Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/42803
Registro completo de metadados
Campo DCValorIdioma
dc.creatorAzevedo, Adler Lima Botelho de-
dc.date.accessioned2025-09-01T13:01:48Z-
dc.date.available2025-09-01T13:01:48Z-
dc.date.issued2024-10-18-
dc.identifier.citationAZEVEDO, Adler Lima Botelho de. A importância da biocerâmica porosa de β-fosfato tricálcico (β-TCP) na reparação e regeneração óssea da osteonecrose da cabeça femoral. Orientador: Antônio Ferreira da Silva; Coorientador: Gildásio de Cerqueira Daltro. 2025. 57 f. Dissertação (Mestrado em Biotecnologia) - Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador (BA), 2025.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/42803-
dc.description.abstractThis study aims to analyze the interaction between osteoconductive ceramic and osteoinductive stem cells in the repair and regeneration process of femoral head osteonecrosis in individuals with sickle cell disease and its biofunctionality. The clinical study explores an innovative approach to treating avascular necrosis of the femoral head (ONFH) in patients with sickle cell disease. The treatment involves combining bioceramic material with bone marrow-derived mononuclear cells. A total of 24 patients with ONFH at Ficat stages I and II due to sickle cell disease were included in the study. Surgical procedures involved the insertion of a 3 mm wire to guide the surgery, followed by central decompression, bone marrow collection containing mesenchymal stem cells, and grafting of porous granules mixed with autologous bone marrow. Six months post-surgery, osteointegration of the bioceramic material was observed, with the sphericity of the femoral head maintained. Most patients remained stable and pain-free after the treatment. The study suggests that combining bone marrow-derived mononuclear cells and bioceramic material may be effective in preventing the progression of ONFH in patients with sickle cell disease. The clinical, functional, and imaging results of this study indicate successful restoration, regeneration, and function of the femoral head. This led to improved hip functionality, increased mobility, and stability in walking. Further research and larger studies are needed to confirm these promising results and to verify the effectiveness of this treatment approach.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Brasilpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectOsteonecrosept_BR
dc.subjectBiocerâmicapt_BR
dc.subjectOsteointegraçãopt_BR
dc.subjectOsseointegraçãopt_BR
dc.subjectDoença Falciformept_BR
dc.subjectAnemia Falciformept_BR
dc.subjectSistema Único de Saúdept_BR
dc.subjectSUSpt_BR
dc.subject.otherOsteonecrosispt_BR
dc.subject.otherBioceramicpt_BR
dc.subject.otherOsteointegrationpt_BR
dc.subject.otherOsseointegrationpt_BR
dc.subject.otherSickle Cell Diseasept_BR
dc.subject.otherAnemia, Sickle Cellpt_BR
dc.subject.otherUnified Health Systempt_BR
dc.subject.otherSUSpt_BR
dc.titleA importância da biocerâmica porosa de β-fosfato tricálcico (β-TCP) na reparação e regeneração óssea da osteonecrose da cabeça femoral.pt_BR
dc.title.alternativeThe importance of porous β-tricalcium phosphate (β-TCP) bioceramics in bone repair and regeneration in osteonecrosis of the femoral head.pt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-graduação em Biotecnologia (PPGBiotec) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS BIOLOGICASpt_BR
dc.contributor.advisor1Silva, Antonio Ferreira da-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-6583-2938pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6627014131017403pt_BR
dc.contributor.advisor-co1Daltro, Gildasio de Cerqueira-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0002-4802-7953pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/2392368733454753pt_BR
dc.contributor.referee1Silva, Antonio Ferreira da-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-6583-2938pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6627014131017403pt_BR
dc.contributor.referee2Santos, Marcos Malta dos-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-9580-1032pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/9757441272604994pt_BR
dc.contributor.referee3Guimarães, Jane Mary de Medeiros-
dc.contributor.referee3IDhttps://orcid.org/0000-0002-9538-2675pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/4336422711827897pt_BR
dc.creator.IDhttps://orcid.org/0000-0001-7325-7390pt_BR
dc.creator.Latteshttps://lattes.cnpq.br/2843444522581622pt_BR
dc.description.resumoEste estudo tem como objetivo verificar a eficácia da interação entre uma cerâmica osteocondutiva e células-tronco osteoindutivas no processo de reparação e regeneração da osteonecrose da cabeça femoral em pacientes com doença falciforme, através de uma abordagem inovadora para o tratamento da necrose avascular da cabeça do fêmur (ONFH). O tratamento envolve a combinação de material biocerâmico e células mononucleares derivadas da medula óssea. Um total de 24 pacientes com ONFH nos estágios I e II de Ficat, devido à doença falciforme, foram incluídos no estudo. Os procedimentos cirúrgicos consistiram na inserção de um fio de 3 mm para guiar a cirurgia, seguido de descompressão central, coleta de medula óssea contendo células-tronco mesenquimais e o enxerto de grânulos porosos misturados com medula óssea autóloga. Seis meses após a cirurgia, observou-se a osteointegração do material biocerâmico, com a esfericidade da cabeça do fêmur preservada. A maioria dos pacientes permaneceu estável e sem dor após o tratamento. O estudo sugere que a combinação de células mononucleares derivadas da medula óssea e material biocerâmico pode ser eficaz na prevenção da progressão da ONFH em pacientes com doença falciforme. Os resultados clínicos, funcionais e de imagem indicam a restauração, regeneração e função bem-sucedidas da cabeça do fêmur, resultando em melhor funcionalidade do quadril, maior mobilidade e estabilidade na marcha. Pesquisas adicionais e estudos mais amplos são necessários para confirmar esses resultados promissores, assim como verificar a eficácia dessa abordagem de tratamento.pt_BR
dc.publisher.departmentInstituto de Ciências da Saúde - ICSpt_BR
dc.relation.referencesABE, Y.; KOKUBO, T.; YAMAMURO, T. Apatite coating on ceramics, metals and polymers utilizing a biological process. Journal of materials science: Materials in medicine, v. 1, p. 233-238, 1990. AL OMRAN, Abdullah. Multiple drilling compared with standard core decompression for avascular necrosis of the femoral head in sickle cell disease patients. Archives of orthopaedic and trauma surgery, v. 133, p. 609-613, 2013. ANDIA, D. C.; CERRI, P. S.; SPOLIDORIO, L. C. Tecido ósseo: aspectos morfológicos e histofisiológicos. Revista de Odontologia da UNESP, Araraquara, v. 35, n. 2, p. 191-198, 2006. ANDERSON, J. M.; SHIVE, M. S. Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews, v. 28, n. 1, p. 5-24, 1997. APARECIDA, A. A.; PETRI, D. F. S.; ZAVAGLIA, C. A. C.; DUEK, E. A. R. Biocomposites based on polypropylene and hydroxyapatite for medical applications. Materials Science and Engineering: C, v. 27, n. 2, p. 345-349, 2007. ARABIAN, K. et al. Advances in 3D-printed bioceramic scaffolds for bone regeneration. Applied Surface Science Advances, v. 7, p. 100205, 2021. ASTM INTERNATIONAL. ASTM F2150-19: Standard Guide for Characterization and Testing of Biomaterial Scaffolds Used in Regenerative Medicine and Tissue-Engineered Medical Products. West Conshohocken, PA: ASTM International, 2019. BAI, F.; WANG, Z.; LU, J. et al. A correlação entre a estrutura interna e a vascularização de materiais biocerâmicos porosos controláveis in vivo: um estudo quantitativo. Tissue Engineering Part A, v. 16, n. 12, p. 3791-3803, 2010. BERTRAM, J. E.; GOSLINGS, W. R.; HAINES, D. V. Anatomy of the human body. 4. ed. Elsevier, 2018. BOHNER, M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury, v. 31, p. D37-D47, 2000. BOHNER, M.; GALEA, L.; DOEBELIN, N. Calcium phosphate bone graft substitutes: Failures and hopes. Journal of the European Ceramic Society, 2005. BOSCHI, A. O. Biomateriais na ortopedia. Acta Ortopédica Brasileira, v. 3, n. 1, p. 8-16, 1995. BOSE, S.; VAHABZADEH, S.; BANDYOPADHYAY, A. Bone tissue engineering using 3D printing. Materials Today, v. 16, n. 12, p. 496-504, 2013. BRANEMARK, P.-I. Osseointegration and its experimental background. The Journal of Prosthetic Dentistry, v. 50, n. 3, p. 399-410, 1983. CHARNLEY, J. Low friction arthroplasty of the hip: theory and practice. Springer Science & Business Media, 2012. CHEVALIER, J. What future for zirconia as a biomaterial? Biomaterials, v. 27, n. 4, p. 535-543, 2006. CHUNG, S. M.; RALSTON, E. L. Necrosis of the femoral head associated with sickle-cell anemia and its genetic variants: A review of the literature and study of thirteen cases. JBJS, v. 51, n. 1, p. 33-58, 1969. DALTRO, Gildásio Cerqueira et al. Tratamento da osteonecrose da cabeça femoral com células progenitoras autólogas em anemia falciforme. Acta Ortopédica Brasileira, v. 16, p. 23-27, 2008. DALTRO, G. et al. Osteonecrose da cabeça femoral na anemia falciforme. Gazeta Médica da Bahia, n. 3, 2010. DALTRO, G. C. et al. Efficacy of autologous stem cell-based therapy for osteonecrosis of the femoral head in sickle cell disease: a five-year follow-up study. Stem Cell Research & Therapy, v. 6, p. 1-18, 2015. DALTRO, Paula Braga. Scaffold nanoestruturado utilizando-se celulose bacteriana/fosfatos de cálcio para regeneração óssea. 2015. DESCAMPS, M. et al. Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural. Ceramics International, v. 34, n. 5, p. 1131-1137, 2008. DIGGS, L. W. Bone and joint lesions in sickle-cell disease. Clinical Orthopaedics and Related Research®, v. 52, p. 119-144, 1967. DICKENS, B.; SCHROEDER, L. W.; BROWN, W. E. Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3 (PO4) 2. The crystal structure of pure β-Ca3 (PO4) 2. Journal of Solid State Chemistry, v. 10, n. 3, p. 232-248, 1974. DOROZHKIN, S. V. Calcium orthophosphates in nature, biology and medicine. Materials, v. 2, n. 2, p. 399-498, 2007. DOROZHKIN, S. V. Bioceramics of calcium orthophosphates. Biomaterials, v. 31, n. 7, p. 1465-1485, 2010. DOROZHKIN, S. V. Calcium orthophosphate-based biocomposites and hybrid biomaterials. Journal of Materials Science, v. 46, n. 9, p. 2641-2662, 2011. DRAGON, R. L.; VOGL, W.; MITCHELL, A. W. M. Gray's anatomy for students. 3. ed. Elsevier, 2014. FANG, T.; ZHANG, E. W.; SAILES, F. C. Autologous bone marrow mononuclear cell implantation therapy is an effective treatment for the patients with osteonecrosis of the femoral head. Current Stem Cell Research & Therapy, v. 13, n. 6, p. 441-447, 2018. FRIEDENSTEIN, A. J.; PIATETZKY-SHAPIRO, I. I.; PETRAKOVA, K. V. Osteogenesis in transplants of bone marrow cells. Development, v. 16, n. 3, p. 381-390, 1966. GANGJI, V. et al. Autologous bone marrow cell implantation in the treatment of non-traumatic osteonecrosis of the femoral head: five-year follow-up of a prospective controlled study. Bone, v. 49, n. 7, p. 1005-1009, 2011. GARCIA, A. P.; SILVA, R. M. Environmental Factors and Their Impact on Femoral Head Osteonecrosis. Journal of Orthopedic Research, v. 45, n. 3, p. 257-263, 2018. GARDNER, E.; GRAY, D. J.; O'RAHILLY, R. Anatomia: estudo regional do corpo humano. 4. ed. Rio de Janeiro: Guanabara Koogan, 1988. GEETHA, M. et al. Ti based biomaterials, the ultimate choice for orthopaedic implants–A review. Progress in Materials Science, v. 54, n. 3, p. 397-425, 2009. GRAY, H.; DRAKE, V. A.; WAUGH, A. Anatomy of the human body. 5. ed. Elsevier, 2020. HELMUS, M. N.; TWEDEN, K. S. An introduction to biomaterials. World Scientific, 1995. HERNIGOU, P. et al. Percutaneous implantation of autologous bone marrow osteo progenitor cells as treatment of bone avascular necrosis related to sickle cell disease. Open Orthop J, v. 2, p. 62-65, 2008. HERNIGOU, P. et al. The natural history of symptomatic osteonecrosis in adults with sickle-cell disease. Journal of Bone and Joint Surgery. American Volume, v. 85-A, n. 3, p. 500-504, 2003. HERNIGOU, P.; BACHIR, D.; GALACTEROS, F. Avascular necrosis of the femoral head in sickle-cell disease. Treatment of collapse by the injection of acrylic cement. The Journal of Bone & Joint Surgery British Volume, v. 75, n. 6, p. 875-880, 1993. HERNIGOU, P.; BEAUJEAN, F. Treatment of osteonecrosis with autologous bone marrow grafting. Clinical Orthopaedics and Related Research, v. 405, p. 14-23, 2002. HERNIGOU, P. et al. The natural history of asymptomatic osteonecrosis of the femoral head in adults with sickle cell disease. The Journal of Bone & Joint Surgery, v. 97, n. 5, p. 305-310, 2015. HSIEH, M. F. et al. Phase purity of sol-gel-derived hydroxyapatite ceramic. Biomaterials, v. 22, n. 19, p. 2601-2607, 2001. ISO. ISO 6872:2015 Dentistry - Ceramic materials. Geneva: International Organization for Standardization, 2015. ISSA, K. et al. Osteonecrosis of the femoral head: the total hip replacement solution. The Bone & Joint Journal, v. 95, n. 11_Supple_A, p. 46-50, 2013. JONES, L. C.; HUNGERFORD, D. S. Osteonecrosis: etiology, diagnosis, and treatment. Instructional Course Lectures, v. 53, p. 371-386, 2004. JUDAS, F. et al. Estrutura e dinâmica do tecido ósseo. Texto de apoio para os alunos do Mestrado Integrado em Medicina Disciplina de Ortopedia. Coimbra: Faculdade de Medicina da Universidade de Coimbra, 2012. KARAGEORGIOU, V.; KAPLAN, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, v. 26, n. 27, p. 5474-5491, 2005. KIERSZENBAUM, Abraham L. Histologia e biologia celular: uma introdução à patologia. Elsevier, 2008. KIM, S. Y. et al. Multiple drilling compared with core decompression for the treatment of osteonecrosis of the femoral head. International Orthopaedics, v. 36, n. 11, p. 2127-2132, 2012. KURTZ, S. M.; EDIDIN, A. A.; BARTEL, D. L. The role of backside cement on damage development in UHMWPE acetabular cups. Biomaterials, v. 23, n. 12, p. 2329-2336, 2002. LANGER, R.; PEPPAS, N. A. Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials, v. 2, n. 4, p. 201-214, 1981. LANGER, R.; TIRRELL, D. A. Designing materials for biology and medicine. Nature, v. 428, n. 6982, p. 487-492, 2004. LEGEROS, R. Z. Calcium phosphate-based osteoinductive materials. Chemical Reviews, v. 108, n. 11, p. 4742-4753, 2008. LUKIĆ, M. et al. Dense fine-grained biphasic calcium phosphate (BCP) bioceramics designed by two-step sintering. Journal of the European Ceramic Society, v. 31, n. 1-2, p. 19-27, 2011. MA, Y. et al. Efficacy of autologous bone marrow buffy coat grafting combined with core decompression in patients with avascular necrosis of femoral head: a prospective, double-blinded, randomized, controlled study. MAHADEO, K. M. et al. Increased prevalence of osteonecrosis of the femoral head in children and adolescents with sickle cell disease. The American Journal of Hematology, v. 86, n. 10, p. 806-808, 2011. MARTÍ-CARVAJAL, A. J. et al. Treatment for avascular necrosis of bone in people with sickle cell disease. Cochrane Database of Systematic Reviews, v. 2011, n. 6, p. CD007263, 2011. MARTINS, R. F. Estudo do comportamento mecânico de um biomaterial de carbono para implantes ósseos. 2010. Dissertação (Mestrado em Engenharia Biomédica) - Universidade Federal de São Carlos, São Carlos, 2010. MCGRATH, T.; CORBETT, J. Implant materials: Bioceramics and biodegradable metals. In: Biomaterials science: An introduction to materials in medicine. Elsevier, 2013. MIYAHARA, Helder de Souza et al. Osteonecrosis of the Femoral Head: Update Article. Revista Brasileira de Ortopedia, v. 57, p. 351-359, 2022. MOORE, K. L.; DALLEY, A. F. Moore Anatomia. 2014. MOSEKE, C.; GBURECK, U. Tetracalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomaterialia, v. 6, n. 10, p. 3815-3823, 2010. MOURA, P. R.; MENDONÇA, J. M.; TAVARES, J. M. Propriedades biomecânicas de biomateriais na regeneração óssea. Journal of Biomechanics, v. 42, n. 14, p. 2362-2371, 2009. MUNIN, E.; AGOSTINI, C. G.; KRAWCZYK, E. M. Effects of biomaterials in bone healing processes. BioMed Research International, v. 2014, p. 1-7, 2014. NACIF, S. M. et al. Osteonecrosis of the femoral head and its relation to sickle-cell disease. The Journal of Bone & Joint Surgery, v. 82, n. 7, p. 1049-1058, 2000. NEVILLE, B. W. et al. Patologia Oral e Maxilofacial. 3 ed. Rio de Janeiro: Elsevier, 2009. NICKEL, R. J. et al. Evaluation of material properties of femoral head implants for hip replacement. Journal of Biomechanical Engineering, v. 127, n. 1, p. 103-109 NIEMEYER, J. C. et al. Ensaio de comportamento de fuga. 2019. NIINOMI, Mitsuo. Recent metallic materials for biomedical applications. Metallurgical and materials transactions A, v. 33, p. 477-486, 2002. PALACIOS, Rosario P. et al. Retention of zirconium oxide ceramic crowns with three types of cement. The Journal of prosthetic dentistry, v. 96, n. 2, p. 104-114, 2006. PAPAIOANNOU, N. A. et al. The role of vascularized bone grafting in the treatment of avascular necrosis of the femoral head: A systematic review and meta-analysis. Bone & Joint Journal, v. 96-B, n. 1, p. 104-113, 2014. PEKKALA, K.; PELLEGRINI, G.; KUMAR, A. Bone repair using biodegradable scaffolds: Current practices and future perspectives. Biomedical Engineering Reviews, v. 9, n. 4, p. 245-264, 2014. PRAKASH, J. S. et al. Osteonecrosis of the femoral head in sickle cell disease: A review of current management strategies. Orthopedic Clinics of North America, v. 48, n. 3, p. 329-342, 2017. QUINN, G. D.; QUINN, J. B. A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dental Materials, v. 26, n. 2, p. 135-147, 2010. RATNER, Buddy D. et al. Biomaterials science: an introduction to materials in medicine. Elsevier, 2004. SAAD, R. Evaluation of bone regeneration using synthetic bioceramics in orthopedic applications. Biomaterials Research, v. 18, n. 2, p. 120-132, 2022. SHIMIZU, T. et al. Role of biocompatible polymers in the development of new biomaterials. Journal of Biomedical Materials Research, v. 47, n. 3, p. 351-358, 1999. SILVA, A. et al. Development of bone tissue engineering scaffolds using 3D printing techniques: A review. Journal of Orthopaedic Research, v. 35, n. 4, p. 599-611, 2017. TAN, W. et al. Biodegradable polymeric scaffolds for bone tissue engineering: A review. Acta Biomaterialia, v. 5, n. 8, p. 3061-3072, 2009. TRUNZO, J. A. et al. Use of calcium phosphate ceramics for bone repair: A review. Materials Science and Engineering: C, v. 29, n. 2, p. 117-126, 2009. WANG, X. et al. Clinical outcomes of core decompression for the treatment of avascular necrosis of the femoral head: A systematic review. Journal of Orthopaedic Surgery and Research, v. 9, p. 39, 2014. XIE, X. et al. Novel biomaterials for bone regeneration: Review and future directions. Biomaterials, v. 26, n. 34, p. 6868-6882, 2005. YOSHIMURA, M. et al. Hydrothermal synthesis of biocompatible whiskers. Journal of Materials Science, v. 29, n. 13, p. 3399-3402, 1994.pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece nas coleções:Dissertação (PPGBiotec)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Carta_de_Aprovacao_Dissertacao_3_29_assinado.pdf179,17 kBAdobe PDFVisualizar/Abrir
Dissertacao_Adler_Azevedo (2).pdfDissertação assinada4,75 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.