Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Por favor, use este identificador para citar o enlazar este ítem: https://repositorio.ufba.br/handle/ri/42444
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.creatorMARUYAMA, Rogério Katsuhito Barbosa-
dc.date.accessioned2025-07-07T00:41:04Z-
dc.date.available2025-07-07T00:41:04Z-
dc.date.issued2024-07-12-
dc.identifier.citationMARUYAMA, Rogério Katsuhito Barbosa. Filogenômica e arquitetura de genomas plastidiais em Chrysobalanaceae (Malpighiales). 2024. 52 f. Dissertação (Mestrado em Biodiversidade e Evolução) – Instituto de Biologia, Universidade Federal da Bahia, Salvador, 2024.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/42444-
dc.description.abstractChrysobalanaceae is one of the families of the order Malpighiales whose taxonomy has challenged science for over two centuries. The family comprises 27 genera and approximately 550 species with a predominantly tropical distribution, spanning the Americas, Africa, and Southeast Asia. In the last 20 years, advances in molecular studies of the family have made it possible to resolve problems in the group's taxonomy, including the confirmation of its monophyly and major changes in generic delimitation. Studies involving complete plastid genomes aimed to resolve the phylogenetic relationships among the genera of the family, but other questions remain unexplored, such as the characterization of structural aspects of the genomes. The present study explored the comparison of plastid genome architecture of Chrysobalanaceae, investigating the presence of gene duplications and gene losses, in addition to variations in gene size and intron regions, with the aim of characterizing the plastomes of the species and analyzing the molecular events in a phylogenetic context. Genomic comparisons revealed regions of high variability, such as the ycf1b gene, which may function as a barcode for species delimitation in Chrysobalanaceae. Our results show that the sequenced plastomes of Chrysobalanaceae species are highly conserved in terms of gene synteny, even in clades with complex biogeographic history. However, the comparison among different aspects of the genome structure across subclades showed that such analyses could provide support for integrative taxonomic studies and for a better understanding of the evolutionary processes in Chrysobalanaceae.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superiorpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectBarcodingpt_BR
dc.subjectGenômicapt_BR
dc.subjectPlastomapt_BR
dc.subjectSinteniapt_BR
dc.subject.otherBarcodingpt_BR
dc.subject.otherGenomicspt_BR
dc.subject.otherPlastomept_BR
dc.subject.otherSyntenypt_BR
dc.titleFilogenômica e arquitetura de genomas plastidiais em Chrysobalanaceae (Malpighiales)pt_BR
dc.typeDissertaçãopt_BR
dc.typeDissertaçãopt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Biodiversidade e Evolução (antigo Programa de Pós Graduação em Diversidade Animal-PPGDA) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS BIOLOGICAS::BOTANICA::TAXONOMIA VEGETAL::TAXONOMIA DE FANEROGAMOSpt_BR
dc.subject.cnpqCNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA VEGETALpt_BR
dc.contributor.advisor1Lyra, Goia-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-9416-9194pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2421235959733966pt_BR
dc.contributor.advisor-co1Asprino, Renata-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0003-1179-3053pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4043134587005257pt_BR
dc.contributor.referee1Lyra, Goia-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-9416-9194pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/2421235959733966pt_BR
dc.contributor.referee2Thode, Verônica Aydos-
dc.contributor.referee2IDhttps://orcid.org/0000-0001-5829-3318pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/4732699177241004pt_BR
dc.contributor.referee3Carvalho, Daniel Santana de-
dc.contributor.referee3IDhttps://orcid.org/0000-0001-6590-4287pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1259429373038099pt_BR
dc.creator.IDhttps://orcid.org/0000-0003-3743-1245pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/3941448800137509pt_BR
dc.description.resumoChrysobalanaceae é uma das famílias da ordem Malpighiales cuja taxonomia vem desafiando a ciência há mais de dois séculos. A família compreende 27 gêneros e aproximadamente 550 espécies de distribuição predominantemente tropical, abarcando as Américas, África e sudeste da Ásia. Nos últimos 20 anos, os avanços nos estudos moleculares da família possibilitaram a resolução de problemas na taxonomia do grupo, incluindo a confirmação de seu monofiletismo e grandes mudanças na delimitação genérica. Estudos envolvendo genomas plastidiais completos tiveram como objetivo resolver as relações filogenéticas entre os gêneros da família, mas outras questões permanecem em aberto, como a caracterização de aspectos estruturais dos genomas. O presente estudo explorou a comparação da arquitetura de genomas plastidiais em Chrysobalanaceae, investigando a presença de duplicações gênicas e perdas de genes, além de variações no tamanho dos genes e em regiões de íntrons, com o objetivo de caracterizar os plastomas das espécies e analisar os eventos moleculares em um contexto filogenético. As comparações genômicas revelaram regiões de alta variabilidade, a exemplo do gene ycf1b, que pode funcionar como barcode para delimitação específica em Chrysobalanaceae. Os resultados permitem concluir que os plastomas já sequenciados de espécies de Chrysobalanaceae são altamente conservados em termos de sintenia gênica, mesmo em clados com história biogeográfica complexa. No entanto, a comparação entre diferentes aspectos da estrutura dos genomas ao longo dos subclados da família mostrou que tais análises podem fornecer subsídios para estudos taxonômicos integrativos e para a melhor compreensão dos processos evolutivos em Chrysobalanaceae.pt_BR
dc.publisher.departmentInstituto de Biologiapt_BR
dc.relation.referencesBardon, L., Sothers, C.A., Prance, G.T., Malé, P.G., Xi, Z., Davis, C.C., Murienne, J., GarcíaVillacorta, R., Coissac, E., Lavergne, S., Chave, J., 2016. Unravelling the biogeographical history of Chrysobalanaceae from plastid genomes. American Journal of Botany 103: 1-14. Bedoya, A., Ruhfel, B., Philbrick, T., Madriñán, S., Bove, C., Mesterhazy, A., Olmstead, R.., 2019. Plastid Genomes of Five Species of Riverweeds (Podostemaceae): Structural Organization and Comparative Analysis in Malpighiales. Frontiers in Plant Science, 10, p.1035. DOI: 10.3389/fpls.2019.01035. Blazier C.J., Guisinger, M.M., Jansen, R.K., 2011. Recent loss of plastid-encoded ndh genes within Erodium (Geraniaceae). Plant molecular biology, 76(3-5): 263-72. doi: 10.1007/s11103-011- 9753-5. Cai, L. et al. The perfect storm: gene tree estimation error, incomplete lineage sorting, and ancient gene flow explain the most recalcitrant ancient angiosperm clade, Malpighiales. Syst. Biol. 70, 491–507 (2021). Capella-Gutiérrez, S., Silla-Martínez, J.M., Gabaldón, T., 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses, Bioinformatics 25(15): 1972–1973, https://doi.org/10.1093/bioinformatics/btp348. Cardoso, D.B.O.S. et al., 2017. Amazon plant diversity revealed by a taxonomically verified species list. Proceedings of the National Academy of Science 114: 10695–10700. Cauz-Santos, L.A., da Costa, Z.P., Callot, C., Cauet, S., Zucchi, M.I., Bergès, H., van den Berg, C. and Vieira, M.L.C., 2020. A repertory of rearrangements and the loss of an inverted repeat region in Passiflora chloroplast genomes. Genome biology and evolution, 12(10), pp.1841-1857. Chave, J. et al., 2020. Rapid diversification rates in Amazonian Chrysobalanaceae inferred from plastid genome phylogenetics. Botanical Journal of the Linnean Society 194(3): 271–289. 47 Csűös, M. 2010. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26: 1910–1912. Caycho, E., La Torre R, O.G., 2023. Assembly, annotation and analysis of the chloroplast genome of the Algarrobo tree Neltuma pallida (subfamily: Caesalpinioideae). BMC Plant Biol. 16;23(1):570. doi: 10.1186/s12870-023-04581-5. Darling, A. E., Mau, B. & Perna, N. T. 2010. progressive Mauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5: e11147. Dong W, Liu J, Yu J, Wang L, Zhou S., 2012. Highly Variable Chloroplast Markers for Evaluating Plant Phylogeny at Low Taxonomic Levels and for DNA Barcoding. PLOS ONE 7(4): e35071. https://doi.org/10.1371/journal.pone.0035071 Dong, W., Xu, C., Li, C. et al., 2015. ycf1, the most promising plastid DNA barcode of land plants. Sci Rep 5, 8348. https://doi.org/10.1038/srep08348 Emms, D. M., & Kelly, S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome biology 20: 1–14. Feitosa, E.A., Xavier, H.S. & Randau, K.P., 2012. Chrysobalanaceae: traditional uses, phytochemistry and pharmacology. Rev. Bras. Farmacogn. 22(5):1181–1186. Firetti, F., Zuntini, A.R., Gaiarsa, J.W., Oliveira, R.S., Lohmann, L.G., Van Sluys. M.A., 2017. Complete chloroplast genome sequences contribute to plant species delimitation: A case study of the Anemopaegma species complex. Am J Bot. 104(10): 1493-1509. DOI: 10.3732/ajb.1700302. Fonseca, L.H.M., Lohmann, L.G., 2017. Plastome Rearrangements in the "AdenocalymmaNeojobertia" Clade (Bignonieae, Bignoniaceae) and Its Phylogenetic Implications. Front Plant Sci. 1(8): 1875. DOI: 10.3389/fpls.2017.01875. Gastauer, M., Sarmento, P.S.M., Santos, V.C.A., Caldeira, C.F., Ramos, S.J., Teodoro, G.S. & Siqueira, J.O., 2020. Functional traits guide plant species selection for initial mineland rehabilitation. Ecological Engineering 148: 105763. Iha, C., Grassa, C.J., Lyra, G.M., Davis, C.C., Verbruggen, H., Oliveira, M.C., 2018. Organellar genomics: a useful tool to study evolutionary relationships and molecular evolution in Gracilariaceae (Rhodophyta). J. Phycol. 54: 775-787. 48 Jansen, R.K., Cai, Z., Raubeson, L.A., Daniell, H., Depamphilis, C.W., Leebens-Mack, J., Müller, K.F., Guisinger-Bellian, M., Haberle, R.C., Hansen, A.K., Chumley, T.W., Lee, S.B., Peery, R., McNeal, J.R., Kuehl, J.V., Boore, J.L., 2007. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA, 104(49):19369-74. Jesus, P.B., de Mattos Lyra, G., Zhang, H., Fujii, M.T., Nauer, F., de Castro Nunes, J.M., Davis, C.C. and Oliveira, M.C., 2023. Phylogenomics and taxon-rich phylogenies of new and historical specimens shed light on the systematics of Hypnea (Cystocloniaceae, Rhodophyta). Molecular Phylogenetics and Evolution 183, p.107752. Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., Sánchez-Gracia, A., 2017. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets, Molecular Biology and Evolution 34(2): 3299–3302, https://doi.org/10.1093/molbev/msx248. Katoh, K. and Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular biology and evolution 30(4), pp.772-780. Lee, J., Cho, C.H., Park, S.I., Choi, J.W., Song, H.S., West, J.A., Bhattacharya, D. and Yoon, H.S., 2016. Parallel evolution of highly conserved plastid genome architecture in red seaweeds and seed plants. BMC biology, 14, pp.1-16. Long, L., Li, Y., Wang, S., Liu, Z., Wang, J. and Yang, M., 2023. Complete chloroplast genomes and comparative analysis of Ligustrum species. Scientific Reports 13(1), p.212. Malé, P.J.G., Bardon, L., Besnard, G., Coissac, E., Delsuc, F., Engel, J., Lhuillier, E., Scotti‐ Saintagne, C., Tinaut, A. and Chave, J., 2014. Genome skimming by shotgun sequencing helps resolve the phylogeny of a pantropical tree family. Molecular ecology resources, 14(5), pp.966- 975. Maréchal, A. and Brisson, N. (2010), Recombination and the maintenance of plant organelle genome stability. New Phytologist, 186: 299-317. https://doi.org/10.1111/j.1469- 8137.2010.03195.x 49 Menezes, A.P.A., Resende-Moreira, L.C., Buzatti, R.S.O. et al. 2018. Chloroplast genomes of Byrsonima species (Malpighiaceae): comparative analysis and screening of high divergence sequences. Sci Rep 8, 2210. https://doi.org/10.1038/s41598-018-20189-4 Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. Gateway Computing Environments Workshop (GCE), 14 November, New Orleans, Louisiana. https://www.phylo.org/. Mohanta, T.K., Mishra, A.K., Khan, A., Hashem, A., Abd_Allah, E.F. and Al-Harrasi, A., 2020. Gene loss and evolution of the plastome. Genes, 11(10), p.1133. Prance, G.T., 1972. Flora Neotropica - Chrysobalanaceae. Flora Neotropica Monograph 9. New York: New York Botanical Garden. 410 p. Prance, G.T. & White, F., 1988. The genera of Chrysobalanaceae: A study of practical and theoretical taxonomy and its relevance to evolutionary biology. Philosophical Transactions of the Royal Society of London B 320: 1-184. Prance, G.T. & Sothers, C.A., 2003. Chrysobalanaceae 1: Chrysobalanus to Parinari. In: Species plantarum: Flora of the World, Part 9. Canberra: Australian Biological Resources. Prance, G.T., 2021. Sixty years with the Chrysobalanaceae. The Botanical Review, 87, pp.197- 232. Puillandre, N., Brouillet, S., Achaz, G. 2020. ASAP: Assemble Species by Automatic Partitioning. Molecular Ecology Resources. https://doi.org/10.1111/1755-0998.13281. Rankin-de-Mérona, J.M. et al., 1992. Preliminary results of a large-scale inventory of upland rain forest in the central Amazon. Acta Amazônica 22: 493–534. Sanderson, M.J., Copetti, D., Burquez, A., Bustamante, E., Charboneau, J.L.M., Eguiarte, L.E., Kumar, S., Lee, H.O., Lee, J., McMahon, M., et al, 2015. Exceptional Reduction of the Plastid Genome of Saguaro Cactus (Carnegiea Gigantea): Loss of the Ndh Gene Suite and Inverted Repeat. Am. J. Bot., 102: 1115–1127. https://doi.org/10.3732/ajb.1500184. Sothers, C., Prance, G.T., Buerki, S., Kok, R.D., Chase, M.W., 2014. Taxonomic novelties in Neotropical Chrysobalanaceae: towards a monophyletic Couepia. Phytotaxa 172(2): 176-200. 50 Sothers, C., Prance, G.T., Chase, M.W., 2016. Towards a monophyletic Licania: a new generic classification of the polyphyletic Neotropical genus Licania (Chrysobalanaceae). Kew Bulletin 71: 58. Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9), pp.1312-1313. Sun, J., Wang, S., Wang, Y., Wang, R., Liu, K., Li, E., Qiao, P., Shi, L., Dong, W., Huang, L., & Guo, L., 2022. Phylogenomics and Genetic Diversity of Arnebiae Radix and Its Allies (Arnebia, Boraginaceae) in China. Frontiers in Plant Science, 13. Thode, V.A., Lohmann, L.G., 2019. Comparative Chloroplast Genomics at Low Taxonomic Levels: A Case Study Using Amphilophium (Bignonieae, Bignoniaceae). Front Plant Sci. 19(10): 796. DOI: 10.3389/fpls.2019.00796. Trad, R.J., Cabral, F.N., Bittrich, V. et al., 2021. Calophyllaceae plastomes, their structure and insights in relationships within the clusioids. Sci Rep 11, 20712. https://doi.org/10.1038/s41598- 021-99178-z. Turudić, A., Liber, Z., Grdiša, M., Jakše, J., Varga, F., Šatović, Z., 2022. Chloroplast Genome Annotation Tools: Prolegomena to the Identification of Inverted Repeats. Int J Mol Sci. 16;23(18):10804. doi: 10.3390/ijms231810804. Wang, R.N., Milne, R.I., Du, X.Y., Liu, J. and Wu, Z.Y., 2020. Characteristics and mutational hotspots of plastomes in Debregeasia (Urticaceae). Frontiers in genetics, 11, p.729. Wang, S., Gao, J., Chao, H., Li, Z., Pu, W., Wang, Y. and Chen, M., 2022. Comparative chloroplast genomes of Nicotiana Species (Solanaceae): Insights into the genetic variation, phylogenetic relationship, and polyploid speciation. Frontiers in plant science 13, p.899252. Yakandawala, D.; Morton, C.M., Prance, G.T., 2010. Phylogenetic Relationships of the Chrysobalanaceae Inferred from Chloroplast, Nuclear, and Morphological Data. Annals of the Missouri Botanical Garden 97 (2): 259-281.pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece en las colecciones: Dissertação (PPGBioEvo)

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Filogenômica e arquitetura de genomas plastidiais em Chrysobalanaceae (Malpighiales).pdfdissertação18,61 MBAdobe PDFVisualizar/Abrir
Ata2_assinado.pdfAta de defesa518,78 kBAdobe PDFVisualizar/Abrir
Mostrar el registro sencillo del ítem


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.