Malays J Med Sci 2018;25(4):31–41. 70. Shanmugan S, Satterthwaite TD. Neural Markers of the Development of Executive Function: Relevance for Education. Curr Opin Behav Sci 2016;10:7–13. 71. Rubinow DR, Schmidt PJ. Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology 2019;44(1):111–28. 72. Lee MH, Smyser CD, Shimony JS. Resting-state fMRI: a review of methods and clinical applications. AJNR Am J Neuroradiol 2013;34(10):1866–72. 73. Mueller SC, Wierckx K, Jackson K, T’Sjoen G. Circulating androgens correlate with resting-state MRI in transgender men. Psychoneuroendocrinology 2016;73:91–8. 98 74. van den Heuvel MP, Hulshoff Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharmacol 2010;20(8):519–34. 75. Fex Svenningsen A, Kanje M. Estrogen and progesterone stimulate Schwann cell proliferation in a sex- and age-dependent manner. J Neurosci Res 1999;57(1):124– 30. 76. Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 2009;10(3):186–98. 77. Raichle ME. The brain’s default mode network. Annu Rev Neurosci 2015;38:433– 47. 78. Shulman GL, Fiez JA, Corbetta M, et al. Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex. J Cogn Neurosci 1997;9(5):648– 63. 79. Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 2007;27(9):2349–56. 80. Raz G, Touroutoglou A, Wilson-Mendenhall C, et al. Functional connectivity dynamics during film viewing reveal common networks for different emotional experiences. Cogn Affect Behav Neurosci 2016;16(4):709–23. 81. Lindquist KA, Satpute AB, Wager TD, Weber J, Barrett LF. The Brain Basis of Positive and Negative Affect: Evidence from a Meta-Analysis of the Human Neuroimaging Literature. Cerebral Cortex 2016;26(5):1910–22. 82. Filippi M, Valsasina P, Misci P, Falini A, Comi G, Rocca MA. The organization of intrinsic brain activity differs between genders: a resting-state fMRI study in a large cohort of young healthy subjects. Hum Brain Mapp 2013;34(6):1330–43. 83. Allen EA, Erhardt EB, Damaraju E, et al. A Baseline for the Multivariate Comparison of Resting-State Networks. Front Syst Neurosci 2011;5. 84. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proceedings of the National Academy of Sciences 2001;98(2):676–82. 85. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A [Internet] 2003;100(1):253–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12506194 86. Alves PN, Foulon C, Karolis V, et al. An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings. Commun Biol 2019;2(1):370. 87. Buckner RL, Andrews‐Hanna JR, Schacter DL. The Brain’s Default Network. Ann N Y Acad Sci 2008;1124(1):1–38. 88. Sheline YI, Barch DM, Price JL, et al. The default mode network and selfreferential processes in depression. Proc Natl Acad Sci U S A 2009;106(6):1942– 7. 89. Laird AR, Fox PM, Eickhoff SB, et al. Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 2011;23(12):4022–37. 90. Hampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT. Brain Connectivity Related to Working Memory Performance. The Journal of Neuroscience 2006;26(51):13338–43. 91. Menon V. 20 years of the default mode network: A review and synthesis. Neuron 2023;111(16):2469–87. 99 92. Davey CG, Pujol J, Harrison BJ. Mapping the self in the brain’s default mode network. Neuroimage 2016;132:390–7. 93. Whitfield-Gabrieli S, Ford JM. Default mode network activity and connectivity in psychopathology. Annu Rev Clin Psychol. 2012;8. 94. Andreano JM, Touroutoglou A, Dickerson B, Barrett LF. Hormonal Cycles, Brain Network Connectivity, and Windows of Vulnerability to Affective Disorder. Trends Neurosci. 2018;41(10):660–76. 95. Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease. Brain 2014;137(Pt 1):12–32. 96. Tomasi D, Volkow ND. Functional connectivity hubs in the human brain. Neuroimage 2011;57(3):908–17. 97. Hagmann P, Cammoun L, Gigandet X, et al. Mapping the structural core of human cerebral cortex. PLoS Biol 2008;6(7):e159. 98. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 2011;15(10):483–506. 99. Taylor KS, Seminowicz DA, Davis KD. Two systems of resting state connectivity between the insula and cingulate cortex. Hum Brain Mapp 2009;30(9):2731–45. 100. Luo Y, Qin S, Fernández G, Zhang Y, Klumpers F, Li H. Emotion perception and executive control interact in the salience network during emotionally charged working memory processing. Hum Brain Mapp 2014;35(11):5606–16. 101. Menon V. Large-Scale Functional Brain Organization. In: Brain Mapping. Elsevier; 2015. p. 449–59. 102. Vogt BA. Midcingulate cortex: Structure, connections, homologies, functions and diseases. J Chem Neuroanat 2016;74:28–46. 103. Chen T, Cai W, Ryali S, Supekar K, Menon V. Distinct Global Brain Dynamics and Spatiotemporal Organization of the Salience Network. PLoS Biol 2016;14(6):e1002469. 104. Das A, Menon V. Spatiotemporal Integrity and Spontaneous Nonlinear Dynamic Properties of the Salience Network Revealed by Human Intracranial Electrophysiology: A Multicohort Replication. Cerebral Cortex 2020;30(10):5309–21. 105. Duncan J, Owen AM. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 2000;23(10):475–83. 106. Shelley BP, Trimble MR. The insular lobe of Reil--its anatamico-functional, behavioural and neuropsychiatric attributes in humans--a review. World J Biol Psychiatry 2004;5(4):176–200. 107. Augustine JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev 1996;22(3):229–44. 108. Schimmelpfennig J, Topczewski J, Zajkowski W, Jankowiak-Siuda K. The role of the salience network in cognitive and affective deficits. Front Hum Neurosci 2023;17. 109. Eckert MA, Menon V, Walczak A, et al. At the heart of the ventral attention system: the right anterior insula. Hum Brain Mapp 2009;30(8):2530–41. 110. Chand GB, Wu J, Hajjar I, Qiu D. Interactions of the Salience Network and Its Subsystems with the Default-Mode and the Central-Executive Networks in Normal Aging and Mild Cognitive Impairment. Brain Connect 2017;7(7):401–12. 111. Chiong W, Wilson SM, D’Esposito M, et al. The salience network causally influences default mode network activity during moral reasoning. Brain 2013;136(6):1929–41. 100 112. Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences 2008;105(34):12569–74. 113. van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends Cogn Sci 2013;17(12):683–96. 114. Smith SM, Beckmann CF, Andersson J, et al. Resting-state fMRI in the Human Connectome Project. Neuroimage 2013;80:144–68. 115. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995;34(4):537–41. 116. Biswal BB, Mennes M, Zuo X-N, et al. Toward discovery science of human brain function. Proceedings of the National Academy of Sciences 2010;107(10):4734– 9. 117. Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8(9):700–11. 118. Sporns O, Tononi G, Kötter R. The Human Connectome: A Structural Description of the Human Brain. PLoS Comput Biol 2005;1(4):e42. 119. Li M-T, Sun J-W, Zhan L-L, et al. The effect of seed location on functional connectivity: evidence from an image-based meta-analysis. Front Neurosci 2023;17. 120. Okuno T, Hata J, Kawai C, Okano H, Woodward A. A Novel Directed Seed-Based Connectivity Analysis Toolbox Applied to Human and Marmoset Resting-State FMRI. The Journal of Neuroscience 2024;44(45):e0389242024. 121. Yang L, Lin F, Zhou Y, et al. Iterative Cross-Correlation Analysis of Resting State Functional Magnetic Resonance Imaging Data. PLoS One 2013;8(3):e58653. 122. Lin CS, Ku HL, Chao HT, et al. Neural network of body representation differs between transsexuals and cissexuals. PLoS One 2014;9(1). 123. Nota NM, Burke SM, den Heijer M, et al. Brain sexual differentiation and effects of cross-sex hormone therapy in transpeople: A resting-state functional magnetic resonance study. Neurophysiologie Clinique 2017;47(5–6):361–70. 124. Feusner JD, Lidström A, Moody TD, Dhejne C, Bookheimer SY, Savic I. Intrinsic network connectivity and own body perception in gender dysphoria. Brain Imaging Behav 2017;11(4):964–76. 125. Manzouri A, Savic I. Possible neurobiological underpinnings of homosexuality and gender dysphoria. Cerebral Cortex 2019;29(5):2084–101. 126. Manzouri A, Kosidou K, Savic I. Anatomical and Functional Findings in Femaleto-Male Transsexuals: Testing a New Hypothesis. Cereb Cortex 2017;27(2):998– 1010. 127. Maniaci G, Collura G, La Cascia C, et al. Beyond the Gender Binarism: Neural Correlates of Trans Men in a Functional Connectivity–Resting-State fMRI Pilot Study. J Clin Med 2024;13(19):5856. 128. Popa I, Barborica A, Scholly J, et al. Illusory own body perceptions mapped in the cingulate cortex—An intracranial stimulation study. Hum Brain Mapp 2019;40(9):2813–26. 129. Hariz M, Blomstedt P. Deep brain stimulation for Parkinson’s disease. J Intern Med 2022;292(5):764–78. 130. Clemens B, Junger J, Pauly K, et al. Male-to-female gender dysphoria: Genderspecific differences in resting-state networks. Brain Behav 2017;7(5). 101 131. Hulshoff Pol HE, Cohen-Kettenis PT, Van Haren NEM, et al. Changing your sex changes your brain: Influences of testosterone and estrogen on adult human brain structure. In: European Journal of Endocrinology, Supplement. 2006. 132. Luders E, Sánchez FJ, Gaser C, et al. Regional gray matter variation in male-tofemale transsexualism. Neuroimage 2009;46(4):904–7. 133. Zubiaurre-Elorza L, Junque C, Gómez-Gil E, Guillamon A. Effects of cross-sex hormone treatment on cortical thickness in transsexual individuals. J Sex Med 2014;11(5):1248–61. 134. Rametti G, Carrillo B, Gómez-Gil E, et al. Effects of androgenization on the white matter microstructure of female-to-male transsexuals. A diffusion tensor imaging study. Psychoneuroendocrinology 2012;37(8):1261–9. 135. Reed MB, Handschuh PA, Klöbl M, et al. The influence of sex steroid treatment on insular connectivity in gender dysphoria. Psychoneuroendocrinology 2023;155. 136. Khorashad BS, Manzouri A, Feusner JD, Savic I. Cross-sex hormone treatment and own-body perception: behavioral and brain connectivity profiles. Sci Rep 2021;11(1). 137. Schneider MA, Spritzer PM, Minuzzi L, et al. Effects of estradiol therapy on resting-state functional connectivity of transgender women after gender-affirming related gonadectomy. Front Neurosci 2019;13(JUL). 138. Burke SM, Manzouri AH, Dhejne C, et al. Testosterone Effects on the Brain in Transgender Men. Cerebral Cortex 2018;28(5):1582–96. 139. Cullum CM. Neuropsychological Assessment of Adults. In: Comprehensive Clinical Psychology. Elsevier; 1998. p. 303–47. 140. Radloff LS. The CES-D Scale. Appl Psychol Meas 1977;1(3):385–401. 141. Spielberger CD, Gorsuch RL, Lushene R. Manual for the State-Trait Anxiety Inventory (STAI). Palo Alto, CA: Consulting Psychologists Press; 1970. 142. Nolen-Hoeksema S, Morrow J. A prospective study of depression and posttraumatic stress symptoms after a natural disaster: The 1989 Loma Prieta earthquake. J Pers Soc Psychol 1991;61(1):115–21. 143. Treynor W, Gonzalez R, Nolen-Hoeksema S. Rumination reconsidered: A psychometric analysis. Cognit Ther Res 2003;27(3):247–59. 144. Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J Pers Soc Psychol 1988;54(6):1063–70. 145. Costa PT, Jr, McCrae RR. Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) professional manual. Odessa, FL: Psychological Assessment Resources; 1992. 146. Foa EB, Riggs DS, Dancu C V., Rothbaum BO. Reliability and validity of a brief instrument for assessing post‐traumatic stress disorder. J Trauma Stress 1993;6(4):459–73. 147. Dean C. Delis, Joel H. Kramer, Edith Kaplan. The Delis Kaplan executive function system: Examiner’s manual. San Antonio, TX: The Psychological Corporation/A Harcourt Assessment Company; 2001. 148. Dean C. Delis, Joel H. Kramer, Edith Kaplan, Beth Anne Ober Thompkins. CVLT: California Verbal Learning Test-Adult Version: Manual. San Antonio, TX: The Psychological Corporation; 1987. 149. Vincent JL, Patel GH, Fox MD, et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 2007;447(7140):83–6. 102 150. Van Dijk KRA, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 2010;103(1):297–321. 151. Cordes D, Haughton VM, Arfanakis K, et al. Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 2001;22(7):1326–33. 152. Vincent JL, Kahn I, Snyder AZ, Raichle ME, Buckner RL. Evidence for a Frontoparietal Control System Revealed by Intrinsic Functional Connectivity. J Neurophysiol 2008;100(6):3328–42. 153. Touroutoglou A, Hollenbeck M, Dickerson BC, Feldman Barrett L. Dissociable large-scale networks anchored in the right anterior insula subserve affective experience and attention. Neuroimage 2012;60(4):1947–58. 154. Sun FW, Stepanovic MR, Andreano J, Barrett LF, Touroutoglou A, Dickerson BC. Youthful Brains in Older Adults: Preserved Neuroanatomy in the Default Mode and Salience Networks Contributes to Youthful Memory in Superaging. The Journal of Neuroscience 2016;36(37):9659–68. 155. Uribe C, Junque C, Gómez-Gil E, Díez-Cirarda M, Guillamon A. Brain connectivity dynamics in cisgender and transmen people with gender incongruence before gender affirmative hormone treatment. Sci Rep 2021;11(1). 156. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-Scale Network Dysfunction in Major Depressive Disorder. JAMA Psychiatry 2015;72(6):603. 157. Williams LM. Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation. Depress Anxiety 2017;34(1):9–24. 158. Koch SBJ, van Zuiden M, Nawijn L, Frijling JL, Veltman DJ, Olff M. ABERRANT RESTING-STATE BRAIN ACTIVITY IN POSTTRAUMATIC STRESS DISORDER: A META-ANALYSIS AND SYSTEMATIC REVIEW. Depress Anxiety 2016;33(7):592–605. 159. Bixo M, Ba¨ckstro¨m T, Winblad B, Andersson A. Estradiol and testosterone in specific regions of the human female brain in different endocrine states. J Steroid Biochem Mol Biol 1995;55(3–4):297–303. 160. Bixo M, Andersson A, Winblad B, Purdy RH, Bäckström T. Progesterone, 5αpregnane-3,20-dione and 3α-hydroxy-5α-pregnane-20-one in specific regions of the human female brain in different endocrine states. Brain Res 1997;764(1– 2):173–8. 161. Pletzer B, Crone JS, Kronbichler M, Kerschbaum H. Menstrual Cycle and Hormonal Contraceptive-Dependent Changes in Intrinsic Connectivity of RestingState Brain Networks Correspond to Behavioral Changes Due to Hormonal Status. Brain Connect 2016;6(7):572–85. 162. Weis S, Hausmann M, Stoffers B, Sturm W. Dynamic changes in functional cerebral connectivity of spatial cognition during the menstrual cycle. Hum Brain Mapp 2011;32(10):1544–56. 163. Lisofsky N, Mårtensson J, Eckert A, Lindenberger U, Gallinat J, Kühn S. Hippocampal volume and functional connectivity changes during the female menstrual cycle. Neuroimage 2015;118:154–62. 164. Wetherill RR, Jagannathan K, Hager N, Maron M, Franklin TR. Influence of menstrual cycle phase on resting-state functional connectivity in naturally cycling, cigarette-dependent women. Biol Sex Differ 2016;7(1):24. 165. Gawda B, Szepietowska E. Trait Anxiety Modulates Brain Activity during Performance of Verbal Fluency Tasks. Front Behav Neurosci 2016;10. 103 166. Butters MA, Bhalla RK, Andreescu C, et al. Changes in neuropsychological functioning following treatment for late-life generalised anxiety disorder. British Journal of Psychiatry 2011;199(3):211–8. 167. Sutin AR, Stephan Y, Damian RI, Luchetti M, Strickhouser JE, Terracciano A. Five-factor model personality traits and verbal fluency in 10 cohorts. Psychol Aging 2019;34(3):362–73. 168. Wetherell JL, Reynolds CA, Gatz M, Pedersen NL. Anxiety, Cognitive Performance, and Cognitive Decline in Normal Aging. J Gerontol B Psychol Sci Soc Sci 2002;57(3):P246–55. 169. Booth JE, Schinka JA, Brown LM, Mortimer JA, Borenstein AR. Five-Factor Personality Dimensions, Mood States, and Cognitive Performance in Older Adults. J Clin Exp Neuropsychol 2006;28(5):676–83. 170. Beaudreau SA, O’Hara R. The association of anxiety and depressive symptoms with cognitive performance in community-dwelling older adults. Psychol Aging 2009;24(2):507–12. 171. Bierman EJM. Effects of Anxiety Versus Depression on Cognition in Later Life. American Journal of Geriatric Psychiatry 2005;13(8):686–93. 172. Rosenberg PB, Mielke MM, Xue Q-L, Carlson MC. Depressive Symptoms Predict Incident Cognitive Impairment in Cognitive Healthy Older Women. The American Journal of Geriatric Psychiatry 2010;18(3):204–11. 173. Morssinkhof MWL, Wiepjes CM, van den Heuvel OA, et al. Changes in depression symptom profile with gender-affirming hormone use in transgender persons. J Affect Disord 2024;348:323–32. 174. Costa EMF, Mendonca BB. Clinical management of transsexual subjects. Arquivos Brasileiros de Endocrinologia & Metabologia 2014;58(2):188–96. 175. Karalexi MA, Georgakis MK, Dimitriou NG, et al. Gender-affirming hormone treatment and cognitive function in transgender young adults: a systematic review and meta-analysis. Psychoneuroendocrinology. 2020;119. 176. Kaiser RH, Andrews-Hanna JR, Wager TD, Pizzagalli DA. Large-Scale Network Dysfunction in Major Depressive Disorder. JAMA Psychiatry 2015;72(6):603. 177. Mulders PC, van Eijndhoven PF, Schene AH, Beckmann CF, Tendolkar I. Restingstate functional connectivity in major depressive disorder: A review. Neurosci Biobehav Rev 2015;56:330–44. 178. Hahn A, Stein P, Windischberger C, et al. Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. Neuroimage 2011;56(3):881–9. 179. Sripada RK, King AP, Garfinkel SN, et al. Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder. Journal of Psychiatry and Neuroscience 2012;37(4):241–9. 180. Testo AA, Makarewicz J, McGee E, Dumas JA. Estradiol associations with brain functional connectivity in postmenopausal women. Menopause 2024;31(3):218– 24. 181. Morissette M, Le Saux M, D’Astous M, et al. Contribution of estrogen receptors alpha and beta to the effects of estradiol in the brain. J Steroid Biochem Mol Biol 2008;108(3–5):327–38. 182. Votinov M, Wagels L, Hoffstaedter F, et al. Effects of exogenous testosterone application on network connectivity within emotion regulation systems. Sci Rep 2020;10(1):2352. 104 183. Bos PA, Hofman D, Hermans EJ, Montoya ER, Baron-Cohen S, van Honk J. Testosterone reduces functional connectivity during the ‘Reading the Mind in the Eyes’ Test. Psychoneuroendocrinology 2016;68:194–201. 184. Rieck J, Wrobel J, Porras AR, McRae K, Gowin JL. Neural signatures of emotion regulation. Sci Rep 2024;14(1):1775. | pt_BR |
| dc.type.degree | Doutorado | pt_BR |
| Aparece nas coleções: | Dissertação (PPgCS) | |
| Arquivo | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Tese_Clarissa de Castro Carvalho Pedreira.pdf Until 2027-09-17 | Tese de Doutorado | 10,25 MB | Adobe PDF | Visualizar/Abrir Solicitar uma cópia |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.