Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/41820
Registro completo de metadados
Campo DCValorIdioma
dc.creatorBenedicto, Nara Emília Santos-
dc.date.accessioned2025-04-16T13:25:30Z-
dc.date.available2025-04-16T13:25:30Z-
dc.date.issued2024-09-25-
dc.identifier.citationBENEDICTO, Nara Emília Santos. Contribuição da família preniltransferase na aquisição de tolerância a estresses abióticos em Ricinus communis: caracterização in sílico, aspectos evolutivos e expressão gênica. Orientador: Paulo Roberto Ribeiro de Jesus. 2024. 90 f. Dissertação (Mestrado em Bioquímica e Biologia Molecular) - Universidade Federal da Bahia, Instituto de Ciências da Saúde, Salvador, 2024.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/41820-
dc.description.abstractRicinus communis L. (castor bean) is a plant with high potential for oil production, widely used in the ricinoleic industry. In Brazil, the Northeast region has the largest cultivation area for this plant, where adverse environmental conditions such as salinity, high temperatures, and drought pose significant challenges to production. Considering the economic and industrial importance of this crop, it is essential to develop strategies to ensure its cultivation under challenging environments. The prenyltransferase (PT) gene family plays a crucial role in encoding enzymes that catalyze the formation of terpenoid skeletons from the intermediates dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) and transfer prenyl groups to other molecules. These terpenoids generate a wide range of primary and secondary metabolites that are vital for plant responses to environmental stresses. The present study aimed to conduct an in silico analysis of the prenyltransferase protein and gene family in R. communis using bioinformatics tools, seeking to correlate this family with responses to environmental stresses through gene expression, as well as to investigate evolutionary aspects. Similarity searches in the R. communis genome were performed to identify PT proteins, in addition to phylogenetic analyses, subcellular localization predictions, conserved domain and motif identification, gene promoter region analyses, chromosomal mapping, and microarray analyses. A total of 36 PT candidate sequences were identified in R. communis, classified into five distinct subgroups: UbiA, terpene cyclases, prenyltransferase proteins, trans-prenyltransferases, and cis-prenyltransferases. Additionally, conserved domains were identified, such as Z-polyprenyl synthase, polyprenyl synthetase, prenyltransferase subunit alpha repeat, terpene cyclases, squalene-hopene cyclase N-terminal domain, squalene-hopene cyclase C-terminal domain, and the UbiA prenyltransferase superfamily, all associated with prenyltransferases. Cis-prenyltransferases were identified as the oldest PT group. Some proteins showed differential gene expression in response to thermal and saline stresses at different developmental stages.The results of this study provide a deeper understanding of PT proteins in R. communis, establishing a foundation for future research on this gene family in the species.pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectBioinformáticapt_BR
dc.subjectBiologia Computacionalpt_BR
dc.subjectRicinus communispt_BR
dc.subjectPreniltransferasespt_BR
dc.subject.otherBioinformaticspt_BR
dc.subject.otherComputational Biologypt_BR
dc.subject.otherCastor Beanpt_BR
dc.subject.otherPrenyltransferasespt_BR
dc.titleContribuição da família preniltransferase na aquisição de tolerância a estresses abióticos em Ricinus communis: caracterização in sílico, aspectos evolutivos e expressão gênicapt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação Multicêntrico em Bioquímica e Biologia Molecular (PMBqBM) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA VEGETALpt_BR
dc.contributor.advisor1Jesus, Paulo Roberto Ribeiro de-
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-9622-5076pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2372350954162223pt_BR
dc.contributor.referee1Jesus, Paulo Roberto Ribeiro de-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-9622-5076pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/2372350954162223pt_BR
dc.contributor.referee2Santos, Mariana de Lima-
dc.contributor.referee2IDhttps://orcid.org/0000-0003-0642-2696pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5723197205878622pt_BR
dc.contributor.referee3Fernandez, Luzimar Gonzaga-
dc.contributor.referee3IDhttps://orcid.org/0000-0003-0837-6101pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5869970809916591pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/5688254008421405pt_BR
dc.description.resumoA Ricinus communis L. (mamona) é uma planta com alto potencial para a produção de óleo, sendo amplamente utilizada na indústria ricinoleica. No Brasil, a região Nordeste concentra a maior área de cultivo dessa planta, onde condições ambientais adversas, como salinidade, altas temperaturas e seca impõem desafios significativos à produção. Considerando a importância econômica e industrial dessa cultura, torna-se fundamental desenvolver estratégias que assegurem seu cultivo em ambientes desafiadores. A família de genes preniltransferases (PT) desempenha um papel essencial na codificação de enzimas que catalisam a formação de esqueletos terpenoides a partir dos intermediários dimetilalil difosfato (DMAPP) e isopentenil difosfato (IPP) e transferem porções prenil para outras moléculas. Esses terpenoides geram uma vasta gama de metabólitos primários e secundários, que são cruciais para as respostas das plantas a estresses ambientais. O presente estudo teve como objetivo realizar uma análise in silico da família de proteínas e genes preniltransferases em R. communis utilizando ferramentas de bioinformática, visando correlacionar essa família com as respostas a estresses ambientais a partir de expressão gênica, além de investigar aspectos evolutivos. Foram realizadas buscas de similaridade no genoma da R. communis para identificar proteínas PT, além de análises filogenéticas, predições de localização subcelular, identificação de domínios e motifs conservados, regiões promotoras de genes, mapeamento cromossômico e análises de microarranjos. No total, 36 sequências candidatas a PT foram identificadas em R. communis, classificadas em cinco subgrupos distintos: UbiA, terpenoides ciclases, proteínas preniltransferases, trans-preniltransferases e cis-preniltransferases. Além disso, foram identificados domínios conservados, como Z-poliprenil sintase; poliprenil sintetase; repetição de preniltransferase e esqualeno oxidase; repetição da subunidade alfa da proteína preniltransferase; terpenoides cilcases; esqualeno hopeno ciclase domínio N-terminal; domínio C-terminal da esqualeno-hopeno ciclase e superfamília UbiA preniltransferase relacionados às preniltransferases. Cis-peniltransferases são o grupo de PT mais antigas. Uma parte das proteínas mostraram expressão gênica diferencial frente a estresses térmico e salino em diferentes estágios de desenvolvimento. Os resultados deste estudo oferecem uma visão mais aprofundada das proteínas PT em R. communis, estabelecendo uma base para pesquisas futuras sobre essa família gênica na espécie.pt_BR
dc.publisher.departmentInstituto de Ciências da Saúde - ICSpt_BR
dc.relation.referencesAKAIKE, H. A new look at the statistical model identification. lIEEE Transactions on Automatic Control, 1974. 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705 AKHTAR, T. A. et al. The tomato cis–prenyltransferase gene family. The Plant Journal, v. 73, n. 4, p. 640-652, 2013. AMBROSINO, L. et al. Bioinformatics resources for plant abiotic stress responses: state of the art and opportunities in the fast evolving-omics era. Plants, v. 9, n. 5, p. 591, 2020. AZEVEDO, DMP; LIMA, EF. O agronegócio da mamona no Brasil. Campina Grande: Embrapa Algodão; Brasília: Embrapa Informação Tecnológica. P.63-76, 2001. BHANUSHALI, Haresh; MESTRY, Siddhesh; MHASKE, S. T. Castor oil‐based UV‐curable polyurethane acrylate resins for digital light processing (DLP) 3D printing technology. Journal of Applied Polymer Science, v. 140, n. 18, p. e53817, 2023. BALADRIN MF, Klocke JA, Wurtele ES, Bollinger WH. Natural plant chemicals: sources of industrial and medicinal materials. Science 228:1154–1160, 1985. BALDONI, Elena; GENGA, Annamaria; COMINELLI, Eleonora. Plant MYB transcription factors: their role in drought response mechanisms. International Journal of Molecular Sciences, v. 16, n. 7, p. 15811-15851, 2015. BIANCHI, L; GERMINO, G.; DE ALMEIDA SILVA, M. Adaptação das plantas ao déficit hídrico. Acta iguazu, v. 5, n. 4, p. 15-32, 2016. BENSON, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acid Research. Vol. 27, No. 2, pp. 573-580, 1999. CÂNDIDO, M. J. D.; BOMFIM, M. A. D.; SEVERINO, L. S.; OLIVEIRA, S. Z. R. de. Utilização de coprodutos da mamona na alimentação animal. In: Anais e Proceedings [da] Embrapa Caprinos e Ovinos, 2008. | 72 CÉSAR, A. S; BATALHA, M. O. Biodiesel production from castor oil in Brazil: A difficult reality. Energy Policy, v. 38, n. 8, p. 4031-4039, 2010. CÉSAR, A. S.; BATALHA, M. O. Análise dos direcionadores de competitividade sobre a cadeia produtiva de biodiesel: o caso da mamona. Produção , v. 21, n. 3, p. 484-497, 2011. CHANG, H.; CHENG, T.; WANG, A. Structure, catalysis, and inhibition mechanism of prenyltransferase. IUBMB life, v. 73, n. 1, p. 40-63, 2021. CHECHETTO, R.G, SIQUEIRA, R. GAMERO, C.A. Balanço energético para a produção de biodiesel pela cultura da mamona (Ricinus communis L.). Revista Ciência Agronômica, 41(4), 546-553, 2010. CHEVALIER, Quentin et al. Methyl-Jasmonate Functions as a Molecular Switch Promoting Cross-Talk between Pathways for the Biosynthesis of Isoprenoid Backbones Used to Modify Proteins in Plants. Plants, v. 13, n. 8, p. 1110, 2024. CHRISTIANSON, David W. Structural and chemical biology of terpenoid cyclases. Chemical reviews, v. 117, n. 17, p. 11570-11648, 2017. COMAN, Diana et al. Distinct evolutionary strategies in the GGPPS family from plants. Frontiers in Plant Science, v. 5, p. 230, 2014. DHARAJIYA, Darshan T. et al. Genome-wide microsatellite markers in castor (Ricinus communis L.): Identification, development, characterization, and transferability in Euphorbiaceae. Industrial crops and products, v. 151, p. 112461, 2020. DINDAY, S.; GHOSH, S. Recent advances in triterpenoid pathway elucidation and engineering. Biotechnology Advances, p. 108214, 2023. EMBRAPA, Mamona Disponível em: https://www.spo.cnptia.embrapa.br. Acesso em: 08/04/2021. FINN, R.D., Coggill, P., Eberhardt, R.Y., Eddy, S.R., Mistry, J., Mitchell, A.L., Potter, S.C., Punta, M., Qureshi, M., Sangrador-Vegas, A., Salazar, G.A., Tate, J., & Bateman, A. (2014). The Pfam protein families database: towards a more sustainable future. Nucleic Acids Research, 42(D1), D222-D230. doi:10.1093/nar/gkt1223. | 73 FREELING, M. (2009). Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annual Review of Plant Biology, 60, 433-453. GAJUREL, G.; HASAN, R.; MEDINA-BOLIVAR, F. Water-deficit stress induces prenylated stilbenoid production and affects biomass in peanut hairy roots: Exploring the role of stilbenoid prenyltransferase downregulation. Plant Physiology and Biochemistry, v. 210, p. 108596, 2024. GALMÉS, J.; ARANJUELO, I.; MEDRANO, H.; FLEXAS, J. Variation in Rubisco content and activity under variable climatic factors. Photosynthesis research, v. 117, p. 73-90, 2013. GOMES, G. L. B.; SCORTECCI, K. C. Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. Plant Biology, v. 23, n. 6, p. 894-904, 2021. GRABIŃSKA, Kariona A.; PARK, Eon Joo; SESSA, William C. cis-Prenyltransferase: new insights into protein glycosylation, rubber synthesis, and human diseases. Journal of Biological Chemistry, v. 291, n. 35, p. 18582-18590, 2016. HSIEH, F. L. et al. Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase. Plant physiology, v. 155, n. 3, p. 1079-1090, 2011. HEMMERLIN, A.. Phosphorylation of Metabolites Involved in Salvage Pathways for Isoprenoid Biosynthesis in Plants. Kinases and Phosphatases, v. 1, n. 3, p. 151-166, 2023. HU, Zhimin et al. Recent progress and new perspectives for diterpenoid biosynthesis in medicinal plants. Medicinal Research Reviews, v. 41, n. 6, p. 2971-2997, 2021. HUANG, Z.. et al. Mining methods and typical structural mechanisms of terpene cyclases. Bioresour. Bioprocess. 8, 66, 2021. JOHNSON, C. D., Chary, S. N., Chernoff, E. A., Zeng, Q., Running, M. P., & Crowell, D. N. Protein geranylgeranyltransferase I is involved in specific aspects of abscisic acid and auxin signaling in Arabidopsis. Plant physiology, v. 139, n. 2, p. 722-733, 2005. KAWAMUKAI, Makoto. Biosynthesis of coenzyme Q in eukaryotes. Bioscience, biotechnology, and biochemistry, v. 80, n. 1, p. 23-33, 2016. | 74 KHAN, M. Iqbal R. et al. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in plant science, v. 6, p. 462, 2015. KOPCSAYOVÁ, D.; VRANOVÁ, E. Functional gene network of prenyltransferases in Arabidopsis thaliana. Molecules, v. 24, n. 24, p. 4556, 2019. KWON, M. et al. New insights into natural rubber biosynthesis from rubber‐deficient lettuce mutants expressing goldenrod or guayule cis‐prenyltransferase. New Phytologist, v. 239, n. 3, p. 1098-1111, 2023. LEI, Pei et al. Transcriptome analysis of salt stress responsiveness in the seedlings of wild and cultivated Ricinus communis L. Journal of Biotechnology, v. 327, p. 106-116, 2021. LI, Yuxiang et al. SALT AND ABA RESPONSE ERF1 improves seed germination and salt tolerance by repressing ABA signaling in rice. Plant physiology, v. 189, n. 2, p. 1110-1127, 2022. LI, Shenghui et al. The interaction of ABA and ROS in plant growth and stress resistances. Frontiers in Plant Science, v. 13, p. 1050132, 2022. LIANG, P.H. et al. Structure, mechanism and function of prenyltransferases. European Journal of Biochemistry, v. 269, n. 14, p. 3339-3354, 2002. MAI, Jie et al. Engineering plant sesquiterpene synthesis into yeasts: a review. Journal of Agricultural and Food Chemistry, v. 69, n. 33, p. 9498-9510, 2021. MANSOOR, Sheikh et al. Reactive oxygen species in plants: from source to sink. Antioxidants, v. 11, n. 2, p. 225, 2022. MARCHWICKA, Aleksandra et al. Protein prenyltransferases and their inhibitors: structural and functional characterization. International Journal of Molecular Sciences, v. 23, n. 10, p. 5424, 2022. MATSUZAKI, Motomichi et al. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature, v. 428, n. 6983, p. 653-657, 2004. | 75 MISAWA, Norihiko. Pathway engineering for functional isoprenoids. Current opinion in biotechnology, v. 22, n. 5, p. 627-633, 2011. MITTLER, R.Abiotic stress, the field environment and stress combination. Trends in Plant Science, v. 11, n. 1, p. 15–19, 2006. MOSHARAF, P. et al. In silico identification and characterization of AGO, DCL and RDR gene families and their associated regulatory elements in sweet orange (Citrus sinensis L.). PloS one, v. 15,n. 12, p. e0228233, 2020. MUNAKATA, R. et al. Convergent evolution of the UbiA prenyltransferase family underlies the independent acquisition of furanocoumarins in plants. New Phytologist, 225(5), 2166-2182, 2020. MUNAKATA, Ryosuke; YAZAKI, Kazufumi. How did plants evolve the prenylation of specialized phenolic metabolites by means of UbiA prenyltransferases?. Current Opinion in Plant Biology, v. 81, p. 102601, 2024. NAIR, I.M.; KOCHUPURACKAL, J. Squalene hopene cyclases and oxido squalene cyclases: potential targets for regulating cyclisation reactions. Biotechnology Letters, p. 1-16, 2023. NETO, V. Gomes et al. Characterization of the superoxide dismutase gene family in seeds of two Ricinus communis L. genotypes submitted to germination under water restriction conditions. Environmental and Experimental Botany, v. 155, p. 453-463, 2018. NGUYEN, L.-T., Schmidt, H.A., von Haeseler, A., & Minh, B.Q. . IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 2015 32(1), 268-274. doi:10.1093/molbev/msu300. RALSTON, L., KWON, S. T., Schoenbeck, M. Metabolic engineering of isoprenoid biosynthesis in bacteria, yeast, and plants. Current Opinion in Biotechnology, 26, 115-121, 2014. RIBEIRO, P. R. et al. Identification of reference genes for gene expression studies during seed germination and seedling establishment in Ricinus communis L. Seed Science Research, Cambridge, v. 24, n. 04, p. 341-352, 2014. | 76 RIBEIRO, Paulo R. et al. Transcriptome profiling of Ricinus communis L. provides new insights underlying the mechanisms towards thermotolerance during seed imbibition and germination. Industrial crops and products, v. 126, p. 380-393, 2018. RIBEIRO, P. R.; DE CASTRO, . D.; FERNANDEZ, L. G. Chemical constituents of the oilseed crop Ricinus communis and their pharmacological activities: A review. Industrial Crops and Products, v. 91, p. 358-376, 2016. SANDS, Lauren B. et al. Hormonal control of promoter activities of Cannabis sativa prenyltransferase 1 and 4 and salicylic acid mediated regulation of cannabinoid biosynthesis. Scientific Reports, v. 13, n. 1, p. 8620, 2023. SEVERINO, LS , FX Costa , NEM Beltrão e MMB Guimarães, Mineralização da torta de mamona, esterco bovino e bagaço de cana estimada pela respiração microbiana. (em português, com resumo em inglês). Revista de Biologia e Ciências da Terra 5 : 1-6, 2004. SEVERINO, L. S. O que sabemos sobre a torta de mamona. Campina Grande: Embrapa Algodão, Documento 134, p. 31, 2005. SEVERINO et al. A Review on the Challenges for Increased Production of Castor. Agronomy J., 104 (4): 853-880, 2012. SHAH, Sajad Hussain et al. Gibberellic acid: A versatile regulator of plant growth, development and stress responses. Journal of Plant Growth Regulation, v. 42, n. 12, p. 7352-7373, 2023. SILVA, N. L. da; MACIEL, M. R. W; BATISTELLA, C. B.; FILHO, R. M. Optimization of biodiesel production from castor oil. Applied Biochemistry and Biotechnology, v. 130, ed. 1-3, p. 405-414, 2006. SILVA, R. M.; NUNES, Emanoel Márcio. Agricultura familiar e cooperativismo no Brasil: uma caracterização a partir do Censo Agropecuário de 2017. Revista de Economia e Sociologia Rural, v. 61, p. e252661, 2022. | 77 SILVA DE OLIVEIRA, J. et al. Genome‐wide characterization of the terpene synthase gene family in Ricinus communis and its transcriptional regulation under heat stress. Agronomy Journal, v. 114, n. 6, p. 3272-3282, 2022. SINENSKY, M. Functional aspects of polyisoprenoid protein substituents: roles in protein–protein interaction and trafficking. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, v. 1529, n. 1-3, p. 203-209, 2000. SRIVASTAVA, Y. et al. Cloning and homologous characterization of geranylgeranyl pyrophosphate synthase (GGPPS) from Withania somnifera revealed alterations in metabolic flux towards gibberellic acid biosynthesis. Planta, v. 256, n. 1, p. 4, 2022. STAMATAKIS, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312-1313. 2014 doi:10.1093/bioinformatics/btu033 SUKUMARAN, Arjun et al. Isoflavonoid‐specific prenyltransferase gene family in soybean: GmPT01, a pterocarpan 2‐dimethylallyltransferase involved in glyceollin biosynthesis. The Plant Journal, v. 96, n. 5, p. 966-981, 2018. SUN, M. et al. Genome-Wide Identification and Expression Analysis of UBiA Family Genes Associated with Abiotic Stress in Sunflowers (Helianthus annuus L.). International Journal of Molecular Sciences, v. 24, n. 3, p. 1883, 2023. SCHWARZ, G. Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464 . (1978) https://doi.org/10.1214/aos/1176344136 TAN, Q. W. et al. Cross-stress gene expression atlas of Marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses. Nature communications, v. 14, n. 1, p. 986, 2023. TAO, W et al. Cloning and characterization of protein prenyltransferase alpha subunit in rice. Rice Science, v. 28, n. 6, p. 557-566, 2021. TOUZÉ, Thierry; MENGIN-LECREULX, Dominique. Undecaprenyl phosphate synthesis. EcoSal Plus, v. 3, n. 1, p. 10.1128/ecosalplus. 4.7. 1.7, 2008. | 78 UTHUP, T. K. et al. Distinguishing CPT gene family members and vetting the sequence structure of a putative rubber synthesizing variant in Hevea brasiliensis. Gene, v. 689, p. 183-193, 2019. VINOKUR, Jeffrey M. et al. An adaptation to life in acid through a novel mevalonate pathway. Scientific reports, v. 6, n. 1, p. 39737, 2016. WANG, J. et al. Positive selection drives neofunctionalization of the UbiA prenyltransferase gene family. Plant molecular biology, v. 87, n. 4-5, p. 383-394, 2015. WANG, Jing et al. Structural insight into a novel indole prenyltransferase in hapalindole-type alkaloid biosynthesis. Biochemical and Biophysical Research Communications, v. 495, n. 2, p. 1782-1788, 2018. WANG, P.; WEI, G.; FENG, Li. Research Advances in Oxidosqualene Cyclase in Plants. Forests, v. 13, n. 9, p. 1382, 2022. WANG, Y. et al. A novel flavonoid prenyltransferase gene PcPT11 with broad substrate promiscuity in Psoralea corylifolia L. Industrial Crops and Products, v. 199, p. 116746, 2023. WANI, A. B. et al. Salicylic acid to decrease plant stress. Environmental Chemistry Letters, v. 15, p. 101-123, 2017. WINKELBLECH, J., FAN, A. & LI, SM. Prenyltransferases as key enzymes in primary and secondary metabolism. Appl Microbiol Biotechnol 99, 7379–7397, 2015. XU, Wei et al. Genome-wide survey and expression profiles of the AP2/ERF family in castor bean (Ricinus communis L.). BMC genomics, v. 14, p. 1-15, 2013. YANG, Q. et al. Comprehensive in-silico characterization and expression analysis of UbiA prenyltransferase genes in peanut (Arachis hypogaea L.) against abiotic stresses. Plant Stress, v. 10, p. 100229, 2023. YANG, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. Journal of Molecular Evolution, 39(3), 306-314. (1994) https://doi.org/10.1007/BF00160154 | 79 YANG, Z. (1996). Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolution, 11(9), 367-372. doi:10.1016/0169-5347(96)10041-0. YOU, M. K. et al. The predicted functional compartmentation of rice terpenoid metabolism by trans-prenyltransferase structural analysis, expression and localization. International Journal of Molecular Sciences, v. 21, n. 23, p. 8927, 2020. YU X, Zhang W, Zhang Y, Zhang X, Lang D, Zhang X (2019b). The roles of methyl jasmonate to stress in plants. Functional Plant Biology, 46, 197–212. YU, Anmin et al. Application of a high-resolution genetic map for chromosome-scale genome assembly and fine QTLs mapping of seed size and weight traits in castor bean. Scientific reports, v. 9, n. 1, p. 11950, 2019. ZHANG, Y. et al. Rice tocopherol deficiency 1 encodes a homogentisate phytyltransferase essential for tocopherol biosynthesis and plant development in rice. Plant cell reports, v. 37, p. 775-787, 2018. ZHANG, Huiming et al. Abiotic stress responses in plants. Nature Reviews Genetics, v. 23, n. 2, p. 104-119, 2022. ZHOU, W., and De-an G. "Chemical Biology of Sterols, Triterpenoids and Other Natural Products." Molecules. 2019. ZOU, Z. et al. Gene structures, evolution and transcriptional profiling of the WRKY gene family in castor bean (Ricinus communis L.). PloS one, 11(2), e0148243, 2016.pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece nas coleções:Dissertação (PMBqBM)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Nara Emília Santos Benedicto - Dissertação de Mestrado.pdf150,37 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.