Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufba.br/handle/ri/42684
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.creatorBorba, Pedro Brito-
dc.date.accessioned2025-08-07T18:40:11Z-
dc.date.available2025-08-07T18:40:11Z-
dc.date.issued2024-07-03-
dc.identifier.citationSOUZA, Maiara Ferreira de. Tumor de células renais papilífero de células claras: presença de cápsula, cistificação e expressão de Gata3. Orientador: Daniel Abensur Athanazio. 2024. 83 f. Tese (Doutorado em Patologia Humana Experimental) - Faculdade de Medicina da Bahia, Universidade Federal da Bahia; Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador (BA), 2024.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/42684-
dc.description.abstractINTRODUCTION: Leishmaniasis is an endemic disease in Brazil, with Cutaneous Leishmaniasis (CL) being the most prevalent clinical form, characterized by a localized ulcer with high inflammatory activity. The first-choice treatment recommended by the Ministry of Health is meglumine antimoniate (MA), administered intravenously or intramuscularly for 20 consecutive days. However, the treatment with MA has limitations, including a low cure rate (50-60%) and toxicity, necessitating the search for new therapeutic approaches. Bacterial cellulose (BC) is formed by a network of cellulose fibrils, and its physicochemical properties allow it to be used as a biocurative for ulcer treatment. BC also enables the anchorage of molecules with therapeutic potential, functioning as a delivery system. In this context, we observed that sodium diethyldithiocarbamate (DETC), a SOD-1 inhibitor, was capable of reducing the parasite load in vitro and modulating lesion development in a preclinical model of cutaneous leishmaniasis caused by Leishmania braziliensis. OBJECTIVES: In this work, we aim to characterize the physicochemical properties and stability of CB-DETC biodressings and evaluate, through proof-of-concept clinical trials, the efficacy of BC biodressings as an additive treatment to AM in patients with LT caused by L. braziliensis.. MATERIALS/METHODS: Initially, we investigated the characteristics of BC-DETC using scanning electron microscopy and crystallographic profiling. We also assessed the release of DETC from the biocuratives, quantified the mass of DETC by spectrophotometry, and conducted a thermal analysis by thermogravimetry. Clinical trials were conducted in Corte de Pedra, an endemic area for CL. In the first trial, recruited patients were divided into two groups: the control group received conventional MA treatment, and the test group received MA along with topical application of BC. Both groups were treated for 20 days, and the biocuratives were replaced every two days. Cure rate, healing time, and adverse effects were evaluated at different times (15, 60, and 90 days after the end of treatment). In the second trial, we repeated the test and control groups and added a placebo group, which was treated with MA and a gauze dressing instead of BC. RESULTS: The images obtained by SEM and the crystallographic pattern of BC-DETC show that DETC is well incorporated into BC. However, release and mass quantification assays of DETC indicated instability and possible degradation, suggesting the need to stabilize DETC to sustain its release in vivo. Considering the therapeutic potential of BC, we conducted a clinical trial to evaluate the efficacy of the combined use of BC+MA. In this trial, patients treated with MA+BC showed a higher cure rate at the initial time point (60 days after the start of treatment) (p=0.01). No local adverse effects from the topical application of BC were reported, demonstrating the safety of the treatment. In the second trial, which also included a placebo group, we observed a reduction in healing time in the test and placebo groups and a reduction in the inflammatory mediator IL-1α in the test group. CONCLUSIONS: The BC-DETC system was found to be unstable for clinical applications. However, the BC biocurative combined with MA increases the cure rate in patients with CL and reduces healing time and important inflammatory mediators in CL. Modifications to the BC-DETC system should be made to enhance its stability. On the other hand, the BC biocurative shows potential for incorporation into clinical practice, positively impacting the resolution of CL.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.description.sponsorshipInstituto Nacional de Ciência e Tecnologia em Doenças tropicais (INCT-DT)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectLeishmaniose cutâneapt_BR
dc.subjectBiocurativpt_BR
dc.subjectTratamento tópicopt_BR
dc.subjectDietilditiocarbamatopt_BR
dc.subject.otherCutaneous leishmaniasispt_BR
dc.subject.otherBiocurativept_BR
dc.subject.otherTopical treatmentpt_BR
dc.subject.otherDiethyldithiocarbamatept_BR
dc.titleAvaliação da capacidade cicatrizante de biocurativos de celulose bacteriana no tratamento da leishmaniose tegumentarpt_BR
dc.title.alternativeEvaluation of the healing capacity of bacterial cellulose biodressings in the treatment of cutaneous leishmaniasispt_BR
dc.typeTesept_BR
dc.publisher.programPós-Graduação em Patologia Humana e Patologia Experimental (PGPAT) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCiências Biológicaspt_BR
dc.contributor.advisor1Oliveira, Camila Indiani de-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-7868-5164pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5692825410779014pt_BR
dc.contributor.referee1Cardoso, Luciana Santos-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-9195-451Xpt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/7124399110449013pt_BR
dc.contributor.referee2Veras, Patrícia Sampaio Tavares-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5618495903090773pt_BR
dc.contributor.referee3Moreira, Diogo Rodrigo de Magalhães-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3413259037836385pt_BR
dc.contributor.referee4Brodskyn, Cláudia Ida-
dc.contributor.referee4IDhttps://orcid.org/0000-0003-3367-5365pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/8510726976369443pt_BR
dc.contributor.referee5Oliveira, Camila Indiani de-
dc.contributor.referee5IDhttps://orcid.org/0000-0002-7868-5164pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/5692825410779014pt_BR
dc.creator.IDhttps://orcid.org/0000-0001-5659-8943pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/8874977566421101pt_BR
dc.description.resumoINTRODUÇÃO: A leishmaniose é uma doença endêmica no Brasil e a Leishmaniose Tegumentar é a forma clínica mais prevalente, caracterizada pela presença de uma úlcera localizada, com alta resposta inflamatória. O tratamento de primeira escolha, preconizado pelo Ministério da Saúde é antimoniato de meglumina (AM), aplicado por via endovenosa ou intramuscular, durante 20 dias consecutivos. Entre as limitações observadas para o tratamento com MA temos uma baixa taxa de cura (50-60%) além da toxicidade, exigindo, assim, a busca por novas abordagens terapêuticas. A celulose bacteriana (CB) é formada por uma rede de fibrilas de celulose e suas características físico-químicas permitem que esta seja utilizada como um biocurativo para o tratamento de úlceras. A CB também permite a ancoragem de moléculas com potencial terapêutico, funcionando como um sistema de delivery. Neste sendito, observamos que o dietilditiocarbamato de sódio (DETC), um inibidor da SOD-1, foi capaz de reduzir a carga parasitária in vitro e de modular o desenvolvimento da lesão em modelo pré-clínico de leishmaniose tegumentar causado por Leishmania braziliensis. OBJETIVOS: Neste trabalho, temos como objetivo caracterizar as propriedades físico-químicas e a estabilidade de biocurativos de CB-DETC e avaliar, através de ensaios clínicos prova de conceito, a eficácia dos biocurativos de BC como tratamento aditivo ao AM em pacientes com LT causada por L. braziliensis. MATERIAIS/MÉTODOS: Inicialmente, investigamos as características da CB-DETC por meio de microscopia eletrônica de varredura e perfil cristalográfico. Avaliamos também a liberação do DETC a partir os biocurativos, quantificamos a massa de DETC por espectrofotometria e realizamos uma análise térmica por termogravimetria. Os ensaios clínicos foram realizados em Corte de Pedra, área endêmica de LT. No primeiro ensaio, os pacientes recrutados foram divididos em dois grupos: o grupo controle recebeu o tratamento convencional com AM e o grupo teste recebeu AM juntamente com a aplicação tópica de CB. Ambos os grupos foram tratados por 20 dias e os biocurativos foram substituídos a cada dois dias. A taxa de cura, o tempo de cicatrização e os efeitos adversos foram avaliados em diferentes tempos (15 dias, 60 dias e 90 dias após fim do tratamento). No segundo ensaio, repetimos os grupos teste e controle e adicionamos um grupo placebo, o qual foi tratado com AM e um curativo de gaze, ao invés de BC. RESULTADOS: as imagens obtidas por MEV e o padrão cristalográfico da CB-DETC mostram que o DETC é bem incorporado à BC. Os ensaios de liberação e quantificação da massa de DETC indicaram, no entanto, instabilidade e possível degradação, sugerindo a necessidade de estabilização do DETC de modo a sustentar a sua liberação in vivo. Levando em conta o potencial terapêutico da CB, realizamos um ensaio clínico para avaliar a eficácia do uso combinado de CB+AM. Neste ensaio, os pacientes tratados com AM+CB apresentaram uma maior taxa de cura no tempo inicial (60 dias após o início do tratamento) (p=0,01). Efeitos adversos locais, proveniente da aplicação tópica da CB não foram relatados, demonstrando a segurança do tratamento. No segundo ensaio, empregando um grupo placebo, uma redução no tempo de cicatrização nos grupos teste e placebo e uma redução no mediador inflamatório IL-1α no grupo teste. CONCLUSÕES: O sistema CB-DETC se apresentou instável para uso em aplicações clínicas. No entanto, o biocurativo de CB em associação ao AM aumenta a taxa de cura em pacientes com LT e redução no tempo de cicatrização e de mediadores inflamatórios importantes na LT. Modificações no sistema CB-DETC devem ser realizadas a fim de aumentar a sua estabilidade. Por outro lado, o biocurativo de CB apresenta potencial para incorporação na prática clínica, impactando positivamente na resolução da LT.pt_BR
dc.publisher.departmentFaculdade de Medicina da Bahiapt_BR
dc.relation.referencesABOELNAGA, A. et al. Microbial cellulose dressing compared with silver sulphadiazine for the treatment of partial thickness burns: A prospective, randomised, clinical trial. Burns, v. 44, n. 8, p. 1982–1988, 2018. ADEPU, S.; KHANDELWAL, M. Ex-situ modification of bacterial cellulose for immediate and sustained drug release with insights into release mechanism. Carbohydrate Polymers, v. 249, p. 116816, 2020. AKHOUNDI, M. et al. Leishmania infections: Molecular targets and diagnosis. Molecular Aspects of Medicine, v. 57, p. 1–29, 2017. ALKHAWAJAH, A. M. et al. Treatment of cutaneous leishmaniasis with antimony: Intramuscular versus intralesional administration. Annals of Tropical Medicine and Parasitology, v. 91, n. 8, p. 899–905, 1997. ALMEIDA, R. et al. Randomized, double-blind study of stibogluconate plus human granulocyte macrophage colony-stimulating factor versus stibogluconate alone in the treatment of cutaneous leishmaniasis. Journal of Infectious Diseases, v. 180, n. 5, p. 1735– 1737, 1999. ALMEIDA, R. P. et al. Successful treatment of refractory cutaneous leishmaniasis with GMCSF and antimonials. The American journal of tropical medicine and hygiene, v. 73, n. 1, p. 79–81, jul. 2005. ALRAJHI ABDULRAHMAN A. et al. Fluconazole for the Treatment of Cutaneous Leishmaniasis Caused by Leishmania major. New England Journal of Medicine, v. 346, n. 12, p. 891–895, [s.d.]. AMORIM, C. F. et al. Variable gene expression and parasite load predict treatment outcome in cutaneous leishmaniasis. Science Translational Medicine, v. 11, n. 519, p. eaax4204, 20 nov. 2019. ANDERSEN, E. M. et al. Comparison of meglumine antimoniate and pentamidine for Peruvian cutaneous leishmaniasis. American Journal of Tropical Medicine and Hygiene, v. 72, n. 2, p. 133–137, 2005. ANNALORO, C. et al. Retrospective evaluation of amphotericin B deoxycholate toxicity in a single centre series of haematopoietic stem cell transplantation recipients. Journal of Antimicrobial Chemotherapy, v. 63, n. 3, p. 625–626, 2009. ASILIAN, A. et al. Treatment of cutaneous leishmaniasis with aminosidine (paromomycin) ointment: Double-blind, randomized trial in the Islamic Republic of Iran. Bulletin of the World Health Organization, v. 81, n. 5, p. 353–359, 2003. ASILIAN, A. et al. Comparative study of the efficacy of combined cryotherapy and intralesional meglumine antimoniate (Glucantime®) vs. cryotherapy and intralesional meglumine antimoniate (Glucantime®) alone for the treatment of cutaneous leishmaniasis. International Journal of Dermatology, v. 43, n. 4, p. 281–283, 1 abr. 2004. 65 AZIM, M. et al. Therapeutic advances in the topical treatment of cutaneous leishmaniasis: A review. PLoS Neglected Tropical Diseases, v. 15, n. 3, p. 1–15, 2021. BANERJEE, P. et al. Integrating the drug, disulfiram into the vitamin E-TPGS-modified PEGylated nanostructured lipid carriers to synergize its repurposing for anti-cancer therapy of solid tumors. International Journal of Pharmaceutics, v. 557, n. November 2018, p. 374– 389, 2019. BARUD, H. S. et al. Thermal characterization of bacterial cellulose-phosphate composite membranes. Journal of Thermal Analysis and Calorimetry, v. 87, n. 3, p. 815–818, 2007. BAYAZIDI, P.; ALMASI, H.; ASL, A. K. Immobilization of lysozyme on bacterial cellulose nanofibers: Characteristics, antimicrobial activity and morphological properties. International Journal of Biological Macromolecules, v. 107, p. 2544–2551, 2018. BELO, V. S. et al. Temporal patterns, spatial risks, and characteristics of tegumentary leishmaniasis in Brazil in the first twenty years of the 21st Century. PLOS Neglected Tropical Diseases, v. 17, n. 6, p. e0011405, 7 jun. 2023. BODIN, A. et al. Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials, v. 31, n. 34, p. 8889–8901, 2010. CALVOPINA, M. et al. Atypical clinical variants in new world cutaneous leishmaniasis: Disseminated, erysipeloid, and recidiva cutis due to Leishmania (V.) panamensis. American Journal of Tropical Medicine and Hygiene, v. 73, n. 2, p. 281–284, 2005. CARDOSO THIAGO MARCONI et al. Protective and Pathological Functions of CD8+ T Cells in Leishmania braziliensis Infection. Infection and Immunity, v. 83, n. 3, p. 898–906, 13 fev. 2015. CARNEIRO, P. P. et al. Blockade of TLR2 and TLR4 Attenuates Inflammatory Response and Parasite Load in Cutaneous Leishmaniasis. Frontiers in Immunology, v. 12, 2021. CARVALHO, A. M. et al. Glyburide, a NLRP3 Inhibitor, Decreases Inflammatory Response and Is a Candidate to Reduce Pathology in Leishmania braziliensis Infection. Journal of Investigative Dermatology, v. 140, n. 1, p. 246- 249.e2, 1 jan. 2020. CARVALHO, A. M. et al. In Situ versus Systemic Immune Response in the Pathogenesis of Cutaneous Leishmaniasis. Pathogens, v. 13, n. 3, 2024. CARVALHO, A. M.; BACELLAR, O.; CARVALHO, E. M. Protection and Pathology in Leishmania braziliensis Infection. Pathogens, v. 11, n. 4, p. 466, 14 abr. 2022. CARVALHO, T. et al. Latest Advances on Bacterial Cellulose-Based Materials for Wound Healing, Delivery Systems, and Tissue Engineering. Biotechnology Journal, v. 14, n. 12, p. 1–19, 2019. 66 CAVALCANTI, L. M. et al. Efficacy of bacterial cellulose membrane for the treatment of lower limbs chronic varicose ulcers: a randomized and controlled trial. Revista do Colégio Brasileiro de Cirurgiões, v. 44, p. 72–80, 2017. CELES, F. S. et al. DETC-based bacterial cellulose bio-curatives for topical treatment of cutaneous leishmaniasis. Scientific Reports, v. 6, n. iii, p. 1–11, 2016. CHANG, C.; ZHANG, L. Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers, v. 84, n. 1, p. 40–53, 11 fev. 2011. CHRUSCIAK-TALHARI, A. et al. Randomized controlled clinical trial to access efficacy and safety of miltefosine in the treatment of cutaneous leishmaniasis caused by Leishmania (Viannia) guyanensis in Manaus, Brazil. American Journal of Tropical Medicine and Hygiene, v. 84, n. 2, p. 255–260, 2011. CINCURÁ, C. et al. Mucosal leishmaniasis: A retrospective study of 327 cases from an endemic area of Leishmania (Viannia) braziliensis. American Journal of Tropical Medicine and Hygiene, v. 97, n. 3, p. 761–766, 2017. COSER, E. M. et al. Activity of paromomycin against Leishmania amazonensis: Direct correlation between susceptibility in vitro and the treatment outcome in vivo. International Journal for Parasitology: Drugs and Drug Resistance, v. 14, n. June, p. 91–98, 2020. CROFT, S. L.; COOMBS, G. H. Leishmaniasis– current chemotherapy and recent advances in the search for novel drugs. Trends in Parasitology, v. 19, n. 11, p. 502–508, 1 nov. 2003. DAS, A.; PLOTKIN, S. S. SOD1 exhibits allosteric frustration to facilitate metal binding affinity. Proceedings of the National Academy of Sciences of the United States of America, v. 110, n. 10, p. 3871–3876, 2013. DINARELLO, C. A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunological Reviews, v. 281, n. 1, p. 8–27, 1 jan. 2018. DYDAK, K. et al. In Vitro Cytotoxicity, Colonization by Fibroblasts and Antimicrobial Properties of Surgical Meshes Coated with Bacterial Cellulose. 2022. EL DAROUTI, M. A.; AL RUBAIE, S. M. Cutaneous Leishmaniasis. International Journal of Dermatology, v. 29, n. 1, p. 56–59, 1 jan. 1990. FARIA, J. et al. Cellulose acetate fibres loaded with daptomycin for metal implant coatings. Carbohydrate Polymers, v. 276, n. October 2021, 2022. FARIAS AMORIM, C. et al. Multiomic profiling of cutaneous leishmaniasis infections reveals microbiota-driven mechanisms underlying disease severity. Science Translational Medicine, v. 15, n. 718, p. eadh1469, 2024. FERREIRA, L. S. et al. In Vitro Skin Permeation and Retention of Paromomycin from Liposomes for Topical Treatment of the Cutaneous Leishmaniasis. Drug Development and Industrial Pharmacy, v. 30, n. 3, p. 289–296, 2004. 67 FRANÇA-COSTA, J. et al. Differential Expression of the Eicosanoid Pathway in Patients With Localized or Mucosal Cutaneous Leishmaniasis. The Journal of Infectious Diseases, v. 213, n. 7, p. 1143–1147, 1 abr. 2016. FOWLER, E. A. et al. Neutrophil-mediated hypoxia drives pathogenic CD8+ T cell responses in cutaneous leishmaniasis. The Journal of Clinical Investigation, v. 134, n. 14, 15 jul. 2024. FU, L. et al. Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. Journal of Materials Chemistry, v. 22, n. 24, p. 12349–12357, 2012. FU, L.; ZHANG, J.; YANG, G. Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydrate Polymers, v. 92, n. 2, p. 1432–1442, 15 fev. 2013. GONTIJO, B.; CARVALHO, M. DE L. R. American cutaneous leishmaniasis. Revista da Sociedade Brasileira de Medicina Tropical, v. 36, n. 1, p. 71–80, 2003. GOTO, H.; LINDOSO, J. A. L. Current diagnosis and treatment of cutaneous and mucocutaneous leishmaniasis. Expert Review of Anti-Infective Therapy, v. 8, n. 4, p. 419– 433, 2010. HENDRICKX, S. et al. Experimental selection of paromomycin resistance in leishmania donovani amastigotes induces variable genomic polymorphisms. Microorganisms, v. 9, n. 8, 2021. HERWALDT, B. L.; BERMAN, J. D. Recommendations for Treating Leishmaniasis with Sodium Stibogluconate (Pentostam) and Review of Pertinent Clinical Studies. The American Journal of Tropical Medicine and Hygiene, v. 46, n. 3, p. 296–306, 1992. H.R.N ALVES et al. Clinical experiences of using a cellulose dressing on burns and donor site wounds. Journal of Wound Care, v. 18, n. 1, p. 27–30, 2009. HSU, C. et al. The Antimicrobial Effects of Bacterial Cellulose Produced by Komagataeibacter intermedius in Promoting Wound Healing in Diabetic Mice. 2022. HUMERES, E. et al. Mechanisms of acid decomposition of dithiocarbamates. 1. Alkyl dithiocarbamates. Journal of Organic Chemistry, v. 63, n. 5, p. 1598–1603, 1998. JOHANSSON, B. A review of the pharmacokinetics and pharmacodynamics of disulfiram and its metabolites. Acta Psychiatrica Scandinavica, v. 86, n. 369 S, p. 15–26, 1992. KHOURI, R. et al. IFN- Impairs Superoxide-Dependent Parasite Killing in Human Macrophages: Evidence for a Deleterious Role of SOD1 in Cutaneous Leishmaniasis. The Journal of Immunology, v. 182, n. 4, p. 2525–2531, 2009. KHOURI, R. et al. DETC induces Leishmania parasite killing in human invitro and murine in vivo models: A promising therapeutic alternative in leishmaniasis. PLoS ONE, v. 5, n. 12, p. 8–9, 2010. 68 KLEMM, D. et al. Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie - International Edition, v. 44, n. 22, p. 3358–3393, 2005. KLEMM, D. et al. Nanocelluloses: A new family of nature-based materials. Angewandte Chemie - International Edition, v. 50, n. 24, p. 5438–5466, 2011. KUMARI, D. et al. Advancement in leishmaniasis diagnosis and therapeutics: An update. European Journal of Pharmacology, v. 910, n. May, p. 174436, 2021. LAINSON, R.; SHAW, J. J. Epidemiology and ecology of leishmaniasis in Latin-America. Nature, v. 273, n. 5664, p. 595–600, 1978. LI, Q.; RENNECKAR, S. Supramolecular structure characterization of molecularly thin cellulose i nanoparticles. Biomacromolecules, v. 12, n. 3, p. 650–659, 2011. LÓPEZ, L. et al. A phase II study to evaluate the safety and efficacy of topical 3% amphotericin B cream (Anfoleish) for the treatment of uncomplicated cutaneous leishmaniasis in Colombia. PLoS Neglected Tropical Diseases, v. 12, n. 7, p. 1–12, 2018. LÓPEZ, L. et al. A phase II multicenter randomized study to evaluate the safety and efficacy of combining thermotherapy and a short course of miltefosine for the treatment of uncomplicated cutaneous leishmaniasis in the New World. PLOS Neglected Tropical Diseases, v. 16, n. 3, p. e0010238, 7 mar. 2022. MACHADO, G. U.; PRATES, F. V.; MACHADO, P. R. L. Disseminated leishmaniasis: clinical, pathogenic, and therapeutic aspects*. Anais Brasileiro de Dermatologia, v. 94, n. 1, p. 9–16, 2019. MACHADO, P. R. et al. Miltefosine in the treatment of cutaneous leishmaniasis caused by leishmania braziliensis in Brazil: A randomized and controlled trial. PLoS Neglected Tropical Diseases, v. 4, n. 12, p. 1–6, dez. 2010. MACHADO, P. R. et al. Reappraisal of the immunopathogenesis of disseminated leishmaniasis: In situ and systemic immune response. Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 105, n. 8, p. 438–444, 2011. MACHADO, P. R. L. et al. A Double-blind, Randomized Trial to Evaluate Miltefosine and Topical Granulocyte Macrophage Colony-stimulating Factor in the Treatment of Cutaneous Leishmaniasis Caused by Leishmania braziliensis in Brazil. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, v. 73, n. 7, p. e2465– e2469, 2021. MACHADO, R. T. A. et al. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production. Carbohydrate Polymers, v. 152, p. 841–849, 2016. MARQUELE-OLIVEIRA, F. et al. Development, characterization and pre-clinical trials of an innovative wound healing dressing based on propolis (EPP-AF®)-containing selfmicroemulsifying formulation incorporated in biocellulose membranes. International Journal of Biological Macromolecules, v. 136, p. 570–578, 2019. 69 MAZUR, K. L. et al. Diethyldithiocarbamate loaded in beeswax-copaiba oil nanoparticles obtained by solventless double emulsion technique promote promastigote death in vitro. Colloids and Surfaces B: Biointerfaces, v. 176, n. November 2018, p. 507–512, 2019. MEAMAR, R. et al. Alleviating neuropathy of diabetic foot ulcer by co-delivery of venlafaxine and matrix metalloproteinase drug-loaded cellulose nanofiber sheets: production, in vitro characterization and clinical trial. Pharmacological Reports, v. 73, n. 3, p. 806–819, 2021. MENDES, L. et al. Association of miltefosine with granulocyte and macrophage colonystimulating factor (GM-CSF) in the treatment of cutaneous leishmaniasis in the Amazon region: A randomized and controlled trial. International Journal of Infectious Diseases, v. 103, p. 358–363, 2021. MEZA-CONTRERAS, J. C. et al. XRD and solid state 13C-NMR evaluation of the crystallinity enhancement of 13C-labeled bacterial cellulose biosynthesized by Komagataeibacter xylinus under different stimuli: A comparative strategy of analyses. Carbohydrate Research, v. 461, p. 51–59, 2018. MOHAMMADI, I. et al. Cerium/diethyldithiocarbamate complex as a novel corrosion inhibitive pigment for AA2024-T3. Scientific Reports, v. 10, n. 1, p. 1–16, 2020. MULLER, A. et al. The Biopolymer Bacterial Nanocellulose as Drug Delivery System: Investigation of Drug Loading and Release using the Model Protein Albumin. Journal of pharmaceutical sciences, v. 102, p. 579–592, 2013. NASCIMENTO, M. T. et al. Prostaglandin E2 contributes to L. braziliensis survival and therapeutic failure in cutaneous leishmaniasis. Emerging Microbes & Infections, v. 12, n. 2, p. 2261565, 8 dez. 2023. NEVES, L. O. et al. A randomized clinical trial comparing meglumine antimoniate, pentamidine and amphotericin B for the treatment of cutaneous leishmaniasis by Leishmania guyanensis. Anais brasileiros de dermatologia, v. 86, n. 6, p. 1092–101, 2011. NO, J. H. Visceral leishmaniasis: Revisiting current treatments and approaches for future discoveries. Acta Tropica, v. 155, p. 113–123, 1 mar. 2016. NOORIAN, S. A.; HEMMATINEJAD, N.; NAVARRO, J. A. R. BioMOF@cellulose fabric composites for bioactive molecule delivery. Journal of Inorganic Biochemistry, v. 201, n. September, p. 110818, 2019. NOVAIS, F. O. et al. CD8+ T cell cytotoxicity mediates pathology in the skin by inflammasome activation and IL-1β production. PLOS Pathogens, v. 13, n. 2, p. e1006196, 13 fev. 2017. NOVAIS, F. O.; AMORIM, C. F.; SCOTT, P. Host-Directed Therapies for Cutaneous Leishmaniasis. Frontiers in Immunology, v. 12, n. March, p. 1–8, 2021. 70 NOVAIS, F. O.; NGUYEN, B. T.; SCOTT, P. Granzyme B Inhibition by Tofacitinib Blocks the Pathology Induced by CD8 T Cells in Cutaneous Leishmaniasis. Journal of Investigative Dermatology, v. 141, n. 3, p. 575–585, 1 mar. 2021. OLIVEIRA-RIBEIRO, C. et al. An old drug and different ways to treat cutaneous leishmaniasis: Intralesional and intramuscular meglumine antimoniate in a reference center, Rio de Janeiro, Brazil. PLoS Neglected Tropical Diseases, v. 15, n. 9, p. 1–25, 2021. PECORARO, É. et al. Bacterial cellulose from glucanacetobacter xylinus: Preparation, properties and applications. Monomers, Polymers and Composites from Renewable Resources, p. 369–383, 2007. PEIXOTO, F. et al. Evaluation of the Ability of Miltefosine Associated with Topical GMCSF in Modulating the Immune Response of Patients with Cutaneous Leishmaniasis. Journal of Immunology Research, v. 2020, p. 1–9, 8 ago. 2020. PINTO, E. R. P. et al. Transparent composites prepared from bacterial cellulose and castor oil based polyurethane as substrates for flexible OLEDs. Journal of Materials Chemistry C, v. 3, n. 44, p. 11581–11588, 2015. PONTE-SUCRE, A. et al. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Neglected Tropical DiseasesPublic Library of Science, dez. 2017. (POPA), G.-M. L. et al. Antibacterial Activity of Bacterial Cellulose Loaded with Bacitracin and Amoxicillin: In Vitro Studies. Molecules, v. 25, n. 18, p. 1–17, 2020. PRATES, F. V. D. O. et al. Fluconazole in the Treatment of Cutaneous Leishmaniasis Caused by Leishmania braziliensis : A Randomized Controlled Trial. Clinical Infectious Diseases, v. 64, n. 1, p. 67–71, 1 jan. 2017. ROJAS, R. et al. Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. Journal of Infectious Diseases, v. 193, n. 10, p. 1375–1383, 2006. SACRAMENTO, L. A. et al. NKG2D promotes CD8 T cell-mediated cytotoxicity and is associated with treatment failure in human cutaneous leishmaniasis. PLOS Neglected Tropical Diseases, v. 17, n. 8, p. e0011552, 21 ago. 2023. SALAH, A. BEN et al. WR279,396, a third-generation aminoglycoside ointment for the treatment of Leishmania major cutaneous Leishmaniasis: A phase 2, randomized, double blind, placebo controlled study. PLoS Neglected Tropical Diseases, v. 3, n. 5, 2009. SALAH, A. BEN et al. Topical Paromomycin with or without Gentamicin for Cutaneous Leishmaniasis. New England Journal of Medicine, v. 368, n. 6, p. 524–532, 2013. SANTIAGO, A. S.; PITA, S. S. DA R.; GUIMARÃES, E. T. Tratamento da leishmaniose, limitações da terapêutica atual e a necessidade de novas alternativas: Uma revisão narrativa. Research, Society and Development, v. 10, n. 7, p. e29510716543, 2021. SANTOS, C. D. S. et al. CD8+ Granzyme B+–Mediated Tissue Injury vs. CD4+IFNγ+– Mediated Parasite Killing in Human Cutaneous Leishmaniasis. Journal of Investigative Dermatology, v. 133, n. 6, p. 1533–1540, jun. 2013. 71 SANTOS, D. et al. IL-1β Production by Intermediate Monocytes Is Associated with Immunopathology in Cutaneous Leishmaniasis. Journal of Investigative Dermatology, v. 138, n. 5, p. 1107–1115, 1 maio 2018. SANTOS, D. O. et al. Leishmaniasis treatment--a challenge that remains: a review. Parasitology research, v. 103, n. 1, p. 1–10, jun. 2008. SANTOS, J. B. et al. Antimony plus recombinant human granulocyte-macrophage colonystimulating factor applied topically in low doses enhances healing of cutaneous leishmaniasis ulcers: A randomized, double-blind, placebo-controlled study. Journal of Infectious Diseases, v. 190, n. 10, p. 1793–1796, 2004. SCORZA, B. M.; CARVALHO, E. M.; WILSON, M. E. Cutaneous manifestations of human and murine leishmaniasis. International Journal of Molecular Sciences, v. 18, n. 6, 2017. SCOTT, P.; NOVAIS, F. O. Cutaneous leishmaniasis: Immune responses in protection and pathogenesis. Nature Reviews Immunology, v. 16, n. 9, p. 581–592, 2016. SHARMA, A. et al. Rifampicin-loaded alginate-gelatin fibers incorporated within transdermal films as a fiber-in-film system for wound healing applications. Membranes, v. 11, n. 1, p. 1– 16, 2021. SHI, X. et al. PH- and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Advances, v. 4, n. 87, p. 47056–47065, 2014. SILVA, L. G. et al. Bacterial cellulose an effective material in the treatment of chronic venous ulcers of the lower limbs. Journal of Materials Science: Materials in Medicine, v. 32, n. 7, 2021. SILVA, N. H. C. S. et al. Bacterial cellulose membranes as transdermal delivery systems for diclofenac: In vitro dissolution and permeation studies. Carbohydrate Polymers, v. 106, n. 1, p. 264–269, 2014. SILVEIRA, F. T. What makes mucosal and anergic diffuse cutaneous leishmaniases so clinically and immunopathogically different? A review in Brazil. Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 113, n. 9, p. 505–516, 2019. SOLWAY, D. R.; CLARK, W. A.; LEVINSON, D. J. A parallel open-label trial to evaluate microbial cellulose wound dressing in the treatment of diabetic foot ulcers. International Wound Journal, v. 8, n. 1, p. 69–73, 2011. SOLWAY, D. R.; CONSALTER, M.; LEVINSON, D. J. Microbial cellulose wound dressing in the treatment of skin tears in the frail elderly. Wounds, v. 22, n. 1, p. 17–19, 2010. SOSA, N. et al. Miltefosine in the treatment of cutaneous leishmaniasis caused by leishmania braziliensis in Brazil:a randomized and controlled trial. Carbohydrate Polymers, v. 92, n. 10, p. 1–11, 2019a. 72 SOSA, N. et al. Topical paromomycin for New World cutaneous leishmaniasis. PLOS Neglected Tropical Diseases, v. 13, n. 5, p. e0007253, 2 maio 2019b. SOTO, J. et al. Treatment of American cutaneous leishmaniasis with miltefosine, an oral agent. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, v. 33, n. 7, p. E57-61, 2001. SOTO, J. et al. Miltefosine for new world cutaneous leishmaniasis. Clinical Infectious Diseases, v. 38, n. 9, p. 1266–1272, 2004. SOYER, T. G. et al. Immunotherapy Using Immunogenic Mimotopes Selected by Phage Display plus Amphotericin B Inducing a Therapeutic Response in Mice Infected with Leishmania amazonensis. Pathogens, v. 12, n. 2, 2023. STRÖMME, J. H. Metabolism of disulfiram and diethyldithiocarbamate in rats with demonstration of an in vivo ethanol-induced inhibition of the glucuronic acid conjugation of the thiol. Biochemical Pharmacology, v. 14, n. 4, p. 393–410, 1965. TROVATTI, E. et al. Biocellulose membranes as supports for dermal release of lidocaine. Biomacromolecules, v. 12, n. 11, p. 4162–4168, 2011. TROVATTI, E. et al. Bacterial cellulose membranes applied in topical and transdermal delivery of lidocaine hydrochloride and ibuprofen: In vitro diffusion studies. International Journal of Pharmaceutics, v. 435, n. 1, p. 83–87, 2012. VILAR, F. DE O. et al. A wet dressing for male genital surgery: A phase II clinical trial. v. 42, n. 6, p. 1220–1227, 2016. VOLPEDO, G. et al. The History of Live Attenuated Centrin Gene-Deleted Leishmania Vaccine Candidates. n. Cl, 2022. VORONOV, E. et al. IL-1-induced inflammation promotes development of leishmaniasis in susceptible BALB/c mice. International Immunology, v. 22, n. 4, p. 245–257, 1 abr. 2010. YOUSAF, S. et al. 61 - Scaffolds for intraocular lens. Em: MOZAFARI, M.; SEFAT, F.; ATALA, A. (Eds.). Handbook of Tissue Engineering Scaffolds: Volume Two. [s.l.] Woodhead Publishing, 2019b. p. 693–709. ZHOU, C. et al. De novo strategy with engineering a multifunctional bacterial cellulose-based dressing for rapid healing of infected wounds. Bioactive Materials, v. 13, n. October 2021, p. 212–222, 2022.pt_BR
dc.type.degreeDoutoradopt_BR
Aparece en las colecciones: Tese (PGPAT)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
PEDRO BRITO BORBA Tese Final.pdf2,14 MBAdobe PDFVisualizar/Abrir
Mostrar el registro sencillo del ítem


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.