Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/39035
Registro completo de metadados
Campo DCValorIdioma
dc.creatorLima, Sarah Souza-
dc.date.accessioned2024-02-19T14:11:42Z-
dc.date.available2024-02-19T14:11:42Z-
dc.date.issued2023-12-15-
dc.identifier.citationLIMA, Sarah Souza. Influência da ozonioterapia sobre o infiltrado inflamatório monomorfonuclear e mastócitos no reparo tecidual cutâneo - estudo experimental in vivo. 2023. 65 f. Dissertação (Mestrado) - Universidade Federal da Bahia, Instituto de Ciências da Saúde, Programa de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas, Salvador, 2023.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/39035-
dc.description.abstractTissue repair is a complex event requiring different cell mobilization to restore the injured tissue. Ozone therapy has been used to contribute to faster resolution of the repair. The objective of the present study was to analyze the effects of ozone, as gas and as ozonated oil, on the characterization of the monomorphonuclear inflammatory infiltrate and mast cells. This was an in vivo experimental study in which Wistar rats were subjected to ozone therapy as a therapeutic approach for a standardized skin wound. The specimens were randomly allocated into three experimental groups: Control (CG), treated with ozone gas (GGO), and treated with Ozonated Oil (GOO) after cutaneous surgery, for three consecutive days. The animals were sacrificed on the 5th and 10th days. Histomorphometric analysis was performed on tissue sections stained with HE and Toluidine Blue, for semiquantitative analysis of the monomorphonuclear inflammatory infiltrate and histomorphometric analysis of mast cells, respectively. It was observed that there was no statistically significant difference regarding monomorphonuclear inflammatory infiltrate between the groups in both study periods (p>0.05). There was an increase in the number of intact and degranulated mast cells in the treated groups in comparison to the control (GGO P=0.0003; GOO p=0.004). The results confirm the participation of mast cells in the late stages of repair, thus suggesting an apparent modulation of the functional activity of these cells.pt_BR
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.subjectCicatrizaçãopt_BR
dc.subjectInflamaçãopt_BR
dc.subjectOzôniopt_BR
dc.subjectMastócitospt_BR
dc.subject.otherWound Healingpt_BR
dc.subject.otherInflammationpt_BR
dc.subject.otherOzonept_BR
dc.subject.otherMast Cellspt_BR
dc.titleInfluência da ozonioterapia sobre o infiltrado inflamatório monomorfonuclear e mastócitos no reparo tecidual cutâneo - estudo experimental in vivopt_BR
dc.title.alternativeInfluence of ozone therapy on the infiltrate monomorphonuclear inflammatory and mast cells in repair skin tissue - in vivo experimental studypt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas (PPGORGSISTEM) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDEpt_BR
dc.contributor.advisor1Medrado, Alena Ribeiro Alves Peixoto-
dc.contributor.advisor1IDhttps://orcid.org/0000-0003-4074-4680pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5438084603507436pt_BR
dc.contributor.referee1Medrado, Alena Ribeiro Alves Peixoto-
dc.contributor.referee1IDhttps://orcid.org/0000-0003-4074-4680pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/5438084603507436pt_BR
dc.contributor.referee2Martins, Gabriela Botelho-
dc.contributor.referee2IDhttps://orcid.org/0000-0002-0917-4598pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/0714029268066739pt_BR
dc.contributor.referee3Ramos, Tércio Carneiro-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/1042029457990187pt_BR
dc.creator.IDhttps://orcid.org/0000-0001-5217-342Xpt_BR
dc.creator.Latteshttp://lattes.cnpq.br/0403691995718433pt_BR
dc.description.resumoO reparo é um evento complexo que exige mobilização de diferentes células a fim de restaurar o tecido lesionado. A ozonioterapia tem sido utilizada a fim de contribuir para a resolução mais rápida do reparo. O objetivo do presente estudo foi analisar os efeitos do ozônio, sob a forma de gás e óleo, na caracterização do infiltrado inflamatório monomorfonuclear e quantitativo de mastócitos. Tratou-se de um estudo experimental in vivo no qual Ratos Wistar foram submetidos à ozonioterapia como abordagem terapêutica para um ferimento cutâneo padronizado. Os espécimes foram alocados randomicamente em três grupos experimentais: Controle (GC), tratado com Gás ozônio (GGO) e tratado com Óleo Ozonizado (GOO) após a cirurgia cutânea, por três dias consecutivos. Os animais foram sacrificados nos 5o e 10o dias. Foi realizada análise histomorfométrica em secções teciduais coradas com HE e Azul de Toluidina, para análise semiquantitativa do infiltrado inflamatório monomorfonuclear e histomorfométrica dos mastócitos, respectivamente. Foi observado que não houve diferença estatisticamente significativa no tocante ao infiltrado inflamatório monomorfonuclear entre os grupos em ambos os períodos do estudo (p>0,05). Houve crescente aumento do número de mastócitos, intactos e desgranulados nos grupos tratados em relação ao controle (GGO P=0,0003; GOO p=0,004). Os resultados apresentados ratificam que embora a ozonioterapia não tenha modulado o infiltrado inflamatório monomorfonuclear nos períodos avaliados, influenciou a participação dos mastócitos em atapas mais tardias do reparo, sugerindo assim uma aparente modulação da atividade funcional destas células.pt_BR
dc.publisher.departmentInstituto de Ciências da Saúde - ICSpt_BR
dc.relation.references1. CAMPOS, ACL; BORGES-BRANCO, A; GROTH, AK. Cicatrização de feridas. ABCD. Arquivos Brasileiros de Cirurgia Digestiva (São Paulo) [online]. 2007, v. 20, n. 1 [Acessado 15 Julho 2022] , pp. 51-58. Disponível em: <https://doi.org/10.1590/S010267202007000100010>. 2. MARTINS, AFM, et al. Perfil epidemiológico de lesões cutâneas crônicas de pacientes internados. Rev enferm UFPE on line. 2021;15:e244519 DOI: https://doi.org/10.5205/1981-8963.2021.244519 3. Wulff, Brian C., and Traci A. Wilgus. "Mast cell activity in the healing wound: more than meets the eye?." Experimental dermatology 22.8 (2013): 507-510. 4. CINSA, L; GUALBERTO, ACM; LOPES, KHS. Processo cicatricial cutâneo – história natural e perfil de citocinas. Revista interdisciplinar de estudos experimentais, v.5, n. único, p.17-21. 2013. 5. Egozi, Eric I, Ahalia M Ferreira, Aime L. Burns, Richard L. Gamelli and Luisa A. DiPietro. “Mast cells modulate the inflammatory but not the proliferative response in healing wounds.” Wound Repair and Regeneration 11 (2003). 6. Dudeck, Jan, et al. "Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation." Immunity 54.3 (2021): 468-483. 7. Komi, D.E.A., Khomtchouk, K. & Santa Maria, P.L. A Review of the Contribution of Mast Cells in Wound Healing: Involved Molecular and Cellular Mechanisms. Clinic Rev Allerg Immunol 58, 298–312 (2020). https://doi.org/10.1007/s12016-019-08729-w 8. Souza, pg; Castro, ms; Silva, lp. A Biologia da reparação fibroblastica: a excessiva deposição extracelular de colágeno durante o reparo. Brazilian Journal of Development, Curitiba, v.7, n. 3, p.28989-29010 mar 2021. Disponível em: <DOI:10.34117/bjdv7n3-560>. 9. Krystel-Whittemore M, Dileepan KN and Wood JG (2016) Mast Cell: A MultiFunctional Master Cell. Front. Immunol. 6:620. doi: 10.3389/fimmu.2015.00620. 10. BOCCI, V; ZANARDI, I; TRAVAGLI, V. Oxygen/ozone as a medical gas mixture. A critical evaluation of the various methods clarifies positive and negative aspects. Med Gas Res. 2011 Apr 28;1(1):6. Disponível em: <https://doi.org/10.1186%2F2045-9912-1-6>. 11. Zeng J, Lu J. Mechanisms of action involved in ozone-therapy in skin diseases. Int Immunopharmacol. 2018 Mar;56:235-241. doi: 10.1016/j.intimp.2018.01.040. Epub 2018 Feb 3. PMID: 29414657. 12. KIM, HS, et al. Therapeutic effects of topical application of ozone on acute cutaneous wound healing. J Korean Med Sci. 2009 Jun;24(3):368-74. Epub 2009 Jun 12. Disponível em <https://doi.org/10.3346/jkms.2009.24.3.368>. 13. CRUZ, HFO. Avaliação “in vitro” da associação do efeito antimicrobiano do ozônio a veículos e curativos de demora em diferentes períodos de tempo de armazenagem, 55 Dissertação de mestrado Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, SP, 2006. Disponível em: <https://repositorio.unesp.br/handle/11449/90417>. 14. PIRES, JR, et al. Effect of systemic ozone therapy as a biomodulator of tissue regeneration and inflammatory response in rats. Rev Odontol UNESP. 2021;50:e20210046. Disponível em: <https://doi.org/10.1590/1807-2577.04621>. 15. GONZALEZ, ACO, et al. Wound healing - A literature review* * Work conducted at the Gonçalo Moniz Research Center – Fundação Oswaldo Cruz (CPqGM/Fiocruz), Salvador, BA, Brazil. Anais Brasileiros de Dermatologia [online]. 2016, v. 91, n. 5 [Accessed 15 July 2022] , pp. 614-620. Disponível em: <https://doi.org/10.1590/abd1806-4841.20164741>. 16. Marchesini, BF. & Ribeiro, SB. (2020). Efeito da ozonioterapia na cicatrização de feridas. Fisioterapia Brasil, 21(3), 281–288. Disponível em: <https://doi.org/10.33233/fb.v21i3.2931>. 17. Andrade, T. de O. S. .; Dantas, J. B. de L.; Cerqueira, C. B. S. de .; BADARÓ, P. .; Marchionni, A. M. T. .; Andrade, A. R. A. P. Comparative study of the effectiveness of ozone therapy and laser photobiomulation upon experimental wound repair: systematic review. Research, Society and Development, [S. l.], v. 11, n. 5, p. e58911528650, 2022. DOI: 10.33448/rsd-v11i5.28650. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/28650. Acesso em: 27 oct. 2023 18. LEAL, EC. & CARVALHO, E. Cicatrização de Feridas: O Fisiológico e o Patológico. Revista Portuguesa de Diabetes. 2014; 9 (3): 133-143. Disponível em: <http://www.revportdiabetes.com/wp-content/uploads/2017/10/RPD-Vol-9-n%C2%BA-3Setembro-2014-Artigo-de-Revis%C3%A3o-p%C3%A1gs-133-143.pdf>. 19. Menezes, M de S., Kelly Borges Fonseca, A., & Moreira de Matos, N. . (2022). Perfil de pacientes com lesões cutâneas hospitalizados em uma unidade de internação de clínica médica. Health Residencies Journal - HRJ, 3(15), 95–108. https://doi.org/10.51723/hrj.v3i15.426>. 20. BURGESS, J.L.; Wyant, W.A.; Abdo Abujamra, B.; Kirsner, R.S.; Jozic, I. Diabetic Wound-Healing Science. Medicina 2021, 57, 1072. https://doi.org/10.3390/ medicina57101072. 21. AFONSECA, MA, et al. Repercussão de doenças sistêmicas no reparo tecidual. Revista Bahiana de Odontologia, Salvador, dez. 2012; 3(1): 63-75. Disponível em: <https://www5.bahiana.edu.br/index.php/odontologia/article/view/32/71>. 22. Oskeritzian, Carole A.. “Mast Cells and Wound Healing.” Advances in wound care 1 1 (2012): 23-28 . 23. Oliveira,G. R. B.; Rodrigues, A.L.B S Cicratização de feridas cirúrgicas e crônicas: um atendimento ambulatorial de enfermagem Escola Anna Nery Revista de Enfermagem, vol. 7, núm. 1, abril, 2003, pp. 104-113 Universidade Federal do Rio de Janeiro Rio de Janeiro, Brasil 24. DOS SANTOS CÔRTES, Selma Márcia. O Tratamento de ferida: um artigo de revisão. Revista de Divulgação Científica Sena Aires, v. 2, n. 1, p. 55-64, 2013. 56 25. Raziyeva, Kamila, Yevgeniy Kim, Zharylkasyn Zharkinbekov, Kuat Kassymbek, Shiro Jimi and Arman Saparov. “Immunology of Acute and Chronic Wound Healing.” Biomolecules 11 (2021). 26. Wang X.. Zhong Nan Da Xue Xue Bao Yi Xue Ban. Emerging roles of ozone in skin diseases 2018 Feb 28;43(2):114-123. doi: 10.11817/j.issn.1672-7347.2018.02.002. PMID: 29559592. 27. Mantovani A, Biswas SK, Galdiero MR, Sica A, Locati M. Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol. 2013 Jan;229(2):176-85. doi: 10.1002/path.4133. Epub 2012 Nov 29. PMID: 23096265. 28. Brockmann L, Giannou AD, Gagliani N, Huber S. Regulation of TH17 Cells and Associated Cytokines in Wound Healing, Tissue Regeneration, and Carcinogenesis. Int J Mol Sci. 2017;18(5):1033. Published 2017 May 11. doi:10.3390/ijms18051033 29. DiToro D., Harbour S.N., Bando J.K., Benavides G., Witte S., Laufer V.A., Moseley C., Singer J.R., Frey B., Turner H., et al. Insulin-like growth factors are key regulators of T Helper 17 regulatory T cell balance in autoimmunity. Immunity. 2020;52:650–667.e610. doi: 10.1016/j.immuni.2020.03.013 30. CORREIA, KVD. & MEDRADO, ARAP. Participação dos mastócitos no reparo tecidual e em lesões inflamatórias bucais – Uma revisão de literatura. Revista Bahiana de Odontologia, Salvador, jan./jun. 2013; 4(1):27-36. Disponível em: <https://www5.bahiana.edu.br/index.php/odontologia/article/view/112/152>. 31. Piipponen M, Li D, Landén NX. The Immune Functions of Keratinocytes in Skin Wound Healing. Int J Mol Sci. 2020 Nov 20;21(22):8790. doi: 10.3390/ijms21228790. PMID: 33233704; PMCID: PMC7699912. 32. ZHANG, X.; Alanazi, Y.F.; Jowitt, T.A.; Roseman, A.M.; Baldock, C. Elastic Fibre Proteins in Elastogenesis and Wound Healing. Int. J. Mol. Sci. 2022, 23, 4087. https://doi.org/10.3390/ ijms23084 33. Pugliese, L. S., Medrado, A. P., Reis, S. R. de A., & Andrade, Z. de A.. (2003). The influence of low-level laser therapy on biomodulation of collagen and elastic fibers. Pesquisa Odontológica Brasileira, 17(4), 307–313. https://doi.org/10.1590/S1517-74912003000400003 34. GILFILLAN, AM; AUSTIN, SJ; METCALFE, DD. Mast Cell Biology: Introduction and Overview. Adv Exp Med Biol. 2011 ; 716: 2–12. doi:10.1007/978-1-4419-9533-9_1. Disponível em: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398748/pdf/nihms389436.pdf>. 35. MUKAI, K, et al. Mast cells as sources of cytokines, chemokines and growth factors. Immunol Rev. 2018 March ; 282(1): 121–150. doi:10.1111/imr.12634. Disponível em: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5813811/pdf/nihms932144.pdf>. 36. MOLDERINGS, GJ. Mast cells function in physiology and pathophysiology. Biotrend Review, vol. 5, no. 1, pp. 1–9, 2010. Disponível em: <https://www.researchgate.net/publication/256120760_Mast_cell_function_in_physiology_an d_pathophysiology>. 57 37. Wedemeyer J, Tsai M, Galli SJ . Roles of mast cells and basophils in innate and acquired immunity. Curr Opin Immunol. 2000;12(6):624-31. doi: 10.1016/S09527915(00)00154-0 38. Dudeck J, Kotrba J, Immler R, Hoffmann A, Voss M, Alexaki VI, et al. Directional mast cell degranulation of tumor necrosis factor into blood vessels primes neutrophil extravasation. Immunity. 2021 Mar 9;54(3):468-83. doi: 10.1016/j.immuni.2020.12.017 39. Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev. 1997;77(4):1033-79. doi: 10.1152/physrev.1997.77.4.1033 40. Paraguassú GM, De Castro ICV, Vasconcelos RM, Guarda MGda, Rodriguez TT, Ramalho MJP, et al. Effect of LED phototherapy (λ630±20nm) on mast cells during wound healing in hypothyroid. Mechanisms for Low-Light Therapy IX. 2014;8932:233-40. doi: 10.1007/s10103-013-1419-x 41. Galli J, Nakae S, Tsai M. Mast cells in the development of adaptive immune responses. Nat Immunol. 2005;6(2):135-42. doi: 10.1038/ni1158 42. Jolly PS, Bektas M, Olivera A, Gonzalez-Espinosa C, Proia RL, Rivera J, et al. Transactivation of sphingosine-1–phosphate receptors by FcεRI triggering is required for normal mast cell degranulation and chemotaxis. J Exp Med. 2004 Apr;199(7):959-70. doi: 10.1084/jem.20030680 43. Rech RR, Graça DL. Mastócitos em condições normais e patológicas—revisão. Vet Not. 2006;12:51-60. 44. Santos PP, Freitas VS, Freitas R de A, Pinto LP, Souza LB de. Relação entre mastócitos e células T na inflamação. Odontol lín-Cient (Online). 2010;9(3):215-7. 45. Galli SJ, Gaudenzio N, Tsai M. Mast cells in inflammation and disease: recent progress and ongoing concerns. Ann Rev Immunol. 2020 Apr;38:49-77. doi: 10.1146/annurev-immunol-071719-094903 46. Ribatti D. The staining of mast cells: a historical overview. Int Arch Allergy Immunol 2018;176;55-60. doi: 10.1159/00048753 47. Bloom GD. A short history of the mast cell. Acta Otolaryngol Suppl. 1984;414:87-92. doi: 10.3109/0001648840912288 48. Valent P, Akin C, Hartmann K, Nilsson G, Reiter A, Hermine O, et al. Mast cells as a unique hematopoietic lineage and cell system: From Paul Ehrlich's visions to precision medicine concepts. Theranostics. 2020 Aug 29;10(23):10743-68. doi: 10.7150/thno.46719 49. Gaje PN, Ceausu RA, Jitariu A, Ioan Stratul S, Rusu L-C, Popovici RA, et al. Mast cells: key players in the shadow in oral inflammation and in squamous cell carcinoma of the oral cavity. BioMed Res Int. 2016;2016:9235080. doi: 10.1155/2016/9235080 50. Jamur MC, Grodzki ACG, Berenstein EH, Hamawy MM, Siraganian RP, Oliver C. Identification and characterization of undifferentiated mast cells in mouse bone marrow. Blood. 2005 Jun;105(11) 4282-9. doi: 10.1182/blood-2004-02-0756 51. Galli SJ. Mast cells and basophils. Curr Opin Hematol. 2000 Jan;7(1):32-9. doi: 10.1097/00062752-200001000-00007 58 52. Gilfillan AM, Austin SJ, Metcalfe DD. Mast cell biology: introduction and overview. Adv Esp Med Biol. 2011;716:2-12. doi: 10.1007/978-1-4419-9533-9_1 53. Pincha N, Yousaf Hajam E, Badarinath K , Rao Batta SP, Masudi T, Dey R, et al. PAI1 mediates fibroblast–mast cell interactions in skin fibrosis. J Clin Invest. 2018 May;128(5):1807-19. doi: 10.1172/JCI99088 54. Dong J, Chen L, Zhang Y, Jayaswal N, Mezghani I, Zhang W, et al. Mast cells in diabetes and diabetic wound healing. Adv Ther. 2020;37(11):4519-37. doi:10.1007/s12325020-01499-4 55. Bacci S. Fine regulation during wound healing by mast cells, a physiological role not yet clarified. Int J Mol Sci. 2022 Feb;23(3):1820. doi: 10.3390/ijms23031820 56. McNeil BD, Pundir P, Meeker S, Han L, Undem BJ, Kulka M, et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature. 2015 Mar;519(7542):237-41. doi: 10.1038/nature14022 57. Correia KVD, Medrado ARAP. Participação dos mastócitos no reparo tecidual e em lesões inflamatórias bucais – Uma revisão de literatura. Rev Bahiana de Odontologia. 2013 jan-jun;4(1):27-36. doi: https://doi.org/10.17267/2596-3368dentistry.v4i1.112 58. PG, Castro MS, Silva LP. A Biologia da reparação fibroblastica: a excessiva deposição extracelular de colágeno durante o reparo. Braz J Dev. 2021 mar;7(3):28989-9010. doi: 10.34117/bjdv7n3-560 59. Atiakshin D, Buchwalow I, Tiemann M. Mast cells and collagen fibrillogenesis. Histochem Cell Biol. 2020 Jul;154:21-40. doi: https://doi.org/10.1007/s00418-020-01875-9 60. Roberts LJ, Lewis RA, Oates JA, Austen KF. Prostaglandin, thromboxane, and 12hydroxy-5, 8, 10, 14-eicosatetraenoic acid production by ionophore-stimulated rat serosal mast cells. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid Metabolism 1979 Nov;575(2):185-92. doi: 10.1016/0005-2760(79)90020-1 61. Drube S, Müller S, Weber F, Wegner P, Böttcher-Loschinski R, Gaestel M, et al. IL‐3 is essential for ICOS‐L stabilization on mast cells, and sustains the IL‐33‐induced RORγt+ Treg generation via enhanced IL‐6 induction. Immunology. 2021;163:86-97. doi: https://doi.org/10.1111/imm.13305 62. Asai H, Yamamoto R, Kuromiya K, Takamura R, Jin W, Kurosaki H, et al. A Rapid and Sensitive Determination of Histamine in Mast Cells Using a Didansyl Derivatization Method. Int Arch Allergy Immunol. 2022;183(10):1050-5. doi: 10.1159/000525588 63. Herrera-Heredia SA, Hsu H-P, Kao C-Y, Tsai Y-H, Yamaguchi Y, Roers A, et al. Heparin is required for the formation of granules in connective tissue mast cells. Front Immunol. 2022 Nov;13:1000405. doi: 10.3389/fimmu.2022.1000405 64. Theoharides TC, Perlman AI, Twahir A, Kempuraj D. Mast cell activation: beyond histamine and tryptase. Expert Rev Clin Immunol. 2023 Jun;19(6):639-54. doi: 10.1080/1744666X.2023.2200936 65. Balbino CA, Pereira LM, Curi R. Mecanismos envolvidos na cicatrização: uma revisão. Rev Bras Cienc Farm. 2005 jan;41(1):27-51. doi: https://doi.org/10.1590/S151693322005000100004 59 66. Kondeti V, Al-Azzam N, Duah E, Thodeti C, Boyce J, Paruchuri S. Leukotriene D4 and prostaglandin E2 signals synergize and potentiate vascular inflammation in a mast celldependent manner through cysteinyl leukotriene receptor 1 and E-prostanoid receptor 3. J Allerg Clin Immunol. 2016 Jan;137:289-98. doi: https://doi.org/10.1016/j.jaci.2015.06.030 67. Zhao Y, Yang S-Y, Shen J, Deng K, Li Q, Wang Y, et al. Interaction between regulatory T cells and mast cells via IL-9 and TGF-β production. Oncol Letters. 2020 Dec; 20(6):360. doi: https://doi.org/10.3892/ol.2020.12224 68. McHale C, Mohammed Z, Gomez G. Human Skin-Derived Mast Cells Spontaneously Secrete Several Angiogenesis-Related Factors. Front Immunol. 2019 Jun;10:1445. doi: https://doi.org/10.3389/fimmu.2019.01445 69. Joulia R, L'Faqihi F-E, Valitutti S, Espinosa E. IL‐33 fine tunes mast cell degranulation and chemokine production at the single‐cell level. J Allerg Clin Immunol. 2017 Aug;140(2):497-509.e10. doi: https://doi.org/10.1016/j.jaci.2016.09.049 70. Desai A, Jung M-Y, Olivera A, Gilfillan AM, Prussin C, Kirshenbaum AS, et al. IL-6 promotes an increase in human mast cell numbers and reactivity through suppression of suppressor of cytokine signaling 3. J Allerg Clin Immunol. 2016;137(6):1863-71.e6. doi: https://doi.org/10.1016/j.jaci.2015.09.05 71. Ling MF, Luster AD. Allergen-Specific CD4(+) T Cells in Human Asthma. Ann Am Thorac Soc. 2016 Mar;13(Suppl 1):S25-30. doi: 10.1513/AnnalsATS.201507-431MG 72. Thangam EB, Jemima EA, Singh H, Baig MS, Khan M, Mathias CB, et al. The Role of Histamine and Histamine Receptors in Mast Cell-Mediated Allergy and Inflammation: The Hunt for New Therapeutic Targets. Front Immunol. 2018 Aug 13;9:1873. doi: 10.3389/fimmu.2018.01873 73. Cruvinel W de M, Mesquita Júnior D, Araújo JAP, Catelan TTT, Souza AWS de, Silva NP da, et al. Sistema imunitário: Parte I. Fundamentos da imunidade inata com ênfase nos mecanismos moleculares e celulares da resposta inflamatória. Rev Bras Reumatol. 2010 Jul;50(4):434-47. doi: https://doi.org/10.1590/S0482-50042010000400008 74. Parizi ACG, Barbosa RL Parizi JLS, Nai. GA. A comparison between the concentration of mast cells in squamous cell carcinomas of the skin and oral cavity. Anais Bras Dermatol. 2010;85(6):811-8. 75. Kirshenbaum A. Regulation of mast cell number and function. Hematol Oncol Clin North Am. 2000 Jun;14(3):497-516. 76. Varricchi G, de Paulis A, Marone G, Galli SJ. Future Needs in Mast Cell Biology. Int J Mol Sci. 2019;20(18):4397. doi: https://doi.org/10.3390/ijms20184397 77. Majorini MT, Cancila V, Rigoni A, Botti L, Dugo M, Triulzi T, et al. Infiltrating Mast Cell–Mediated Stimulation of Estrogen Receptor Activity in Breast Cancer Cells Promotes the Luminal Phenotype. Cancer Res. 2020 June;80(11):2311-24. doi: https://doi.org/10.1158/0008-5472.CAN-19-3596 78. Hanes MR. Giacomantonio CA. Marshall JS. Mast Cells and Skin and Breast Cancers: A Complicated and Microenvironment-Dependent Role. Cells. 2021 Apr;10(5):986. doi: 10.3390/cells10050986 60 79. Silva EZM da, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell. J Histochem Cytochem. 2014;62(10):698-738. doi: 10.1369/0022155414545334 80. Souza Junior DA, Santana A, da Silva EZM, Oliver C, Jamur MC. The role of mast cell specific chymases and tryptases in tumor angiogenesis. BioMed Res Int. 2015;2015:142359. doi: 10.1155/2015/142359 81. HÄNNINEN, K. HAWK, M.; MCCALLISTER, C.; SCHAFER, Z. T. Contribution of excited ozone and oxygen molecules to the formation of the stratospheric ozone layer. Environment and Ecology Research, v. 7, n. 3, p. 121-134, 2019. DOI: https://doi.org/10.13189/eer.2019.070302. 82. TRAVAGLI, Zanardi I, Valacchi G, Bocci V. Ozone and ozonated oils in skin diseases: A review. Mediators of Inflammation, Volume 2010, Article ID 610418, 9 pages. 83. COSTA, M. F. Y. B. et al. Applicability of ozone therapy in Veterinary Oncology: biochemical and immunological aspects. Journal of Continuing Education in Veterinary Medicine and Animal Science of CRMV-SP, São Paulo, v. 20, n. 1, 2022, e38237. DOI: https://doi.org/10.36440/recmvz.v20i1.3. 84. Francisco Javier Hidalgo-Tallón, Luis Miguel Torres-Morera, Jose Baeza-Noci, Maria Dolores Carrillo-Izquierdo, Rosa Pinto-Bonilla (2022) Updated Review on Ozone Therapy in Pain Medicine. Frontiers in Physiology, n.13. 85. Silva, K. H. G., Cunha, E. V., Galdino, V. L., & Hipolito, A. F. (2021). Avaliação in vitro da atividade antimicrobiana do ozônio gasoso e do óleo ozonizado. Revista MasterEnsino, Pesquisa e Extensão, 6(11), 179-189. 86. BACCI, S. Fine Regulation during Wound Healing by Mast Cells, a Physiological Role Not Yet Clarified. Int J Mol Sci. 2022 Feb 5;23(3):1820. doi: 10.3390/ijms23031820. PMID: 35163741; PMCID: PMC8836533. Disponível em: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8836533/pdf/ijms-23-01820.pdf>. 87. SADOWSKA J. et al. Characterization of ozonated vegetable oils by spectroscopic and chromatographic methods. Chemistry and Physics of Lipids. 2008; 151:85-91. DOI: 10.1016/j.chemphyslip.2007. 10.004. 88. BOCCI, L. et al. Oxygen-ozone in orthopaedics: EPR detection of hydroxyl free radicals in ozonetreated “nucleus pulposus” material. Riv Neuroradiol. p. 55-9, 2005 89. GALIÈ, M, et al. The Role of Nrf2 in the Antioxidant Cellular Response to Medical Ozone Exposure. Int. J. Mol. Sci. 2019, 20, 4009. Diponível em: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6720777/#:~:text=Nrf2%20prevents%20oxi dative%20stress%20through,thioredoxin%20reductase%201%20(TXN1%20and>. 90. Kashiwazaki J, Nakamura K, Hara Y, Harada R, Wada I, Kanemitsu K. Evaluation of the Cytotoxicity of Various Hand Disinfectants and Ozonated Water to Human Keratinocytes in a Cultured Epidermal Model. Adv Skin Wound Care. 2020 Jun;33(6):313-318. doi: 10.1097/01.ASW.0000658592.51430.ea. PMID: 32427787. 91. SMITH NL, Wilson AL, Gandhi J, Vatsia S, Khan SA. Ozone therapy: an overview of pharmacodynamics, current research, and clinical utility. Med Gas Res. 2017;7(3):212-219. 61 92. Silva, Kalyandra Hellen Gomes, et al. "Avaliação in vitro da atividade antimicrobiana do ozônio gasoso e do óleo ozonizado." Revista Master-Ensino, Pesquisa e Extensão 6.11 (2021): 179-189. 93. BRASIL. Ministério da Saúde do Brasil, Secretaria de Atenção à Saúde. Política Nacional de Práticas Integrativas e Complementares [internet]. Brasília (DF); 2015 Disponível em: http://bvsms.saude.gov.br/bvs/publicacoes/ politica_nacional_praticas_integrativas_complementares_2ed.pdf 94. Rodrigues M, Kosaric N, Bonham CA, Gurtner GC. Wound Healing: A Cellular Perspective. Physiol Rev. 2019 Jan 1;99(1):665-706. doi: 10.1152/physrev.00067.2017. PMID: 30475656; PMCID: PMC6442927. 95. Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI, Loh SA. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB, 21:3250-3261, 2007 96. Babucçu O. OZON TERAPİ: MİT VE GERÇEK. Türk Plastik Rekonstrüktif Ve Estetik Cerrahi Dergisi. 2011; 19(3): 105-112. 97. Beghdadi, Walid, Lydia Celia Madjene, Marc Benhamou, Nicolas Charles, Gregory Gautier, Pierre Launay and Ulrich Blank. “Mast Cells as Cellular Sensors in Inflammation and Immunity.” Frontiers in Immunology 2. 2011 98. Huang HJ, Yu B, Lin QR, Wang BW, Chen HQ. [Effect of ozone water on the inflammation and repair in infected wounds]. Nan Fang Yi Ke Da Xue Xue Bao. 2010 Mar;30(3):515-8. Chinese. PMID: 20335124. 99. Soter, Nicholas A.. “Mast cells in cutaneous inflammatory disorders.” The Journal of investigative dermatology 80 1 Suppl (1983): 22s-5s 100. Velnar T, Bailey T, Smrkolj V. The Wound Healing Process: An Overview of the Cellularand Molecular Mechanisms. Journal of International Medical Research. 2009 Oct 1;37(5):1528–42. 101. Derakhshan T, Boyce JA, Dwyer DF. Defining mast cell differentiation and heterogeneity through single-cell transcriptomics analysis. J Allergy Clin Immunol. 2022 Oct;150(4):739-747. doi: 10.1016/j.jaci.2022.08.011. PMID: 36205448; PMCID: PMC9547083. 102. Shiota, Naotaka et al. “Pathophysiological Role of Skin Mast Cells in Wound Healing after Scald Injury: Study with Mast Cell-Deficient W/WV Mice.” International Archives of Allergy and Immunology 151 (2009): 80 - 88. 103. Atiakshin D, Buchwalow I, Tiemann M. Mast cells and collagen fibrillogenesis. Histochem Cell Biol. 2020 Jul;154:21-40. doi: https://doi.org/10.1007/s00418-020-01875-9. 104. Özay Y, Güzel S, Yumrutaş Ö, Pehlivanoğlu B, Erdoğdu İH, Yildirim Z, Türk BA, Darcan S. Wound Healing Effect of Kaempferol in Diabetic and Nondiabetic Rats. J Surg Res. 2019 Jan;233:284-296. doi: 10.1016/j.jss.2018.08.009. Epub 2018 Sep 4. PMID: 30502261. 105. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked?. Free Radic Biol Med. 2010;49(11):1603-1616. doi:10.1016/j.freeradbiomed.2010.09.006. 62 106. Liu J, Zhang P, Tian J, Li L, Li J, Tian JH, Yang K. Ozone therapy for treating foot ulcers in people with diabetes. Cochrane Database of Systematic Reviews 2015, Issue 10. Art. No.: CD008474. DOI: 10.1002/14651858.CD008474.pub2.S 107. ILVA, K. H. G.; CUNHA , E. V.; GALDINO, V. L. .; HIPOLITO, A. F. Avaliação in vitro da atividade antimicrobiana do ozônio gasoso e do óleo ozonizado. Revista Master - Ensino, Pesquisa e Extensão, [S. l.], v. 6, n. 11, p. 179–189, 2021. DOI: 10.47224/revistamaster.v6i11.163. 108. Colombo M, Gallo S, Garofoli A, Poggio C, Arciola CR, Scribante A. Ozone Gel in Chronic Periodontal Disease: A Randomized Clinical Trial on the Anti-Inflammatory Effects of Ozone Application. Biology (Basel). 2021 Jul 6;10(7):625. doi: 10.3390/biology10070625. PMID: 34356480; PMCID: PMC8301177. 109. Saglam E, Alinca SB, Celik TZ, Hacisalihoglu UP, Dogan MA. Evaluation of the effect of topical and systemic ozone application in periodontitis: an experimental study in rats. J Appl Oral Sci. 2019 Nov 28;28:e20190140. doi: 10.1590/1678-7757-2019-0140. PMID: 31800874; PMCID: PMC6886394. 110. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P. Redox regulation of cell survival. Antioxid Redox Signal. 2008 Aug;10(8):1343-74. doi: 10.1089/ars.2007.1957. PMID: 18522489; PMCID: PMC2932530. 111. Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, Leaper D, Georgopoulos NT. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J. 2017 Feb;14(1):89-96. doi: 10.1111/iwj.12557. Epub 2015 Dec 21. PMID: 26688157; PMCID: PMC7950185. 112. Vinnik, Yurii Semenovich, Lyudmila Viktorovna Kochetova, Anna Borisovna Kulikova and Nadezhda N. Medvedeva. “Effectiveness of ozone therapy and ultrasound in regeneration of an infected wound in an experiment.” Siberian Medical Review (2022). 113. Karakaya, Emre, Aydıncan Akdur, Ebru Hatice Ayvazoğlu Soy, Coşkun Araz, Alev Ok Atılgan, Eda Özturan Özer, Tuğçe Şençelikel and Mehmet Haberal. “Effect of Subcutaneous Topical Ozone Therapy on Second-Degree Burn Wounds in Rats: An Experimental Study.” Journal of burn care & research : official publication of the American Burn Association (2021). 114. Soares, Thayná M. L. Morais, Roberta M. F. G. Araújo, Patrícia F. Meyer, Eric A. F. Oliveira, Rodrigo M. V. Silva, Eneida M. Carreiro, Edvaldo P. Carreiro, Verônica G. Belloco, Bruno A. L. A. Mariz & Jacks Jorge-Junior (2019): Effects of subcutaneous injection of ozone during wound healing in rats, Growth Factors. 115. Pai SA, Gagangras SA, Kulkarni SS, Majumdar AS. Potential of ozonated sesame oil to augment wound healing in rats. Indian J Pharm Sci. 2014 Jan;76(1):87-92. PMID: 24799744; PMCID: PMC4007261. 116. Sagai M, Bocci V. Mechanisms of Action Involved in Ozone Therapy: Is healing induced via a mild oxidative stress? Med Gas Res. 2011 Dec 20;1:29. doi: 10.1186/20459912-1-29. PMID: 22185664; PMCID: PMC3298518. 117. Taqwim Hidayat A, Thohar Arifin M, Nur M, Muniroh M, Susilaningsih N. Ozonated Aloe vera Oil Effective Increased the Number of Fibroblasts and Collagen Thickening in the 63 Healing Response of Full-Thickness Skin Defects. Int J Inflam. 2021 Feb 9;2021:6654343. doi: 10.1155/2021/6654343. PMID: 33628417; PMCID: PMC7886587.pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Aparece nas coleções:Dissertação (PPGPIOS)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
SARAH SOUZA LIMA - DISSERTAÇÃO - Versão Final.pdf1,46 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons