Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/41452
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMartinez, Victor Otero-
dc.date.accessioned2025-03-16T02:08:05Z-
dc.date.available2025-03-16T02:08:05Z-
dc.date.issued2024-12-06-
dc.identifier.citationMartinez, Victor Otero. Impacto das infecções maternas crônicas: associações entre a soropositividade materna para anticorpos IgG contra Toxoplasma gondii com restrição no crescimento fetal e efeitos no neuro desenvolvimento infantil / Victor Otero Martinez. - 2024. 114 f.: il.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/41452-
dc.description.abstractThis work is part of a broader study called DSAN-12m (Socioenvironmental Determinants of Children's Neurodevelopment at 12 Months: A Longitudinal Study in the Recôncavo Baiano), which aims to investigate the socioenvironmental determinants of children's neurodevelopment at 12 months of age in a birth cohort in the Recôncavo Baiano region.In this thesis, the current state of the art regarding the relationships between maternal immune activation, chronic/latent prenatal infectious diseases, and neurodevelopment was assessed. Additionally, two original manuscripts were developed to investigate the impact of infections during pregnancy, particularly in the absence of evidence of acute disease, on fetal growth at birth and on children's neurodevelopment at 12 months of age. For better organization, the text was divided into a review manuscript, which presents the theoretical framework and systematizes publications on the thesis topic. Following this, two original manuscripts are presented, followed by final considerations to maintain the coherence of the work. The first manuscript, titled “Impact of Chronic Toxoplasmosis in Pregnancy: Association between Maternal Seropositivity for Toxoplasma gondii IgG Antibodies and Fetal Growth Restriction”, investigated the relationships between the prevalence of specific antibodies in pregnant women and fetal development alterations at birth. Notably, this manuscript was published in the journal Parasitology Research (ISSN: 1432-1955, Impact Factor: 1.8) in December 2023 (APPENDIX E). The second manuscript, titled “Impact of Chronic Toxoplasmosis in Pregnancy: Association between Maternal IgG Antibodies against Toxoplasma gondii and Neurocognitive Development Effects”, explored the association between the prevalence of specific antibodies in pregnant women and neurodevelopmental alterations in their children at 12 months of age. This manuscript is formatted according to the guidelines of Parasitology Research and will be submitted for publication after incorporating the corrections suggested by the evaluation committee. Finally, the thesis concludes with final considerations and future perspectives, integrating the results of this study with other socioenvironmental determinants that adversely affect child neurodevelopment in this birth cohort conducted in the Recôncavo Baiano, the DSAN-12m study.pt_BR
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado da Bahia (FAPESB)pt_BR
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectImunologiapt_BR
dc.subjectNeurodesenvolvimentopt_BR
dc.subjectTranstornos do neurodesenvolvimentopt_BR
dc.subjectGrávidas - doençaspt_BR
dc.subjectDoenças transmissíveis na gravidezpt_BR
dc.subjectDoenças transmissíveis em fetospt_BR
dc.subjectAtivação imunológica maternapt_BR
dc.subjectAutismo em criançaspt_BR
dc.subjectEsquizofreniapt_BR
dc.subject.otherImmunologypt_BR
dc.subject.otherNeurodevelopmentpt_BR
dc.subject.otherNeurodevelopmental disorderspt_BR
dc.subject.otherPregnant - diseasespt_BR
dc.subject.otherTransmissible diseases during pregnancypt_BR
dc.subject.otherTransmissible diseases in fetusespt_BR
dc.subject.otherMaternal immune activationpt_BR
dc.subject.otherAutism in childrenpt_BR
dc.subject.otherSchizophreniapt_BR
dc.titleImpacto das infecções maternas crônicas: associações entre a soropositividade materna para anticorpos IgG contra Toxoplasma gondii com restrição no crescimento fetal e efeitos no neurodesenvolvimento infantilpt_BR
dc.title.alternativeImpact of chronic maternal infections: associations between maternal seropositivity for IgG antibodies against Toxoplasma gondii and fetal growth restriction and effects on child neurodevelopmentpt_BR
dc.typeTesept_BR
dc.publisher.programPrograma de Pós-Graduação em Farmácia (PPGFAR) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDE::FARMACIApt_BR
dc.contributor.advisor1Menezes Filho, José Antonio-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-3191-4484pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5251747226701652pt_BR
dc.contributor.referee1Menezes Filho, José Antonio-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-3191-4484pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/5251747226701652pt_BR
dc.contributor.referee2dos Santos, Carina Carvalho-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-2898-0851pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/7313535995130086pt_BR
dc.contributor.referee3Carvalho, Chrissie Ferreira de-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/7462908507527257pt_BR
dc.contributor.referee4Nunes, Geyanna Dolores Lopes-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/5634808265621291pt_BR
dc.contributor.referee5Teixeira, Márcia Cristina Aquino-
dc.contributor.referee5IDhttps://orcid.org/0000-0003-0477-5092pt_BR
dc.contributor.referee5Latteshttp://lattes.cnpq.br/9452875576136451pt_BR
dc.creator.IDhttps://orcid.org/0000-0002-0537-1797pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6781085146743004pt_BR
dc.description.resumoEste trabalho faz parte de um estudo amplo, denominado DSAN-12m (Determinantes socioambientais do neurodesenvolvimento de crianças aos 12 meses: Um estudo longitudinal no Recôncavo Baiano), cujo objetivo é investigar os determinantes socioambientais do neurodesenvolvimento de crianças aos 12 meses de idade em uma coorte de nascimentos no Recôncavo Baiano. Na presente tese foram avaliados o estado da arte atual quanto às relações entre a ativação imunológica materna, doenças infecciosas crônicas/latentes pré-natais e o neurodesenvolvimento. Além disso, foram elaborados dois manuscritos originais, que visaram investigar o impacto de infecções durante o período gestacional, particularmente quando não há evidencias de doença aguda, no crescimento fetal ao nascimento e no neurodesenvolvimento infantil os 12 meses de idade. Para melhor organização, o texto foi dividido em um manuscrito de revisão, que apresenta o referencial teórico e sistematiza as publicações sobre o tema da tese. Em seguida, são apresentados dois manuscritos originais, seguidos por considerações finais, a fim de manter a unidade do trabalho. O primeiro manuscrito, intitulado “Impact of chronic toxoplasmosis in pregnancy: association between maternal seropositivity for Toxoplasma gondii IgG antibodies and fetal growth restriction”, investigou as relações entre a prevalência de anticorpos específicos em gestantes e alterações no desenvolvimento fetal ao nascimento. Destaca-se que este manuscrito foi publicado no periódico ‘Parasitology Research’ (ISSN: 1432-1955, Fator de impacto: 1,8) em dezembro de 2023 (APÊNDICE E). O segundo manuscrito, com o título “Impact of Chronic Toxoplasmosis in Pregnancy: Association between maternal IgG antibodies against Toxoplasma gondii and neurocognitive development effects”, explorou a associação entre a prevalência de anticorpos específicos em gestantes com alterações no neurodesenvolvimento de seus filhos aos 12 meses de idade. Esse manuscrito está formatado de acordo com as normas do periódico ‘Parasitology Research’ e será submetido para publicação após as correções sugeridas pela banca. Por fim, estão as considerações finais e as perspectivas futuras, integrando os resultados desta tese e dos demais fatores determinantes socioambientais que têm efeito adverso no neurodesenvolvimento infantil nesta coorte de nascimento realizada no Recôncavo Baiano, o estudo DSAN-12m.pt_BR
dc.publisher.departmentFaculdade de Farmáciapt_BR
dc.relation.referencesBLOMSTRÖM, Å. et al. Influence of maternal infections on neonatal acute phase proteins and their interaction in the development of non-affective psychosis. Translational Psychiatry, v. 5, 2015. DOI: 10.1038/tp.2014.142. BLOMSTRÖM, Å. et al. Maternal antibodies to infectious agents and risk for non-affective psychoses in the offspring—a matched case–control study. Schizophrenia Research, v. 140, p. 25-30, 2012. DOI: 10.1016/j.schres.2012.06.035. BOULANGER-BERTOLUS, J.; PANCARO, C.; MASHOUR, G. Increasing Role of Maternal Immune Activation in Neurodevelopmental Disorders. Frontiers in Behavioral Neuroscience, v. 12, 2018. DOI: 10.3389/fnbeh.2018.00230. BROWN, A. et al. Maternal exposure to toxoplasmosis and risk of schizophrenia in adult offspring. The American Journal of Psychiatry, v. 162, n. 4, p. 767-773, 2005. DOI: 10.1176/APPI.AJP.162.4.767. BUKA, S. L. et al. Maternal exposure to herpes simplex virus and risk of psychosis among adult offspring. Biological Psychiatry, v. 63, n. 8, p. 809-815, 2008. DOI: 10.1016/j.biopsych.2007.09.022. BUKA, S. L. et al. Maternal infections and subsequent psychosis among offspring. Archives of General Psychiatry, v. 58, n. 11, p. 1032-1037, 2001. CANETTA, S.; BROWN, A. Prenatal infection, maternal immune activation, and risk for schizophrenia. Translational Neuroscience, v. 3, p. 320-327, 2012. DOI: 10.2478/s13380-012- 0045-6. CAPPELLETTI, M. et al. Inflammation and preterm birth. Journal of Leukocyte Biology, v. 99, 2016. DOI: 10.1189/jlb.3MR0615-272RR. CHESLACK-POSTAVA, K. et al. Maternal exposure to sexually transmitted infections and schizophrenia among offspring. Schizophrenia Research, v. 166, p. 255-260, 2015. DOI: 10.1016/j.schres.2015.05.012. DUBEY, H. et al. SARS-CoV-2 (COVID-19) as a possible risk factor for neurodevelopmental disorders. Frontiers in Neuroscience, v. 16, 2022. DOI: 10.3389/fnins.2022.1021721. ESTES, M.; MCALLISTER, A. Maternal immune activation: Implications for neuropsychiatric disorders. Science, v. 353, p. 772-777, 2016. DOI: 10.1126/science.aag3194. FREEDMAN, D. et al. Maternal T. gondii, offspring bipolar disorder and neurocognition. Psychiatry Research, v. 243, p. 382-389, 2016. DOI: 10.1016/j.psychres.201. HAN, V. et al. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nature Reviews Neurology, v. 17, p. 564-579, 2021. DOI: 10.1038/s41582-021-00530-8. JIANG, H. et al. Maternal infection during pregnancy and risk of autism spectrum disorders: A systematic review and meta-analysis. Brain, Behavior, and Immunity, v. 58, p. 165-172, 2016. DOI: 10.1016/j.bbi.2016.06.005. JIANG, N. et al. The Impact of Systemic Inflammation on Neurodevelopment. Trends in Molecular Medicine, v. 24, n. 9, p. 794-804, 2018. DOI: 10.1016/j.molmed.2018.06.008. KNUESEL, I. et al. Maternal immune activation and abnormal brain development across CNS disorders. Nature Reviews Neurology, v. 10, p. 643-660, 2014. DOI: 10.1038/nrneurol.2014.187. KOVACS, A. A. Zika, the newest TORCH infectious disease in the Americas. Clinical Infectious Diseases, v. 70, n. 12, p. 2673-2674, 2020. KUNDAKOVIC, M.; JARIĆ, I. The Epigenetic Link between Prenatal Adverse Environments and Neurodevelopmental Disorders. Genes, v. 8, 2017. DOI: 10.3390/genes8030104. LIU, T. et al. Association between Toxoplasma gondii infection and psychiatric disorders: a cross-sectional study in China. Scientific Reports, v. 12, n. 1, p. 15092, 2022. DOI: 10.1038/s41598-022-16420-y. MAHIC, M. et al. Maternal Immunoreactivity to Herpes Simplex Virus 2 and Risk of Autism Spectrum Disorder in Male Offspring. mSphere, v. 2, 2017. DOI: 10.1128/mSphere.00016- 17. MARTINEZ, V. O. et al. Impact of chronic toxoplasmosis in pregnancy: association between maternal seropositivity for Toxoplasma gondii IgG antibodies and fetal growth restriction. Parasitology Research, v. 123, n. 1, p. 25, 2024. MINAKOVA, E.; WARNER, B. Maternal immune activation, central nervous system development and behavioral phenotypes. Birth Defects Research, v. 110, p. 1539-1550, 2018. DOI: 10.1002/bdr2.1416. MIRANDA, M. M. S. et al. Rastreamento das infecções perinatais na gravidez: realizar ou não? Femina. RASMUSSEN, S. et al. Zika Virus and Birth Defects--Reviewing the Evidence for Causality. The New England Journal of Medicine, v. 374, n. 20, p. 1981-1987, 2016. DOI: 10.1056/NEJMsr1604338. SHOOK, L. L. et al. COVID-19 in pregnancy: implications for fetal brain development. Trends in Molecular Medicine, v. 28, n. 4, p. 319-330, 2022. DOI: 10.1016/j.molmed.2022.02.004. SLAWINSKI, B. et al. Maternal cytomegalovirus sero-positivity and autism symptoms in children. American Journal of Reproductive Immunology, v. 79, 2018. DOI: 10.1111/aji.12840. SPANN, M. et al. Prenatal toxoplasmosis antibody and childhood autism. Autism Research, v. 10, 2017. DOI: 10.1002/aur.1722. WOODS, R. et al. Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signaling, v. 7, 2022. DOI: 10.1042/NS20220064. XIAO, J. et al. Padrão sorológico consistente com infecção por Toxoplasma gondii tipo I em mães e risco de psicose entre descendentes adultos. Microbes and Infection, v. 11, n. 13, p. 1011-1018, 2009. DOI: 10.1016/j.micinf.2009.07.007. Agrawal V, Hirsch E (2012) Intrauterine infection and preterm labor. Semin Fetal Neonatal Med 17(1):12-9. https://10.1016/j.siny.2011.09.001. Antinarelli LMR, Silva MR, Guimarães RJPSE, Terror MS, Lima PE, Ishii JSC, Muniz PF, Coimbra ES (2021) Rural residence remains a risk factor for Toxoplasma infection among pregnant women in a highly urbanized Brazilian area: a robust cross-sectional study. Trans R Soc Trop Med Hyg 115(8):896-903. https://10.1093/trstmh/traa153. Arora N, Sadovsky Y, Dermody TS, Coyne CB (2017) Microbial Vertical Transmission during Human Pregnancy. Cell Host Microbe 10;21(5):561-567. https://10.1016/j.chom.2017.04.007. Bigna JJ, Tochie JN, Tounouga DN et al (2020). Global, regional, and country seroprevalence of Toxoplasma gondii in pregnant women: a systematic review, modelling and meta-analysis. Sci Rep 10:12102. https://doi.org/10.1038/s41598-020-69078-9 Boulanger-Bertolus J, Pancaro C, Mashour GA (2018) Increasing Role of Maternal Immune Activation in Neurodevelopmental Disorders. Front Behav Neurosci 12:230. https://10.3389/fnbeh.2018.00230. Brasil (2008). Critério de classificação econômica Brasil. Associação Brasileira de Empresas de Pesquisa (ABEP). https://www.abep.org/criterio-brasil. Accessed 05 october 2023. Bunders MJ, van Hamme JL, Jansen MH, Boer K, Kootstra NA, Kuijpers TW (2014) Fetal exposure to HIV-1 alters chemokine receptor expression by CD4+T cells and increases susceptibility to HIV-1. Sci Rep 4:6690. https://10.1038/srep06690. Cappelletti M, Della Bella S, Ferrazzi E, Mavilio D, Divanovic S (2016) Inflammation and preterm birth. J Leukoc Biol 99(1):67-78. https://10.1189/jlb.3MR0615-272RR. Cattane N, Richetto J, Cattaneo A (2020) Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder: focus on biological pathways and epigenetic mechanisms. Neurosci Biobehav 117:253-278. https:// 10.1016/j.neubiorev.2018.07.001. Costa GB, De Oliveira MC, Gadelha SR, Albuquerque GR, Teixeira M, Raiol MRDS, Sousa SMB, Marin LJ (2018) Infectious diseases during pregnancy in Brazil: seroprevalence and risk factors. J Infect Dev Ctries 12(8):657-665. https://10.3855/jidc.9492. Coyne CB, Lazear HM (2016) Zika virus - reigniting the TORCH. Nat Rev Microbiol 14(11):707-715. https://10.1038/nrmicro.2016.125. Devakumar D, Bamford A, Ferreira MU, Broad J, Rosch RE, Groce N, Breuer J, Cardoso MA, Copp AJ, Alexandre P, Rodrigues LC, Abubakar I (2018) Infectious causes of microcephaly: epidemiology, pathogenesis, diagnosis, and management. Lancet Infect Dis 18(1):e1-e13. https://10.1016/S1473-3099(17)30398-5. Faiçal AV, de Oliveira JC, Oliveira JVV, de Almeida BL, Agra IA, Alcantara LCJ, Acosta AX, de Siqueira IC (2019) Neurodevelopmental delay in normocephalic children with in utero exposure to Zika virus. BMJ Paediatr Open 3(1):e000486. https://10.1136/bmjpo- 2019-000486. Fanigliulo D, Marchi S, Montomoli E, Trombetta CM (2020). Toxoplasma gondii in women of childbearing age and during pregnancy: seroprevalence study in Central and Southern Italy from 2013 to 2017. Parasite 27:2. https://10.1051/parasite/2019080. Flegr J, Hrdá Š, Kodym P (2005) Influence of latent "asymptomatic" toxoplasmosis on body weight of pregnant women. Folia Parasitologica 52(3):199-204. https://10.14411/fp.2005.026. Gordijn SJ, Beune IM, Ganzevoort W (2018) Building consensus and standards in fetal growth restriction studies. Best Pract Res Clin Obstet Gynaecol 49:117-126. https://10.1016/j.bpobgyn.2018.02.002. Guerra AB, Siravenha LQ, Laurentino RV, Feitosa RNM, Azevedo VN, Vallinoto ACR, Ishak R, Machado LFA (2018) Seroprevalence of HIV, HTLV, CMV, HBV and rubella virus infections in pregnant adolescents who received care in the city of Belém, Pará, Northern Brazil. BMC Pregnancy Childbirth 18(1):169. https://10.1186/s12884-018-1753-x. Han VX, Patel S, Jones HF, Dale RC (2021) Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol 17(9):564-579. https://10.1038/s41582-021-00530-8. Hong M, Sandalova E, Low D, Gehring AJ, Fieni S, Amadei B, Urbani S, Chong YS, Guccione E, Bertoletti A (2015) Trained immunity in newborn infants of HBV-infected mothers. Nat Commun 6:6588. https://10.1038/ncomms7588. Horta, BL, Wehrmeister, FC (2017) Cohorts and life cycle analyses: why are they important?. Cadernos de Saúde Pública 33:e00035717. https://doi.org/10.1590/0102- 311X00035717 Hurt K, Kodym P, Stejskal D, Zikan M, Mojhova M, Rakovic J (2022) Toxoplasmosis impact on prematurity and low birth weight. PLoS One 17(1):e0262593. https://10.1371/journal.pone.0262593. Kanková S, Flegr J (2007) Longer pregnancy and slower fetal development in women with latent "asymptomatic" toxoplasmosis. BMC Infect Dis 7:114. https://10.1186/1471-2334-7- 114. Kesavan K, Devaskar SU (2019) Intrauterine Growth Restriction: Postnatal Monitoring and Outcomes. Pediatr Clin North Am 66(2):403-423. htpps://10.1016/j.pcl.2018.12.009. Kollmann TR, Kampmann B, Mazmanian SK, Marchant A, Levy O (2017) Protecting the Newborn and Young Infant from Infectious Diseases: Lessons from Immune Ontogeny. Immunity. 46(3):350-363. htpps://10.1016/j.immuni.2017.03.009. Li XL, Wei HX, Zhang H, Peng HJ, Lindsay DS (2014) A meta analysis on risks of adverse pregnancy outcomes in Toxoplasma gondii infection. PLoS One 9(5):e97775. https://10.1371/journal.pone.0097775. Martinez VO, Lima FWM, Rocha RBA, BAH HAF, Carvalho CF, Menezes-Filho JA (2020) Interaction of Toxoplasma gondii infection and elevated blood lead levels on children's neurobehavior. Neurotoxicology. 78:177-185. https://10.1016/j.neuro.2020.03.010. Miranda MMS, Souza LMGD, Aguiar RALPD, Corrêa JRMD, Maia MMM, Borges RDS, Melo VH (2012). Rastreamento das infecções perinatais na gravidez: realizar ou não?. Femina. 40(1)jan.-fev. Mocanu AG, Stoian DL, Craciunescu EL, Ciohat IM, Motofelea AC, Navolan DB, Vilibic- Cavlek T, Stevanovic V, Nemescu D, Forga M, Daniluc R, Ioana AM, Craina M (2022) The Impact of Latent Toxoplasma gondii Infection on Spontaneous Abortion History and Pregnancy Outcomes: A Large-Scale Study. Microorganisms 10(10):1944. htpps:// 10.3390/microorganisms10101944. Morais RAPB, Carmo EL, Bichara CNC, Dos Santos BR, Silveira KWS, Póvoa MM (2020) Seroprevalence and risk factors associated with T. gondii infection in pregnant individuals from a Brazilian Amazon municipality. Parasite Epidemiol Control 9:e00133. https:// 10.1016/j.parepi.2020.e00133. Mutka T, Seyfang A, Yoo JY, Dutra SVO, Ji M, Louis-Jacques A, Bruder K, Prescott S, Kim K, Groer M (2023) Adverse pregnancy outcomes in Toxoplasma gondii seropositive Hispanic women. J Obstet Gynaecol Res (3):893-903. Htpps://10.1111/jog.15511. Nardozza LM, Caetano AC, Zamarian AC, Mazzola JB, Silva CP, Marçal VM, Lobo TF, Peixoto AB, Araujo Júnior E (2017) Fetal growth restriction: current knowledge. Arch Gynecol Obstet 295(5):1061-1077. htpps://10.1007/s00404-017-4341-9. Oliveira A., Leite AD, Silva VEA, Zago SCS, Carneiro LEP, Moliterno RA (2002) Pesquisa de anticorpos IgG e IgM para citomegalovírus em parturientes e recém-natos do município de Presidente Prudente e região, Estado de São Paulo. Acta Scientiarum. Health Sciences, 24: 737-741. Papageorghiou AT, Kennedy SH, Salomon LJ, Altman DG, Ohuma EO, Stones W, Gravett MG, Barros FC, Victora C, Purwar M, Jaffer Y, Noble JA, Bertino E, Pang R, Cheikh Ismail L, Lambert A, Bhutta ZA, Villar J (2018) International Fetal and Newborn Growth Consortium for the 21(st) Century (INTERGROWTH-21(st)). The INTERGROWTH-21st fetal growth standards: toward the global integration of pregnancy and pediatric care. Am J Obstet Gynecol 218(2S):S630-S640. https://10.1016/j.ajog.2018.01.011. Pazos M, Sperling RS, Moran TM, Kraus TA (2012) The influence of pregnancy on systemic immunity. Immunol Res 54(1-3):254-61. https://10.1007/s12026-012-8303-9. Pereira L, Petitt M, Fong A, Tsuge M, Tabata T, Fang-Hoover J, Maidji E, Zydek M, Zhou Y, Inoue N, Loghavi S, Pepkowitz S, Kauvar LM, Ogunyemi D (2014) Intrauterine growth restriction caused by underlying congenital cytomegalovirus infection. J Infect Dis 209(10):1573-84. https://10.1093/infdis/jiu019. Sandall J, Tribe RM, Avery L, Mola G, Visser GH, Homer CS, Gibbons D, Kelly NM, Kennedy HP, Kidanto H, Taylor P, Temmerman M (2018) Short-term and long-term effects of caesarean section on the health of women and children. Lancet 392(10155):1349-1357. https://10.1016/S0140-6736(18)31930-5. Verma RP (2021) Evaluation and Risk Assessment of Congenital Anomalies in Neonates. Children (Basel) (10):862. https://10.3390/children8100862. Villar J, Cheikh Ismail L, Victora CG, Ohuma EO, Bertino E, Altman DG, Lambert A, Papageorghiou AT, Carvalho M, Jaffer YA, Gravett MG, Purwar M, Frederick IO, Noble AJ, Pang R, Barros FC, Chumlea C, Bhutta ZA, Kennedy SH (2014) International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 384(9946):857-68. https://10.1016/S0140-6736(14)60932-6. Wilking H, Thamm M, Stark K, Aebischer T, Seeber F (2016) Prevalence, incidence estimations, and risk factors of Toxoplasma gondii infection in Germany: a representative, cross-sectional, serological study. Sci Rep 6:22551. https://10.1038/srep22551. WORLD HEALTH ORGANIZATION (2018) WHO recommendations on intrapartum care for a positive childbirth experience. https://www.who.int/publications/i/item/9789241550215. Accessed 18 June 2023 Yockey LJ, Iwasaki A (2018) Interferons and Proinflammatory Cytokines in Pregnancy and Fetal Development. Immunity 49(3):397-412. https://0.1016/j.immuni.2018.07.017. Zhou, H. (2012) Maternal infection and neurodevelopmental disorders in the offspring. American Journal of Immunology 8(1):10-17. Abu-Raya, B., Michalski, C., Sadarangani, M., & Lavoie, P. (2020). Maternal Immunological Adaptation During Normal Pregnancy. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.575197. Anderson, P., & Burnett, A. (2017). Assessing developmental delay in early childhood — concerns with the Bayley-III scales. The Clinical Neuropsychologist, 31, 371 - 381. https://doi.org/10.1080/13854046.2016.1216518. Antinarelli, L., Silva, M., Guimarães, R., Terror, M., Lima, P., Ishii, J., Muniz, P., & Coimbra, E. (2020). Rural residence remains a risk factor for Toxoplasma infection among pregnant women in a highly urbanized Brazilian area: a robust cross-sectional study.. Transactions of the Royal Society of Tropical Medicine and Hygiene. https://doi.org/10.1093/trstmh/traa153. Avelar, M., Martinez, V., Moura, D., Barros, I., Primo, A., Duarte, A., Soares, N., & Lima, F. (2017). Association between seroprevalence of IgG anti-Toxoplasma gondii and risk factors for infection among pregnant women in Climério de Oliveira Maternity, Salvador, Bahia, Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 59. https://doi.org/10.1590/S1678-9946201759090. Bah, H., Martinez, V., Santos, N., Júnior, E., Costa, D., Pires, E., Santana, J., Cerqueira, F., & Menezes-Filho, J. (2023). Determinants of Exposure to Potentially Toxic Metals in Pregnant Women of the DSAN-12M Cohort in the Recôncavo Baiano, Brazil. International Journal of Environmental Research and Public Health, 20. https://doi.org/10.3390/ijerph20042949. Barros, J., Miranda, A., & Teixeira, A. (2020). Toxoplasma gondii Infection as a Risk Factor for Major Psychiatric Disorders: Pre-clinical and Clinical Evidence. , 101-118. https://doi.org/10.1007/978-3-030-39335-9_7. Bergdolt, L., & Dunaevsky, A. (2019). Brain changes in a maternal immune activation model of neurodevelopmental brain disorders. Progress in Neurobiology, 175, 1-19. https://doi.org/10.1016/j.pneurobio.2018.12.002. Bigna, J. J., Tochie, J. N., Tounouga, D. N., Bekolo, A. O., Ymele, N. S., Youda, E. L., ... & Nansseu, J. R. (2020). Global, regional, and country seroprevalence of Toxoplasma gondii in pregnant women: a systematic review, modelling and meta-analysis. Scientific Reports, 10(1), 12102. Brasil (2008). Critério de classificação econômica Brasil. Associação Brasileira de Empresas de Pesquisa (ABEP). https://www.abep.org/criterio-brasil. Accessed 05 october 2023. Del Rosario, C., Slevin, M., Molloy, E. J., Quigley, J., & Nixon, E. (2021). How to use the Bayley scales of infant and toddler development. Archives of Disease in Childhood- Education and Practice, 106(2), 108-112. Deshmukh, H., & Way, S. (2019). Immunological Basis for Recurrent Fetal Loss and Pregnancy Complications.. Annual review of pathology, 14, 185-210 .https://doi.org/10.1146/annurev-pathmechdis-012418-012743. Dias, B., Leal, M., Esteves-Pereira, A., & Nakamura‐Pereira, M. (2022). Variations in cesarean and repeated cesarean section rates in Brazil according to gestational age at birth and type of hospital. Cadernos de Saúde Pública. https://doi.org/10.1590/0102- 311xen073621. Freedman, D., Bao, Y., Shen, L., Schaefer, C., & Brown, A. (2016). Maternal T. gondii, offspring bipolar disorder and neurocognition. Psychiatry Research, 243, 382-389. https://doi.org/10.1016/j.psychres.2016.06.057. Gómez-Chávez, F., Cañedo-Solares, I., Ortiz-Alegría, L., Flores-Garcia, Y., Luna-Pastén, H., Figueroa-Damián, R., Mora-González, J., & Correa, D. (2019). Maternal Immune Response During Pregnancy and Vertical Transmission in Human Toxoplasmosis. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.00285. Han, V., Patel, S., Jones, H., Nielsen, T., Mohammad, S., Hofer, M., Gold, W., Brilot, F., Lain, S., Nassar, N., & Dale, R. (2021). Maternal acute and chronic inflammation in pregnancy is associated with common neurodevelopmental disorders: a systematic review. Translational Psychiatry, 11. https://doi.org/10.1038/s41398-021-01198-w. Hwang, Y., Shin, J., Yang, J., Jung, B., Lee, S., & Shin, E. (2018). Characteristics of Infection Immunity Regulated by Toxoplasma gondii to Maintain Chronic Infection in the Brain. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.00158. Jiang, N., Cowan, M., Moonah, S., & Petri, W. (2018). The Impact of Systemic Inflammation on Neurodevelopment.. Trends in molecular medicine, 24 9, 794-804 . https://doi.org/10.1016/j.molmed.2018.06.008. Johnson, S., Moore, T. & Marlow, N. Using the Bayley-III to assess neurodevelopmental delay: which cut-off should be used?. Pediatr Res 75, 670–674 (2014). https://doi.org/10.1038/pr.2014.10 Kohler, A., Serenini, J., Alves, K., Livramento, A., & Botelho, T. (2022). Evaluation of the level of knowledge and prevalence of Toxoplasma gondii infection in pregnant women in Santa Catarina, Brazil. Revista Brasileira de Análises Clínicas. https://doi.org/10.21877/2448-3877.202202151. Li, X., Wei, H., Zhang, H., Peng, H., & Lindsay, D. (2014). A Meta Analysis on Risks of Adverse Pregnancy Outcomes in Toxoplasma gondii Infection. PLoS ONE, 9. https://doi.org/10.1371/journal.pone.0097775. Lopes, F., Mitsuka-Breganó, R., Gonçalves, D., Freire, R., Karigyo, C., Wedy, G., Matsuo, T., Reiche, E., Morimoto, H., Capobiango, J., Inoue, I., Garcia, J., & Navarro, I. (2009). Factors associated with seropositivity for anti-Toxoplasma gondii antibodies in pregnant women of Londrina, Paraná, Brazil.. Memorias do Instituto Oswaldo Cruz, 104 2, 378-82 . https://doi.org/10.1590/S0074-02762009000200036. Martinez, V. O., Dos Santos, N. R., Bah, H. A. F., Junior, E. A. G., Costa, D. O., & Menezes-Filho, J. A. (2024). Impact of chronic toxoplasmosis in pregnancy: associationbetween maternal seropositivity for Toxoplasma gondii IgG antibodies and fetal growth restriction. Parasitology Research, 123(1), 25. https://doi.org/10.1007/s00436-023-08068-y McEwan, F., Glazier, J. D., & Hager, R. (2023). The impact of maternal immune activation on embryonic brain development. Frontiers in Neuroscience, 17, 1146710. Messina, M., Schneider, M., Carral, L., Outón, E., Pari, M., Rodríguez, M., Daquarti, J., Amoia, G., Nadal, M., Freuler, C., & Kaufer, F. (2019). [Prevalence of anti-Toxoplasma gondii antibodies in pregnant women in seven hospitals in Buenos Aires area. Comparison 2006 vs. 2017].. Medicina, 79 6, 433-437. Miranda MMS, Souza LMGD, Aguiar RALPD, Corrêa JRMD, Maia MMM, Borges RDS, Melo VH (2012). Rastreamento das infecções perinatais na gravidez: realizar ou não?. Femina. 40(1)jan.-fev. Nayeri, T., Sarvi, S., Moosazadeh, M., Hosseininejad, Z., Sharif, M., Amouei, A., & Daryani, A. (2020). Relationship between toxoplasmosis and autism: A systematic review and meta-analysis.. Microbial pathogenesis, 104434 . https://doi.org/10.1016/j.micpath.2020.104434.Z Núñez, E., Ayala, T., Cervantes, G., Roldán-Roldán, G., Esquivel, D., Muñiz-Hernández, S., Salazar, A., Armenta, M., Gómez-Manzo, S., González-Conchillos, H., Luna-Nophal, A., Ramírez, A., Pineda, B., Jiménez-Anguiano, A., & Cruz, V. (2022). Pregestational Exposure to T. gondii Produces Maternal Antibodies That Recognize Fetal Brain Mimotopes and Induces Neurochemical and Behavioral Dysfunction in the Offspring. Cells, 11. https://doi.org/10.3390/cells11233819. Oldenburg, K., O'Shea, T., & Fry, R. (2020). Genetic and epigenetic factors and early life inflammation as predictors of neurodevelopmental outcomes.. Seminars in fetal & neonatal medicine, 101115 . https://doi.org/10.1016/j.siny.2020 Ribeiro, A., Mutis, M., & Fernandes, O. (2008). Association of the presence of residual anti-Toxoplasma gondii IgM in pregnant women and their respective family groups in Miracema, Northwest Rio de Janeiro, Brazil.. Memorias do Instituto Oswaldo Cruz, 103 6, 591-4 . https://doi.org/10.1590/S0074-02762008000600013. Spencer-Smith, M., Spittle, A., Lee, K., Doyle, L., & Anderson, P. (2015). Bayley-III Cognitive and Language Scales in Preterm Children. Pediatrics, 135, e1258 - e1265. https://doi.org/10.1542/peds.2014-3039. Villar J, Cheikh Ismail L, Victora CG, Ohuma EO, Bertino E, Altman DG, Lambert A, Papageorghiou AT, Carvalho M, Jaffer YA, Gravett MG, Purwar M, Frederick IO, Noble AJ, Pang R, Barros FC, Chumlea C, Bhutta ZA, Kennedy SH (2014) International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH- 21st Project. Lancet 384(9946):857-68. https://10.1016/S0140-6736(14)60932-6. Vlasova, R., Iosif, A., Ryan, A., Funk, L., Murai, T., Chen, S., Lesh, T., Rowland, D., Bennett, J., Hogrefe, C., Maddock, R., Gandal, M., Geschwind, D., Schumann, C., Water, J., McAllister, A., Carter, C., Styner, M., Amaral, D., & Bauman, M. (2021). Maternal Immune Activation during Pregnancy Alters Postnatal Brain Growth and Cognitive Development in Nonhuman Primate Offspring. The Journal of Neuroscience, 41, 9971 - 9987. https://doi.org/10.1523/JNEUROSCI.0378-21.2021. Woods, R. M., Lorusso, J. M., Fletcher, J., ElTaher, H., McEwan, F., Harris, I., ... & Glazier, J. D. (2023). Maternal immune activation and role of placenta in the prenatal programming of neurodevelopmental disorders. Neuronal Signaling, 7(2). Xiao, J., Prandovszky, E., Kannan, G., Pletnikov, M., Dickerson, F., Severance, E., & Yolken, R. (2018). Toxoplasma gondii: Biological Parameters of the Connection to Schizophrenia. Schizophrenia Bulletin, 44, 983–992. https://doi.org/10.1093/schbul/sby082. Zhou, H. (2012) Maternal infection and neurodevelopmental disorders in the offspring. American Journal of Immunology 8(1):10-17.pt_BR
dc.type.degreeDoutoradopt_BR
Aparece nas coleções:Tese (PPGFAR)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Victor Martinez. Tese doutorado.pdfVictor Martinez. Tese doutorado3,76 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.