Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/40894
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMattos, Maiana Maria Rios Siqueira-
dc.date.accessioned2025-01-14T11:37:11Z-
dc.date.available2025-01-14T11:37:11Z-
dc.date.issued2023-05-05-
dc.identifier.citationMATTOS, Maiana Maria Rios Siqueira. Atividade antimicrobiana de nanopartículas de prata biogênicas em isolados orais de Enterococcus faecalis e Enterococcus faecium. Orientador: Ricardo Wagner Dias Portela. 2023. 74 f. Tese (Doutorado em Processos Interativos de Órgãos e Sistemas) - Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, 2023.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/40894-
dc.description.abstractIntroduction: The endodontic treatment aims to eliminate pathogenic microorganisms in the pulp complex. Even though this treatment has well-defined protocols, persistent infections, mainly caused by Enterococcus, have become a challenge for a successful treatment. Considering the antimicrobial potential of biogenic silver nanoparticles (AgNPs), this study aimed to evaluate the activity of these compounds on reference strains and clinical isolates of Enterococcus faecalis and Enterococcus faecium, as well as on their biofilms. Methods: Reference strains and clinical isolates of Enterococcus were obtained from patients who showed no response to the pulp sensitivity test and chronic reaction. These were submitted to AgNPs sensitivity tests through broth microdilution assays. Minimum inhibitory concentrations (MICs100) and minimum bactericidal concentrations (MBCs100) were determined. The inhibitory activity of AgNPs on biofilm formation and activity on consolidated biofilms was also tested. Scanning electron microscopy (SEM) was used for the morphological analysis of Enterococcus treated with AgNPs. Results: AgNPs showed 100% bacteriostatic effect for all strains and clinical isolates, except one clinical isolate of E. faecium, at concentrations ranging from 31.25 to 125 ug/mL. Regarding the bactericidal effect, only one clinical isolate and the reference strain of E. faecium were not 100% inactivated by AgNPs. All strains and clinical isolates analyzed herein were moderate biofilm producers. AgNPs were able to interfere with the formation of biofilm by the Enterococcus, with a maximum of 55% interference for E. faecalis, and 40% for E. faecium. There was an interference in the consolidated biofilm at levels ranging from 20 to 40%. SEM analysis confirmed the antibacterial activity of AgNPs through morphological changes in cells. Conclusion: AgNPs proved to be an antimicrobial agent with significant bacteriostatic and bactericidal capacity on reference strains and clinical oral isolates of E. faecalis and E. faecium, as well as showing inhibition properties in biofilm formation and disruption.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectAgentes antimicrobianospt_BR
dc.subjectAnti-Infecciosospt_BR
dc.subjectInfecções endodônticaspt_BR
dc.subjectNanotecnologiapt_BR
dc.subjectBiofilmespt_BR
dc.subjectBiofilme bacterianopt_BR
dc.subject.otherAntimicrobial agentspt_BR
dc.subject.otherAnti-Infective Agentspt_BR
dc.subject.otherEndodontic infectionspt_BR
dc.subject.otherNanotechnologypt_BR
dc.subject.otherBacterial biofilmpt_BR
dc.subject.otherBiofilmspt_BR
dc.titleAtividade de nanopartículas de prata Biogênicas em isolados orais de Enterococcus faecalis e Enterococcus faeciumpt_BR
dc.title.alternativeAntimicrobial activity of biogenic silver nanoparticles on oral isolates of Enterococcus faecalis and Enterococcus faeciumpt_BR
dc.typeTesept_BR
dc.publisher.programPrograma de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas (PPGORGSISTEM) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDEpt_BR
dc.contributor.advisor1Portela, Ricardo Wagner Dias-
dc.contributor.advisor1IDhttps://orcid.org/0000-0001-9095-776Xpt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/3118063347109613pt_BR
dc.contributor.referee1Portela, Ricardo Wagner Dias-
dc.contributor.referee1IDhttps://orcid.org/0000-0001-9095-776Xpt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/3118063347109613pt_BR
dc.contributor.referee2Antón, Ana Rita Sokolonski-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/1228384941765961pt_BR
dc.contributor.referee3Hanna, Samira Abdallah-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/2783394545161853pt_BR
dc.contributor.referee4Rezende, Cíntia Silva Minafra e-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/5841210447886226pt_BR
dc.contributor.referee5Tasic, Ljubica-
dc.contributor.referee5Latteshttp://lattes.cnpq.br/4164247517680621pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6006657955217067pt_BR
dc.description.resumoIntrodução: O tratamento endodôntico tem como objetivo eliminar microrganismos patogênicos presentes no complexo pulpar. Apesar de haver protocolos bem definidos para esse tratamento, infecções persistentes, principalmente causadas por Enterococcus, tornam-se desafiadoras para o sucesso do tratamento. Considerando o potencial antimicrobiano das nanopartículas de prata biogênicas (AgNP), o objetivo deste estudo foi avaliar a atividade desses compostos sobre Enterococcus faecalis e Enterococcus faecium, bem como sobre seus biofilmes. Método: Utilizaram-se cepas referências e isolados clínicos de Enterococcus, provenientes de pacientes que apresentaram ausência de resposta ao teste de sensibilidade pulpar e reação crônica, as quais foram submetidas a testes de sensibilidade às AgNP por meio de ensaio de microdiluição em caldo. Determinaram-se as concentrações inibitórias mínimas (MIC100) e concentrações bactericidas mínimas. Também foi testada a atividade inibitória de AgNP na formação de biofilme e atividade sobre biofilme consolidado. A microscopia eletrônica de varredura (MEV) foi utilizada para a análise morfológica do Enterococcus tratado pelas AgNP. Resultados: As AgNP apresentaram 100% de efeito bacteriostático para todas as cepas e isolados clínicos, com exceção de um isolado clínico de E. faecium, em concentrações que variaram de 31,25 a 125 ug/mL. Com relação ao efeito bactericida, somente um isolado clínico e a cepa referência de E. faecium não foram 100% inativados pelas AgNP. Todas as cepas e isolados clínicos analisados foram produtores moderados de biofilme. As AgNP foram capazes de interferir na formação de biofilme pelos Enterococcus, sendo um máximo de 55% de interferência para E. faecalis e de 40% para E. faecium. Houve interferência no biofilme consolidado em níveis que variaram de 20 a 40%. As análises de MEV comprovaram a atividade antibacteriana das AgNP por meio de alterações morfológicas das células. Conclusão: As AgNP demonstraram ser um agente antimicrobiano com capacidade bacteriostática e bactericida sobre cepas referências e isolados clínicos orais de E. faecalis e E. faecium, bem como apresentaram propriedade de inibição na formação de biofilme e disrupção de biofilme formado.pt_BR
dc.publisher.departmentInstituto de Ciências da Saúde - ICSpt_BR
dc.relation.references1. Foschi F, Izard J, Sasaki H, Sambri V, Prati C, Müller R, Stashenko P. Treponema denticola in disseminating endodontic infections. J. Dent Res. 2006;85(8): 761-5. 2. Manfredi M, et al. Single versus multiple visits for endodontic treatment of permanent teeth. Cochrane Database Syst Rev. 2016 Dec. 3. Prada I et al. Influence of microbiology on endodontic failure: Literature review. Med Oral Patol Oral Cir Bucal. 2019 May 1;24 (3):e364-72. 4. Marinho BVS, Araújo ACS. Uso dos enxaguatórios bucais sobre a gengivite e biofilme dental. International Journal of Dentistry. 2007; 6(4):124-31. 5. Łysakowska ME, Sienkiewicz M, Banaszek K, Sokołowski J. The sensitivity of endodontic Enterococcus spp. strains to geranium essential oil. Molecules. 2015 Dec 21;20(12):22881-9 6. Yin IX, Zhang J, Zhao IS, Mei ML, Li Q, Chu CH. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int J Nanomedicine. 2020 Apr. 17;15:255562 7. Tang S, Zheng J. Antibacterial activity of silver nanoparticles: Structural effects. Adv Healthc Mater. 2018 Jul;7(13) 8. Song W, Ge S. Application of antimicrobial nanoparticles in dentistry. Molecules. 2019 Mar 15;24(6):1033. doi: 10.3390/molecules24061033. 9. Bapat RA, Joshi CP, Bapat P, Chaubal TV, Pandurangappa R, Jnanendrappa N, Gorain B, Khurana S, Kesharwani P. The use of nanoparticles as biomaterials in dentistry. Drug Discov Today. 2019 Jan;24(1):85-98. doi: 10.1016/j.drudis.2018.08.012. 10. Fernandez CC, Sokolonski AR, Fonseca MS, Stanisic D, Araújo DB, Azevedo V, Portela RD, Tasic L. Applications of silver nanoparticles in dentistry: Advances and technological innovation. Int J Mol Sci. 2021 Mar 2;22(5):2485. doi: 10.3390/ijms22052485. 11. Dioguardi M, Di Gioia G, Illuzzi G, Arena C, Caponio VCA, Caloro GA, Zhurakivska K, Adipietro I, Troiano G, Lo Muzio L. Inspection of the microbiota in endodontic lesions. Dent J (Basel). 2019 May 1;7(2):47. doi: 10.3390/dj7020047. 12. Yamaguchi M, Noiri Y, Itoh Y, Komichi S, Yagi K, Uemura R, Naruse H, Matsui S, Kuriki N, Hayashi M, Ebisu S. Factors that cause endodontic failures in general practices in Japan. BMC Oral Health. 2018 Apr 27;18(1):70. doi: 10.1186/s12903-018-0530-6. 13. Siqueira Junior JF, Rôças IDN, Marceliano-Alves MF, Pérez AR, Ricucci D. Unprepared root canal surface areas: causes, clinical implications, and therapeutic strategies. Braz Oral Res. 2018 Oct 18;32(suppl 1):e65. doi: 10.1590/1807-3107bor-2018.vol32.0065. 14. Siddiqui Z, Acevedo-Jake AM, Griffith A, Kadincesme N, Dabek K, Hindi D, Kim KK, Kobayashi Y, Shimizu E, Kumar V. Cells and material-based strategies for regenerative endodontics. Bioact Mater. 2021 Nov 30;14:234-49. doi: 10.1016/j.bioactmat.2021.11.015. 15. Siqueira JF Jr, Rôças IN. Diversity of endodontic microbiota revisited. J Dent Res. 2009 Nov;88(11):969-81. doi: 10.1177/0022034509346549. 59 16. Qian W, Ma T, Ye M, Li Z, Liu Y, Hao P. Microbiota in the apical root canal system of tooth with apical periodontitis. BMC Genomics. 2019 Apr 4;20(Suppl 2):189. doi: 10.1186/s12864- 019-5474-y. 17. Siqueira JF Jr, Rôças IN. Present status and future directions: Microbiology of endodontic infections. Int Endod J. 2022 May;55 Suppl 3:512-30. doi: 10.1111/iej.13677. 18. Gomes BPFA, Herrera DR. Etiologic role of root canal infection in apical periodontitis and its relationship with clinical symptomatology. Braz Oral Res. 2018 Oct 18;32(suppl 1):e69. doi: 10.1590/1807-3107bor-2018.vol32.0069. 19. Zajac JC, Manrique M, Fleury CM, Marrazzo J, Mantilla-Rivas E, Talbet JH, Brennan AM, Aivaz M, Oh AK, Tate AR, Rogers GF. Dental topics for plastic surgeons, part three: Infection and trauma of the dentition. J Craniofac Surg. 2021 Mar-Apr 01;32(2):805-12. doi: 10.1097/SCS.0000000000007191. 20. Alghamdi F, Shakir M. The Influence of Enterococcus faecalis as a dental root canal pathogen on endodontic treatment: A systematic review. Cureus. 2020 Mar 13;12(3):e7257. doi: 10.7759/cureus.7257. 21. Miccoli G, Seracchiani M, Zanza A, Giudice AD, Testarelli L. Possible complications of endodontic treatments. J Contemp Dent Pract. 2020 May 1;21(5):473-4. 22. Ahmed HMA, Versiani MA, De-Deus G, Dummer PMH. A new system for classifying root and root canal morphology. Int Endod J. 2017 Aug;50(8):761-70. doi: 10.1111/iej.12685. 23. Decurcio DA, Bueno MR, Silva JA, Loureiro MAZ, Damião Sousa-Neto M, Estrela C. Digital planning on guided endodontics technology. Braz Dent J. 2021 Sep-Dec;32(5):2333. doi: 10.1590/0103-6440202104740 24. Alghamdi F, Shakir M. The influence of Enterococcus faecalis as a dental root canal pathogen on endodontic treatment: A systematic review. cureus. 2020 Mar 13;12(3):e7257. doi: 10.7759/cureus.7257. 25. Anderson AC, Hellwig E, Vespermann R, Wittmer A, Schmid M, Karygianni L, Al-Ahmad A. Comprehensive analysis of secondary dental root canal infections: a combination of culture and culture-independent approaches reveals new insights. PLoS One. 2012;7(11):e49576. doi: 10.1371/journal.pone.0049576. 26. Gajan EB, Aghazadeh M, Abashov R, Salem Milani A, Moosavi Z. Microbial Flora of Root Canals of Pulpally-infected Teeth: Enterococcus faecalis a Prevalent Species. J Dent Res Dent Clin Dent Prospects. 2009 Winter;3(1):24-7. doi: 10.5681/joddd.2009.007 27. Barbosa-Ribeiro M, Arruda-Vasconcelos R, Mendes Louzada L, Rodrigues Lima A, Marciano M, Affonso de Almeida JF, De-Jesus-Soares A, Zaia AA, Ferraz C, Gomes BP. Microbiological investigation in teeth with persistent/secondary endodontic infection in different stages of root canal retreatment. Eur Endod J. 2020 Dec;5(3):219-25. doi: 10.14744/eej.2020.73626. 28. Torres C, Alonso CA, Ruiz-Ripa L, León-Sampedro R, Del Campo R, Coque TM. Antimicrobial Resistance in Enterococcus spp. of animal origin. Microbiol Spectr. 2018 Jul;6(4). doi: 10.1128/microbiolspec.ARBA-0032-2018. 29. Espíndola LCP, do Nascimento MVMR, do Souto RM, Colombo APV. Antimicrobial susceptibility and virulence of Enterococcus spp. isolated from periodontitis-associated 60 subgingival biofilm. J Periodontol. 2021 Nov;92(11):1588-600. doi: 10.1002/JPER.200815. 30. WHO/CDC/ICBDSR. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Geneva: World Health Organization; 2017.Disponível em: http://www.who.int/medicines/publications/global-prioritylistantibiotic-resistant-bacteria/en/ 31. Wellinghausen N, Chatterjee I, Berger A, Niederfuehr A, Proctor RA, Kahl BC. Characterization of clinical Enterococcus faecalis small-colony variants. J Clin Microbiol. 2009 Sep;47(9):2802-11. doi: 10.1128/JCM.00485-09. 32. García-Solache M, Rice LB. The Enterococcus: A model of adaptability to its environment. Clin Microbiol Rev. 2019 Jan 30;32(2):e00058-18. doi: 10.1128/CMR.00058-18. 33. Paradella, TC, et al. Enterococcus faecalis: considerações clínicas e microbiológicas. Revista de Odontologia da UNESP. 2007; 36(2):163-8 34. Ferreira NS, Martinho FC, Cardoso FG, Nascimento GG, Carvalho CA, Valera MC. Microbiological profile resistant to different intracanal medications in primary endodontic infections. J Endod. 2015 Jun;41(6):824-30. doi: 10.1016/j.joen.2015.01.031. 35. Top J, Willems R, Bonten M. Emergence of CC17 Enterococcus faecium: from commensal to hospital-adapted pathogen. FEMS Immunol Med Microbiol. 2008;52(3):297-308. 36. Gilmore MS, Lebreton F, van Schaik W. Genomic transition of enterococci from gut commensals to leading causes of multidrug-resistant hospital infection in the antibiotic era. Curr Opin Microbiol. 2013;16(1):10–6. 37. Gao W, Howden BP, Stinear TP. Evolution of virulence in Enterococcus faecium, a hospital-adapted opportunistic pathogen. Curr Opin Microbiol. 2018 Feb;41:76-82. doi: 10.1016/j.mib.2017.11.030. 38. Gorrie C, Higgs C, Carter G, Stinear TP, Howden B. Genomics of vancomycin-resistant Enterococcus faecium. 10.1099/mgen.0.000283. Microb Genom. 2019 Jul;5(7):e000283. doi: 39. Cruz CD, Shah S, Tammela P. Defining conditions for biofilm inhibition and eradication assays for Gram-positive clinical reference strains. BMC Microbiol. 2018 Nov 3;18(1):173. doi: 10.1186/s12866-018-1321-6. 40. Jiao Y, Tay FR, Niu LN, Chen JH. Advancing antimicrobial strategies for managing oral biofilm infections. Int J Oral Sci. 2019 Oct 1;11(3):28. doi: 10.1038/s41368-019-0062-1. 41. Pavão DP et al. Capacidade de formação de biofilme por cepas bacterianas e ação antibiofilme do extrato de Lafoensia pacari (Lythraceae). Revista Fitos. Rio de Janeiro. 2021; 15(2): 153-65 42. Mosaddad SA, Tahmasebi E, Yazdanian A, Rezvani MB, Seifalian A, Yazdanian M, Tebyanian H. Oral microbial biofilms: an update. Eur J Clin Microbiol Infect Dis. 2019 Nov;38(11):2005- 19. doi: 10.1007/s10096-019-03641-9. 43. Neelakantan P, Romero M, Vera J, Daood U, Khan AU, Yan A, Cheung GSP. Biofilms in Endodontics-Current Status and Future Directions. Int J Mol Sci. 2017 Aug 11;18(8):1748. doi: 10.3390/ijms18081748. 44. Jhajharia K, Parolia A, Shetty KV, Mehta LK. Biofilm in endodontics: A review. J Int Soc 61 Prev Community Dent. 2015 Jan-Feb;5(1):1-12. doi: 10.4103/2231-0762.151956 45. Ghabraei S, Marvi M, Bolhari B, Bagheri P. Minimum intracanal dressing time of triple antibiotic paste to eliminate Enterococcus faecalis (ATCC 29212) and determination of minimum inhibitory concentration and minimum bactericidal concentration: An Ex Vivo Study. J Dent (Tehran). 2018 Jan;15(1):1-9. 46. Al-Ahmad A, Ameen H, Pelz K, Karygianni L, Wittmer A, Anderson AC, Spitzmüller B, Hellwig E. Antibiotic resistance and capacity for biofilm formation of different bacteria isolated from endodontic infections associated with root-filled teeth. J Endod. 2014 Feb;40(2):223-30. doi: 10.1016/j.joen.2013.07.023. 47. Yoo YJ, Perinpanayagam H, Oh S, Kim AR, Han SH, Kum KY. Endodontic biofilms: Contemporary and future treatment options. Restor Dent Endod. 2019 Jan 31;44(1):e7. doi: 10.5395/rde.2019.44.e7. 48. Khezerlou A, Alizadeh-Sani M, Azizi-Lalabadi M, Ehsani A. Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb Pathog. 2018 Oct;123:505-26. doi: 10.1016/j.micpath.2018.08.008 49. Barar J. Bioimpacts of nanoparticle size: why it matters? Bioimpacts. 2015;5(3):113-5. doi: 10.15171/bi.2015.23. Epub 2015 Sep 10. 50. Staroń A, Długosz O. Antimicrobial properties of nanoparticles in the context of advantages and potential risks of their use. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2021;56(6):680-93. doi: 10.1080/10934529.2021.1917936. 51. Raura N, Garg A, Arora A, Roma M. Nanoparticle technology and its implications in endodontics: a review. Biomater Res. 2020 Dec 4;24(1):21. doi: 10.1186/s40824-02000198-z. 52. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017 Feb 14;12:1227-49. doi: 10.2147/IJN.S121956. 53. Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Lopez-Machado AL, Galindo R, Cano A, Espina M, Ettcheto M, Camins A, Silva AM, Durazzo A, Santini A, Garcia ML, Souto EB. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials (Basel). 2020 Feb 9;10(2):292. doi: 10.3390/nano10020292. 54. Alshareef, K. Laird, R.B.M. Cross, shape-dependent antibacterial activity of silver nanoparticles on Escherichia coli and Enterococcus faecium bacterium, Applied Surface Science. 2017; 424(3):310-5 55. Bruna T, Maldonado-Bravo F, Jara P, Caro N. Silver nanoparticles and their antibacterial applications. Int J Mol Sci. 2021 Jul 4;22(13):7202. doi: 10.3390/ijms22137202. 56. Zhang J, Wang F, Yalamarty SSK, Filipczak N, Jin Y, Li X. Nano silver-induced toxicity and associated mechanisms. Int J Nanomedicine. 2022 Apr 26;17:1851-64. doi: 10.2147/IJN.S355131. 57. Hanan NA, Chiu HI, Ramachandran MR, Tung WH, Mohamad Zain NN, Yahaya N, Lim V. Cytotoxicity of Plant-Mediated Synthesis of Metallic Nanoparticles: A Systematic Review. Int J Mol Sci. 2018 Jun 11;19(6):1725. doi: 10.3390/ijms19061725. 58. Choudhary A, Singh S, Ravichandiran V. Toxicity, preparation methods and applications 62 of silver nanoparticles: An update. Toxicol Mech Methods. 2022 Nov;32(9):650-61. doi: 10.1080/15376516.2022.2064257. 59. Liao C, Li Y, Tjong SC. Bactericidal and cytotoxic properties of silver nanoparticles. Int J Mol Sci. 2019 Jan 21;20(2):449. doi: 10.3390/ijms20020449. 60. De Matteis V, Cascione M, Toma CC, Leporatti S. Silver nanoparticles: Synthetic routes, in vitro toxicity and theranostic applications for cancer disease. Nanomaterials (Basel). 2018 May 10;8(5):319. doi: 10.3390/nano8050319. 61. Tripathi N, Goshisht MK. Recent advances and mechanistic insights into antibacterial activity, antibiofilm activity, and cytotoxicity of silver nanoparticles. ACS Appl Bio Mater. 2022 Apr 18;5(4):1391-463. doi: 10.1021/acsabm.2c00014. 62. Bélteky P, Rónavári A, Zakupszky D, Boka E, Igaz N, Szerencsés B, Pfeiffer I, Vágvölgyi C, Kiricsi M, Kónya Z. Are smaller nanoparticles always better? Understanding the biological effect of size-dependent silver nanoparticle aggregation under biorelevant conditions. Int J Nanomedicine. 2021 Apr 23;16:3021-40. doi: 10.2147/IJN.S304138. 63. Ballottin, D., Fulaz, S., Cabrini, F., Tsukamoto, J., Durán, N., Alves, O. L., et al. (2017). Antimicrobial textiles: Biogenic silver nanoparticles against Candida and Xanthomonas. Mater. Sci. Eng. C 75, 582–9. doi:10.1016/j.msec.2017.02.110. 64. Stanisic, D., Fregonesi, N. L., Barros, C. H. N., Pontes, J. G. M., Fulaz, S., Menezes, U. J., et al. (2018). NMR insights on nano silver post-surgical treatment of superficial caseous lymphadenitis in small ruminants. RSC Adv. 8, 40778–40786. doi:10.1039/C8RA08218A. 65. Norman, T. E., Batista., M., Lawhon, S. D., Zhang, S., Kuskie, K. R., Swinford, A. K., et al. (2014). In vitro susceptibility of equine-obtained isolates of Corynebacterium pseudotuberculosis to gallium maltolate and 20 other antimicrobial agents. J. Clin. Microbiol. 52, 2684–5. doi:10.1128/JCM.01252-14. 66. Fonseca MS, Rodrigues DM, Sokolonski AR, Stanisic D, Tomé LM, Góes-Neto A, Azevedo V, Meyer R, Araújo DB, Tasic L, Portela RD. Activity of Fusarium oxysporumbased silver nanoparticles on Candida spp. oral isolates. Nanomaterials (Basel). 2022 Jan 31;12(3):501. doi: 10.3390/nano12030501. 67. CLSI. Manual Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standards6th ed. Document M7- A6 performance standards for antimicrobial susceptibility testing. Wayne, PA; Clinical and Laboratory Standards Institute; 2006. 68. CLSI. Manual Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standards6 th ed. Performance standards for antimicrobial susceptibility testing. Sixteenth informational supplement M100-S16 (tab 2J). Wayne, PA. Clinical and Laboratory Standards Institute; 2006a. 69. Kalil, M. A., Santos, L. M., Barral, T. D., Rodrigues, D. M., Pereira, N. P., Sá, M. da C. A., et al. Brazilian Green Propolis as a Therapeutic Agent for the Post-surgical Treatment of Caseous Lymphadenitis in Sheep. Front. Vet. Sci. 2019;6, 1–10. doi:10.3389/fvets.2019.00399. 70. Nostro, A., Roccaro, A. S., Bisignano, G., Marino, A., Cannatelli, M. A., Pizzimenti, F. C., et al. (2007). Effects of oregano, carvacrol and thymol on Staphylococcus aureus and 63 Staphylococcus epidermidis doi:10.1099/jmm.0.46804-0. biofilms. J. Med. Microbiol. 56, 519–23. 71. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014 Feb 17;11:11. doi: 10.1186/1743-8977-11-11 72. Ferdous Z, Nemmar A. Health Impact of Silver Nanoparticles: A review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020 Mar 30;21(7):2375. doi: 10.3390/ijms21072375. 73. Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB. Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology. 2010 Sep;4(3):319-30. doi: 10.3109/17435390.2010.483745. 74. Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, Vija H, Käkinen A, Titma T, Heinlaan M, Visnapuu M, Koller D, Kisand V, Kahru A. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One. 2014 Jul 21;9(7):e102108. doi: 10.1371/journal.pone.0102108. 75. Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond). 2016 Mar;11(6):673-92. doi: 10.2217/nnm.16.5. 76. Prabha S, Arya G, Chandra R, Ahmed B, Nimesh S. Effect of size on biological properties of nanoparticles employed in gene delivery. Artif Cells Nanomed Biotechnol. 2016;44(1):83-91. doi: 10.3109/21691401.2014.913054. 77. Williams KM, Gokulan K, Cerniglia CE, Khare S. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. J Nanobiotechnology. 2016 Jul 28;14(1):62. doi: 10.1186/s12951-016-0214-9. 78. Sánchez-Sanhueza, G., González-Rocha, G., Dominguez, M., & Bello-Toledo, H. Enterococcus spp. isolated from root canals with persistent chronic apical periodontitis in a Chilean population. Brazilian Journal of Oral Sciences, 14(Braz. J. Oral Sci., 2015 14(3). https://doi.org/10.1590/1677-3225v14n3a13 79. Nardello LCL, Pinheiro ET, Gavini G, Prado LC, Romero RX, Gomes BPFA, SkeltonMacedo MC. Nature and prevalence of bacterial taxa persisting after root canal chemomechanical preparation in permanent teeth: A systematic review and meta-analysis. J Endod. 2022 May;48(5):572-96. doi: 10.1016/j.joen.2022.01.016. 80. Murad CF, Sassone LM, Faveri M, Hirata R Jr, Figueiredo L, Feres M. Microbial diversity in persistent root canal infections investigated by checkerboard DNA-DNA hybridization. J Endod. 2014 Jul;40(7):899-906. doi: 10.1016/j.joen.2014.02.010. 81. Halkai KR, Mudda JA, Shivanna V, Rathod V, Halkai R. Evaluation of antibacterial efficacy of fungal-derived silver nanoparticles against Enterococcus faecalis. Contemp Clin Dent. 2018 Jan-Mar;9(1):45-8. doi: 10.4103/ccd.ccd_703_17. 82. Arora SS, Shetty R, Hemagiriyappa MS, Thakur SS, Mishra N, Lokhande NM. Comparative evaluation of antibacterial efficacy of silver and cadmium nanoparticles and calcium hydroxide against Enterococcus faecalis biofilm. J Contemp Dent Pract. 2021 Dec 1;22(12):1438-1443. 83. Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. The minimum inhibitory concentration 64 (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Investig Dent. 2020 Jul 23;7(1):105-9. doi: 10.1080/26415275.2020.1796674. 84. Chávez-Andrade GM, Tanomaru-Filho M, Basso Bernardi MI, de Toledo Leonardo R, Faria G, Guerreiro-Tanomaru JM. Antimicrobial and biofilm anti-adhesion activities of silver nanoparticles and farnesol against endodontic microorganisms for possible application in root canal treatment. Arch Oral Biol. 2019;107:104481. doi: 10.1016/j.archoralbio.2019.104481. 85. Bruniera JFB, Gabriel-Silva L, Goulart RS, Silva-Sousa YTC, Lara MG, Pitondo-Silva A, Miranda CES. Green synthesis, characterization and antimicrobial evaluation of silver nanoparticles for an intracanal dressing. Braz Dent J. 2020 Sep-Oct;31(5):485-92. doi: 86. Rodrigues CT, de Andrade FB, de Vasconcelos LRSM, Midena RZ, Pereira TC, Kuga MC, Duarte MAH, Bernardineli N. Antibacterial properties of silver nanoparticles as a root canal irrigant against Enterococcus faecalis biofilm and infected dentinal tubules. Int Endod J. 2018 Aug;51(8):901-11. doi: 10.1111/iej.12904. 87. Kushwaha V, Yadav RK, Tikku AP, Chandra A, Verma P, Gupta P, Shakya VK. Comparative evaluation of antibacterial effect of nanoparticles and lasers against Endodontic Microbiota: An in vitro study. J Clin Exp Dent. 2018 Dec 1;10(12):e1155-e60. doi: 10.4317/jced.55076. 88. Nayyar P, Sethi A, Thakur D, Khullar S, Gayati S, Adarsh K. Antibacterial Effect of silver nanoparticle gel as an intracanal medicament in combination with other medicaments against Enterococcus faecalis: An in vitro study. J Pharm Bioallied Sci. 2021 Jun;13(Suppl 1):S408- S411. doi: 10.4103/jpbs.JPBS_600_20. 89. Albaghdadi SZ, Altaher JB, Drobiova H, Bhardwaj RG, Karched M. In vitro characterization of biofilm formation in prevotella species. Front Oral Health. 2021 Oct 8;2:724194. doi: 10.3389/froh.2021.724194. 90. Xu Z, Liang Y, Lin S, Chen D, Li B, Li L, Deng Y. Crystal violet and xtt assays on staphylococcus aureus biofilm quantification. Curr Microbiol. 2016 Oct;73(4):474-82. doi: 10.1007/s00284-016-1081-1. 91. Dos Santos EMP, Martins CCB, de Oliveira Santos JV, da Silva WRC, Silva SBC, Pelagio- Flores MA, Galembeck A, Cavalcanti IMF. Silver nanoparticles-chitosan composites activity against resistant bacteria: tolerance and biofilm inhibition. J Nanopart Res. 2021;23(8):196. doi: 10.1007/s11051-021-05314-1. 92. Subhadra B, Kim DH, Woo K, Surendran S, Choi CH. Control of biofilm formation in healthcare: Recent Advances exploiting quorum-sensing interference strategies and multidrug efflux pump inhibitors. Materials (Basel). 2018 Sep 10;11(9):1676. doi: 10.3390/ma11091676. 93. Seo M, Oh T, Bae S. Antibiofilm activity of silver nanoparticles against biofilm forming Staphylococcus pseudintermedius isolated from dogs with otitis externa. Vet Med Sci. 2021 Sep;7(5):1551-7. doi: 10.1002/vms3.554. 94. Choi JS, Lee JW, Shin UC, Lee MW, Kim DJ, Kim SW. Inhibitory Activity of silver nanoparticles synthesized using Lycopersicon esculentum against biofilm formation in candida species. nanomaterials (Basel). 2019 Oct 23;9(11):1512. doi: 10.3390/nano9111512. 65 95. Santos, LMC. Atividade de nanopartículas de prata biogênicas e de extratos de própolis em biofilmes de Corynebacterium pseudotuberculosis. 2021. Tese (Doutorado) - Programa de Pós- graduação em Ciência Animal nos Trópico, Universidade Federal da Bahia. Salvador, 2021 96. Jiménez-Ramírez, AJ et al. Antimicrobial activity of silver nanoparticles against clinical biofilms from patients with and without dental caries. Journal of Nanomaterials. vol. 2021, Article ID 5587455, 13 pages, 2021. https://doi.org/10.1155/2021/5587455 97. Mohanta YK, Biswas K, Jena SK, Hashem A, Abd Allah EF, Mohanta TK. Anti-biofilm and antibacterial activities of silver nanoparticles synthesized by the reducing activity of phytoconstituents present in the Indian medicinal plants. Front Microbiol. 2020 Jun 23;11:1143. doi: 10.3389/fmicb.2020.01143. 98. Siddique, M. H., Aslam, B., Imran, M., Ashraf, A., Nadeem, H., Hayat, S., et al. Effect of silver nanoparticles on biofilm formation and EPS production of multidrug-resistant klebsiella pneumoniae. Biomed Res. Int. 2020, 9. doi:10.1155/2020/6398165. 99. Kim EB, Kopit LM, Harris LJ, Marco ML. Draft genome sequence of the quality control strain Enterococcus faecalis ATCC 29212. J Bacteriol. 2012 Nov;194(21):6006-7. doi: 10.1128/JB.01423-12. 100. Oncu A, Huang Y, Amasya G, Sevimay FS, Orhan K, Celikten B. Silver nanoparticles in endodontics: recent developments and applications. Restor Dent Endod. 2021 Jul 1;46(3):e38. doi: 10.5395/rde.2021.46.e38. 101. Mahmoud A, Moussa S, El Backly R, El-Gendy R. Investigating the residual effect of silver nanoparticles gel as an intra-canal medicament on dental pulp stromal cells. BMC Oral Health. 2022 Nov 30;22(1):545. doi: 10.1186/s12903-022-02542-2. 102. Chan EL, Zhang C, Cheung GS. Cytotoxicity of a novel nano-silver particle endodontic irrigant. Clin Cosmet Investig Dent. 2015 Jul 13;7:65-74. doi: 10.2147/CCIDE.S68874. 103. Prasher, P; Sharma,M; Mudila,H; Verma, A; Bhatt,P. Chapter 26 - Silver nanoparticles in natural ecosystems: Fate, transport, and toxicity, Editor(s): Kamel A. Abd-Elsalam, In Nanobiotechnology for plant protection, green synthesis of silver nanomaterials. New York:Elsevier; 2022. 104. Ghobashy, MM et al. An overview of methods for production and detection of silver nanoparticles, with emphasis on their fate and toxicological effects on human, soil, and aquatic environment. Nanotechnology Reviews. 2021 10 (1):954-77. doi: 10.1515/ntrev2021-0066. 105. Ballotin D. et al. Antimicrobial textiles: Biogenic silver nanoparticles against candida and xanthomonas. Materials Science and Engineering C.2017 Jun; 75:582–9.pt_BR
dc.type.degreeDoutoradopt_BR
Aparece nas coleções:Tese (PPGPIOS)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Tese.pdfTese Doutorado Maiana Mattos4,45 MBAdobe PDFVisualizar/Abrir
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.