Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/38756
Registro completo de metadados
Campo DCValorIdioma
dc.creatorFerreira, Gabriela Fontes Deiró-
dc.date.accessioned2023-12-21T11:40:13Z-
dc.date.available2023-12-21T11:40:13Z-
dc.date.issued2023-10-31-
dc.identifier.citationFerreira, Gabriela Fontes Deiró. Estudo do processo de micelização de líquido iônicos próticos para aplicação em recuperação avançada de petróleo. Tese (Doutorado) - Escola Politécnica, Universidade Federal da Bahia. Salvador, p.120. 2023.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/38756-
dc.description.abstractThe micelle formation has been studied in recent years due to the various applications of micellar systems in areas such as chemistry, petrochemistry, pharmaceuticals, and the environment. Micelles are formed by amphiphilic substances, denominated as surfactants. However, a notable evolution in this field is the increasing use of ionic liquids (ILs) as an alternative to commercial surfactants in enhanced oil recovery. Ionic liquids (ILs) are organic salts that have surfactant properties, which gives them several applications in the form of micelle, making them a promising option in enhanced oil recovery processes. Due to these characteristics, many studies have been dedicated to evaluating the micelle formation process using ionic liquids. However, most published works explore aprotic ionic liquids, and more published data on protic ionic liquids needs to be published. Ionic liquids can decrease interfacial and surface tension, showing potential for oil recovery. Therefore, this work proposes to study six ionic liquids based on hexanoic acid as anion and cations with different structures. To synthesize these liquids, substances with nitrogenous and hydrogenated groups were used as a base (cation) to evaluate their influence on the formation of micelles. Through a statistical design of experiments of the Rotational Central Composite Design (RCCD) type, it was possible to determine the influence of the concentration of ionic liquid and NaCl on the interfacial tension of a solution of ionic liquid and oil since this parameter is directly related to the tendency of micellization. The results showed that as their concentration increases, ionic liquids decrease the interfacial tension to a point where it increases again. This effect is mitigated by adding salt, which causes the interfacial tension to decrease even at higher ionic liquid concentrations. A thermodynamic approach was used to describe and predict the conditions for micelle formation from solutions of protic ILs studied in this work by minimizing the Gibbs free energy. The critical micellar concentration was obtained from this approach, which was compared with the experimental values for model validation. The proposed thermodynamic modeling agreed with the experimental data for the first critical micellar concentration value, describing a spherical geometry for the micelles.pt_BR
dc.description.sponsorshipFAPESBpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/br/*
dc.subjectSurfactantespt_BR
dc.subjectTensão Interfacialpt_BR
dc.subjectTensão Superficialpt_BR
dc.subjectEnergia Livre de Gibbspt_BR
dc.subjectLíquido iônicopt_BR
dc.subjectPetróleopt_BR
dc.subject.otherSurfactantspt_BR
dc.subject.otherInterfacial tensionpt_BR
dc.subject.otherSurface tensionpt_BR
dc.subject.otherGibbs free energypt_BR
dc.subject.otherIonic liquidpt_BR
dc.subject.otherPetroleumpt_BR
dc.titleEstudo do processo de micelização de líquido iônicos próticos para aplicação em recuperação avançada de petróleopt_BR
dc.title.alternativeStudy of the micellization process of protic ionic liquids for application in advanced oil recoverypt_BR
dc.typeTesept_BR
dc.contributor.refereesda Silva, Ana Cristina Morais-
dc.contributor.refereesSimonelli, George-
dc.publisher.programPrograma de Pós-Graduação em Engenharia Quimica (PPEQ) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA::PROCESSOS ORGANICOSpt_BR
dc.contributor.advisor1Lobato, Ana Katerine de Carvalho Lima-
dc.contributor.advisor1Lattesttp://lattes.cnpq.br/0152838979924698pt_BR
dc.contributor.advisor-co1Santos, Luiz Carlos Lobato dos-
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/8891045064075199pt_BR
dc.contributor.advisor-co2Silva, Silvana Mattedi e-
dc.contributor.advisor-co2Latteshttp://lattes.cnpq.br/8741124364246075pt_BR
dc.contributor.referee1Lobato, Ana Katerine de Carvalho Lima-
dc.contributor.referee1IDhttps://orcid.org/0000-0003-2006-5074pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/0152838979924698pt_BR
dc.contributor.referee2dos Santos, Luiz Carlos Lobato-
dc.contributor.referee2IDhttps://orcid.org/0000-0003-3824-7802pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/8891045064075199pt_BR
dc.contributor.referee3Silva, Silvana Mattedi e-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/8741124364246075pt_BR
dc.contributor.referee4Filho, Osvaldo Chiavone-
dc.contributor.referee4Latteshttp://lattes.cnpq.br/2621516646153655pt_BR
dc.contributor.referee5Rodrigues, Pamela Dias-
dc.contributor.referee5Latteshttp://lattes.cnpq.br/4554329622469373pt_BR
dc.creator.IDhttps://orcid.org/0000-0003-3648-007Xpt_BR
dc.creator.Latteshttp://lattes.cnpq.br/6837902462644236pt_BR
dc.description.resumoO fenômeno de micelização tem sido amplamente estudado nos últimos anos devido às diversas aplicações de sistemas micelares em áreas como química, petroquímica, farmacêutica e ambiental. As micelas são formadas por substâncias anfifílicas, geralmente conhecidas como surfactantes ou tensoativos. Contudo, uma evolução notável nesse campo é a crescente utilização de líquidos iônicos (LI's) como alternativa aos surfactantes comerciais na recuperação avançada de petróleo. Os líquidos iônicos são sais orgânicos que exibem propriedades surfactantes, o que lhes permite serem aplicados na formação de micelas, tornando-os uma opção promissora em processos de recuperação avançada de petróleo. Devido à essas características, muitos estudos têm se dedicado a avaliar o processo de formação de micelas utilizando líquidos iônicos, embora a maioria deles tenha se concentrado nos líquidos iônicos apróticos, havendo uma lacuna de informações sobre os líquidos iônicos próticos. Os líquidos iônicos são capazes de diminuir a tensão interfacial e superficial, mostrando potencial para recuperação de petróleo. Em vista disso, este trabalho propõe estudar seis líquidos iônicos a base de ácido hexanóico como ânion, e cátions com diferentes estruturas. Para síntese desses líquidos utilizou-se como base (cátion) substâncias com grupos nitrogenados e hidrogenados com intuito de avaliar sua influência na formação de micelas. Através de um planejamento estatístico de experimentos, do tipo Delineamento Composto Central Rotacional (DCCR) foi possível determinar a influência da concentração de líquido iônico e de NaCl na tensão interfacial de uma solução de líquido iônico e óleo, uma vez que esse parâmetro está diretamente relacionado a tendência de micelização. Os resultados mostraram que à medida que aumenta a sua concentração, os líquidos iônicos diminuem a tensão interfacial até determinado ponto onde começa a aumentar novamente. Esse efeito é amenizado pela adição de NaCl, que faz com que a tensão interfacial diminua mesmo em concentrações mais elevadas de líquido iônico. Uma abordagem termodinâmica foi utilizada para descrever/prever as condições de formação de micelas a partir de soluções de LI’s próticos estudadas neste trabalho, através da minimização da energia livre de Gibbs. A partir disso, obteve-se a concentração micelar crítica que foi comparada com os valores experimentais para validação do modelo. A modelagem termodinâmica proposta apresentou boa concordância com os dados experimentais para o primeiro valor de concentração micelar crítica, descrevendo uma geometria esférica para as micelas.pt_BR
dc.publisher.departmentEscola Politécnicapt_BR
dc.relation.referencesACHINIVU, E. C. et al. Lignin extraction from biomass with protic ionic liquids. Green Chem., v. 16, n. 3, p. 1114–1119, 2014. ÁLVAREZ, V. H. et al. Fluid Phase Equilibria Synthesis and thermophysical properties of two new protic long-chain ionic liquids with the oleate anion. v. 299, p. 42–50, 2010. ATILHAN, M.; APARICIO, S. Review on chemical enhanced oil recovery: Utilization of ionic liquids and deep eutectic solvents. Journal of Petroleum Science and EngineeringElsevier B.V., , 1 out. 2021a. ATILHAN, M.; APARICIO, S. Review on chemical enhanced oil recovery: Utilization of ionic liquids and deep eutectic solvents. Journal of Petroleum Science and EngineeringElsevier B.V., , 1 out. 2021b. BENZAGOUTA, M. S. et al. Ionic liquids as novel surfactants for potential use in enhanced oil recovery. Korean Journal of Chemical Engineering, v. 30, n. 11, p. 2108–2117, 2013. BERA, A.; BELHAJ, H. Ionic liquids as alternatives of surfactants in enhanced oil recovery—A state-of-the-art review. Journal of Molecular Liquids, v. 224, p. 177–188, 2016. BISHT, M. et al. Long-term protein packaging in cholinium-based ionic liquids: improved catalytic activity and enhanced stability of cytochrome c against multiple stresses. Green Chemistry, v. 19, n. 20, p. 4900–4911, 2017. BLESIC, M. et al. Self-aggregation of ionic liquids: Micelle formation in aqueous solution. Green Chemistry, v. 9, n. 5, p. 481–49, 1 maio 2007. CALADO, V.; MONTGOMERY, D. Planejamento de experimentos usando o Statistica. 1° ed. Rio de Janeiro: [s.n.]. DAHHAM, N. A. et al. Investigation on the interactions of resinous and asphaltenic synthetic oils and silicon oxide nanoparticles stabilized by different ionic liquid-based surfactants: interfacial tension and wettability alteration studies. Journal of Petroleum Exploration and Production Technology, v. 13, n. 9, p. 1963–1977, 1 set. 2023. DING, W. et al. Micellization behavior of ionic liquid surfactants with two hydrophobic tail chains in aqueous solution. Journal of Applied Polymer Science, v. 129, n. 4, p. 2057–2062, 15 ago. 2013. EL SEOUD, O. A. et al. Synthesis and micellar properties of surface-active ionic liquids: 1-Alkyl-3-methylimidazolium chlorides. Journal of Colloid and Interface Science, v. 313, n. 1, p. 296–304, set. 2007. ESFANDIARIAN, A. et al. Mechanistic Investigation of the Synergy of a Wide Range of Salinities and Ionic Liquids for Enhanced Oil Recovery: Fluid–Fluid Interactions. Energy & Fuels, v. 35, n. 4, p. 3011–3031, 18 fev. 2021. FAN, Y. et al. Micellization of dissymmetric cationic gemini surfactants and their interaction with dimyristoylphosphatidylcholine vesicles. Langmuir, v. 23, n. 23, p. 11458–11464, 6 nov. 2007. GAO, B.; SHARMA, M. M. A family of alkyl sulfate gemini surfactants. 2. Water-oil interfacial tension reduction. Journal of colloid and interface science, v. 407, p. 375–81, 1 out. 2013. GOLDSIPE, A.; BLANKSCHTEIN, D. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 1. Conventional (pH-insensitive) surfactants. Langmuir, v. 23, n. 11, p. 5942–5952, 22 maio 2007. GOU, S. et al. Water-soluble complexes of hydrophobically modified polymer and surface active imidazolium-based ionic liquids for enhancing oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 471, p. 45–53, 2015. GREAVES, T. L. et al. Protic ionic liquids: Solvents with tunable phase behavior and physicochemical properties (vol 110B, pg 22479, 2006). Journal of Physical Chemistry B, v. 110, n. 51, p. 26506, 2006. GREAVES†, T. L.; AND CALUM J. DRUMMOND* †, ‡. Protic Ionic Liquids: Properties and Applications. Chemical Reviews, v. 108, n. 1, p. 206–237, 2008. GREAVES, T. L.; DRUMMOND, C. J. Protic Ionic Liquids: Evolving Structure-Property Relationships and Expanding Applications. Chemical Reviews, v. 115, n. 20, p. 11379–11448, 2015. GU, X. et al. Synergism in Mixed Zwitterionic Surface Activity Ionic Liquid and Anionic Surfactant Solution: Analysis of Interfacial and Micellar Behavior. Journal of Dispersion Science and Technology, v. 36, n. 3, p. 334–342, 4 mar. 2015. HALLETT, J. P.; WELTON, T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chemical Reviews, v. 111, n. 5, p. 3508–3576, 11 maio 2011. HEZAVE, A. Z. et al. Dynamic interfacial tension behavior between heavy crude oil and ionic liquid solution (1-dodecyl-3-methylimidazolium chloride ([C12mim][Cl]+distilled or saline water/heavy crude oil)) as a new surfactant. Journal of Molecular Liquids, v. 187, p. 83–89, 2013a. HEZAVE, A. Z. et al. Investigating the effect of ionic liquid (1-dodecyl-3-methylimidazolium chloride ([C12mim] [Cl])) on the water/oil interfacial tension as a novel surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 421, p. 63–71, 2013b. HEZAVE, A. Z. et al. Dynamic interfacial tension behavior between heavy crude oil and ionic liquid solution (1-dodecyl-3-methylimidazolium chloride ([C12mim][Cl]+distilled or saline water/heavy crude oil)) as a new surfactant. Journal of Molecular Liquids, v. 187, p. 83–89, nov. 2013c. ISRAELACHVIL, J. N.; MITCHEL, D. J.; NINHA, B. W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of The Chemical Society, Faraday Transactions 2, p. 1525–1568, 1 jan. 1975. ISRAELACHVILI, J. N.; MITCHELL, D. J.; NINHAM, B. W. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2, v. 72, p. 1525, 1976. JIA, H. et al. Systematic Investigation of the Effects of Zwitterionic Surface-Active Ionic Liquids on the Interfacial Tension of a Water/Crude Oil System and Their Application To Enhance Crude Oil Recovery. Energy & Fuels, v. 32, n. 1, p. 154–160, 18 jan. 2018. JIAO, J. et al. Salt-free catanionic surface active ionic liquids 1-alkyl-3-methylimidazolium alkylsulfate: Aggregation behavior in aqueous solution. Journal of Colloid and Interface Science, v. 412, p. 24–30, dez. 2013. KEPPELER, N. et al. On the effects of head-group volume on the adsorption and aggregation of 1-(n-hexadecyl)-3-Cm-imidazolium bromide and chloride surfactants in aqueous solutions. Journal of Molecular Liquids, v. 328, 15 abr. 2021. KHAN, A. B. et al. Role of 1-methyl-3-octylimidazolium chloride in the micellization behavior of amphiphilic drug amitriptyline hydrochloride. Colloids and Surfaces B: Biointerfaces, v. 112, p. 460–465, dez. 2013. KHAN, A. B. et al. Micellization behavior of the amphiphilic drug promethazine hydrochloride with 1-decyl-3-methylimidazolium chloride and its thermodynamic characteristics. Journal of Molecular Liquids, v. 198, p. 341–346, out. 2014. KHARAZI, M. et al. The superior effects of a long chain gemini ionic liquid on the interfacial tension, emulsification and oil displacement of crude oil-water. Journal of Petroleum Science and Engineering, v. 195, p. 107543, dez. 2020. KOPANICHUK, I. et al. The effect of the molecular structure of alkyl ether carboxylate surfactants on the oil–water interfacial tension. Journal of Molecular Liquids, v. 360, p. 119525, ago. 2022. KUMAR, A.; BISHT, M.; VENKATESU, P. Biocompatibility of ionic liquids towards protein stability: A comprehensive overview on the current understanding and their implications. International Journal of Biological Macromolecules, v. 96, p. 611–651, mar. 2017. LI, P. et al. Syntheses, surface activities and aggregation morphologies of a series of novel itaconic acid based asymmetrical gemini surfactants. Journal of Molecular Liquids, v. 290, 15 set. 2019. LIU, G. et al. Enthalpy–entropy compensation of ionic liquid-type Gemini imidazolium surfactants in aqueous solutions: A free energy perturbation study. Journal of Colloid and Interface Science, v. 358, n. 2, p. 521–526, jun. 2011. LIU, J. et al. Systematic investigation of the effects of an anionic surface active ionic liquid on the interfacial tension of a water/crude oil system and its application to enhance crude oil recovery. Journal of Dispersion Science and Technology, v. 40, n. 11, p. 1657–1663, 2 nov. 2019. LIU, X. F.; DONG, L. L.; FANG, Y. Synthesis and self-aggregation of a hydroxyl-functionalized imidazolium-based ionic liquid surfactant in aqueous solution. Journal of Surfactants and Detergents, v. 14, n. 2, p. 203–210, 2011. ŁUCZAK, J. et al. Self-organization of imidazolium ionic liquids in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering AspectsElsevier, , 5 nov. 2008. LUKANOV, B.; FIROOZABADI, A. Specific ion effects on the self-assembly of ionic surfactants: A molecular thermodynamic theory of micellization with dispersion forces. Langmuir, v. 30, n. 22, p. 6373–6383, 10 jun. 2014. MAXIMO, G. J. et al. Lipidic protic ionic liquid crystals. ACS Sustainable Chemistry and Engineering, v. 2, n. 4, p. 672–682, 7 abr. 2014. MOREIRA, L. A.; FIROOZABADI, A. Molecular thermodynamic modeling of droplet-type microemulsions. Langmuir, v. 28, n. 3, p. 1738–1752, 24 jan. 2012. MOREIRA, L.; FIROOZABADI, A. Molecular thermodynamic modeling of specific ion effects on micellization of ionic surfactants. Langmuir, v. 26, n. 19, p. 15177–15191, 5 out. 2010. MOROI, Y. Micelles: Theoretical and Applied Aspects. [s.l: s.n.]. NAGARAJAN, R.; RUCKENSTEIN, E. Theory of Surfactant Self-Assembly: A Predictive Molecular Thermodynamic ApproachLangmuir. [s.l: s.n.]. NANDWANI, S. K. et al. Study on interfacial properties of Imidazolium ionic liquids as surfactant and their application in enhanced oil recovery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 516, p. 383–393, mar. 2017. NETO, B. B.; SCARMINIO, I. S.; BRUNS, R. E. Como fazer experimentos. 2° ed. Campinas: [s.n.]. PAL, A.; PUNIA, R. Mixed micellization behaviour of tri-substituted surface active ionic liquid and cationic surfactant in aqueous medium and salt solution: Experimental and theoretical study. Journal of Molecular Liquids, v. 296, p. 111831, dez. 2019. PANDA, S. et al. Understanding Differential Interaction of Protic and Aprotic Ionic Liquids inside Molecular Confinement. Journal of Physical Chemistry B, v. 121, n. 41, p. 9676–9687, 2017. PELIZZETTI, E.; PRAMAURO, E. Analytical applications of organized molecular assemblies. Analytica Chimica Acta, v. 169, p. 1–29, 1985. PILLAI, P.; MANDAL, A. A comprehensive micro scale study of poly-ionic liquid for application in enhanced oil recovery: Synthesis, characterization and evaluation of physicochemical properties. Journal of Molecular Liquids, v. 302, p. 112553, mar. 2020. PINTO, R. R.; MATTEDI, S.; AZNAR, M. Synthesis and physical properties of three protic ionic liquids with the ethylammonium cation. Chemical Engineering Transactions, v. 43, p. 1165–1170, 2015. PREISS, U. et al. Predicting the Critical Micelle Concentrations of Aqueous Solutions of Ionic Liquids and Other Ionic Surfactants. Chemistry - A European Journal, v. 15, n. 35, p. 8880–8885, 7 set. 2009. PUVVADA, S.; BLANKSCHTEIN, D. Molecular-thermodynamic approach to predict micellization, phase behavior and phase separation of micellar solutions. I. Application to nonionic surfactants. The Journal of Chemical Physics, v. 92, n. 6, p. 3710–3724, 1990. QI, X. et al. Mixing Behavior of Conventional Cationic Surfactants and Ionic Liquid Surfactant 1-Tetradecyl-3-methylimidazolium Bromide ([C 14 mim]Br) in Aqueous Medium. Journal of Dispersion Science and Technology, v. 34, n. 1, p. 125–133, jan. 2013. RAJPUT, S. M. et al. Impact of organic solvents on the micellization and interfacial behavior of ionic liquid based surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 507, p. 182–189, out. 2016a. RAJPUT, S. M. et al. Impact of organic solvents on the micellization and interfacial behavior of ionic liquid based surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 507, p. 182–189, out. 2016b. RODRIGUES, M. I.; IEMMA, A. F. Planejamento de experimentos e otimização de processo. 2. ed. São Paulo: [s.n.]. SAIEN, J. et al. Systematic Investigation of a Surfactant Type Nano Gemini Ionic Liquid and Simultaneous Abnormal Salt Effects on Crude Oil/Water Interfacial Tension. Industrial & Engineering Chemistry Research, v. 58, n. 9, p. 3583–3594, 6 mar. 2019. SAKTHIVEL, S. et al. Use of aromatic ionic liquids in the reduction of surface phenomena of crude oil-water system and their synergism with brine. Industrial and Engineering Chemistry Research, v. 54, n. 3, p. 968–978, 2015. SAKTHIVEL, S.; GARDAS, R. L.; SANGWAI, J. S. Effect of Alkyl Ammonium Ionic Liquids on the Interfacial Tension of the Crude Oil-Water System and Their Use for the Enhanced Oil Recovery Using Ionic Liquid-Polymer Flooding. Energy and Fuels, v. 30, n. 3, p. 2514–2523, 2016a. SAKTHIVEL, S.; GARDAS, R. L.; SANGWAI, J. S. Spectroscopic investigations to understand the enhanced dissolution of heavy crude oil in the presence of lactam, alkyl ammonium and hydroxyl ammonium based ionic liquids. Journal of Molecular Liquids, v. 221, p. 323–332, 2016b. SANATI, A. et al. Comparative study of an acidic deep eutectic solvent and an ionic liquid as chemical agents for enhanced oil recovery. Journal of Molecular Liquids, v. 329, p. 115527, maio 2021. SANTOS, M. S.; TAVARES, F. W.; BISCAIA, E. C. Molecular thermodynamics of micellization: Micelle size distributions and geometry transitions. Brazilian Journal of Chemical Engineering, v. 33, n. 3, p. 515–523, 1 jul. 2016. ŠARAC, B.; BEŠTER-ROGAČ, M. The influence of ionic liquids on micellization of sodium dodecyl sulfate in aqueous solutions. Acta Chimica Slovenica, v. 67, n. 3, p. 977–984, 2020. SEMNANI, R. H. et al. Evaluation of the interfacial activity of imidazolium-based ionic liquids and their application in enhanced oil recovery process. Journal of Molecular Liquids, v. 362, p. 119735, set. 2022. SHARMA, R.; MAHAJAN, S.; MAHAJAN, R. K. Surface adsorption and mixed micelle formation of surface active ionic liquid in cationic surfactants: Conductivity, surface tension, fluorescence and NMR studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 427, p. 62–75, jun. 2013. SINGH, S. K.; SAVOY, A. W. Ionic liquids synthesis and applications: An overview. Journal of Molecular Liquids, v. 297, p. 112038, jan. 2020. TACKIE-OTOO, B. N. et al. Interfacial Properties, Wettability Alteration and Emulsification Properties of an Organic Alkali–Surface Active Ionic Liquid System: Implications for Enhanced Oil Recovery. Molecules, v. 27, n. 7, p. 2265, 31 mar. 2022. TANFORD, C. Thermodynamics of Micelle Formation: Prediction of Micelle Size and Size Distribution (critical micelle concentration/monolayers/surface free energy). [s.l: s.n.]. TANFORD, C. Thermodynamics of Micelle Formation: Prediction of Micelle Size and Size Distribution. Proceedings of the National Academy of Sciences, v. 71, n. 5, p. 1811–1815, maio 1974b. THOPPIL, A. A.; CHENNURI, B. K.; GARDAS, R. L. Thermodynamics and micellization behavior of ethanolammonium carboxylate surface active ionic liquids in aqueous media. Journal of Molecular Liquids, v. 299, p. 112116, fev. 2020. TOLEDO HIJO, A. A. C. et al. Phase Behavior and Physical Properties of New Biobased Ionic Liquid Crystals. The Journal of Physical Chemistry B, v. 121, n. 14, p. 3177–3189, 13 abr. 2017. TRIPATHI, S.; CHAPMAN, W. G. Microstructure of inhomogeneous polyatomic mixtures from a density functional formalism for atomic mixtures. Journal of Chemical Physics, v. 122, n. 9, 2005. VELUSAMY, S.; SAKTHIVEL, S.; SANGWAI, J. S. Effect of Imidazolium-Based Ionic Liquids on the Interfacial Tension of the Alkane–Water System and Its Influence on the Wettability Alteration of Quartz under Saline Conditions through Contact Angle Measurements. Industrial & Engineering Chemistry Research, v. 56, n. 46, p. 13521–13534, 22 nov. 2017. VISSER, A. E. et al. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chemical Communications, n. 1, p. 135–136, 7 jan. 2001. WANG, L. et al. An interfacial statistical associating fluid theory (iSAFT) approach for surface/interfacial tension predictions. Fluid Phase Equilibria, v. 476, p. 193–201, 25 nov. 2018. WASSERSCHEID, P.; WELTON, T. Ionic Liquids in Synthesis. v. 1, 2008. WHITESIDES, G. M.; BONCHEVA, M. Beyond molecules: Self-assembly of mesoscopic and macroscopic componentsPNAS April. [s.l: s.n.]. Disponível em: <www.pnas.orgcgidoi10.1073pnas.082065899>. XI, S. et al. Thermodynamics, Microstructures, and Solubilization of Block Copolymer Micelles by Density Functional Theory. Langmuir, v. 35, n. 14, p. 5081–5092, 9 abr. 2019. XU, Y. et al. Investigation on the effects of cationic surface active ionic liquid/anionic surfactant mixtures on the interfacial tension of water/crude oil system and their application in enhancing crude oil recovery. Journal of Dispersion Science and Technology, v. 44, n. 1, p. 214–224, 2023. ZEINOLABEDINI HEZAVE, A. et al. Effect of different families (imidazolium and pyridinium) of ionic liquids-based surfactants on interfacial tension of water/crude oil system. Fluid Phase Equilibria, v. 360, p. 139–145, 2013.pt_BR
dc.contributor.refereesLatteshttp://lattes.cnpq.br/0604137114629084pt_BR
dc.contributor.refereesLatteshttp://lattes.cnpq.br/3421092159521710pt_BR
dc.type.degreeDoutoradopt_BR
Aparece nas coleções:Tese (PPEQ)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Gabriela Fontes Deiró Ferreira - Tese de Doutorado.pdfTese de Doutorado - Gabriela Fontes Deiró Ferreira2,8 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons