Please use this identifier to cite or link to this item: https://repositorio.ufba.br/handle/ri/38139
Full metadata record
DC FieldValueLanguage
dc.creatorFarias, Lucas de Oliveira Neves de-
dc.date.accessioned2023-10-20T17:59:06Z-
dc.date.available2023-10-20T17:59:06Z-
dc.date.issued2023-08-04-
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/38139-
dc.description.abstractIntroduction: Leprosy is a chronic infectious disease caused by Mycobacterium leprae. About 30-40% of patients develop sudden and acute inflammatory episodes, the so-called leprosy reactions. Previous studies have shown a series of miRNAs associated with leprosy phenotypes, evidencing the role of this epigenetic mechanism in the pathogenesis of the disease. Objective: This study aimed to evaluate the correlation of miRNAs previously associated with leprosy with genes linked to apoptosis and autophagy in lesions of patients with leprosy, compare the expression pattern of genes in biopsies of patients with and without reactions and describe the clinical profile and epidemiological analysis of patients with leprosy treated at reference centers in the state of Bahia, HUPES-AMN and ICOM. Methods: Biopsies of 28 patients with and without leprosy reactions, with different clinical forms of leprosy were recruited. For analysis purposes, these patients were allocated according to the WHO classification as paucibacillary (PB) or multibacillary (MB), and separated into patients with or without reactions. RNA samples contained in our biorepository were used, extracted by the method using TRIzol® Reagent (Ambion®). Obtaining complementary DNA (cDNA) was performed using the commercially available High Capacity kit (ThermoFisher). The genes were chosen because they are important in cell death processes and are regulated by the miRNAs previously analyzed by the group. Gene expression by real-time qPCR method by TaqMan® was performed and the data analyzed by comparing the threshold cycle (Ct) between groups of samples. Correlation analysis between genes and miRNAs was performed using the Spearman Correlation test, using GraphPad Prism8. Differences were considered significant when the p-value was below 0.05 (p ˂ 0.05). The patients' clinical-epidemiological database was analyzed using the R program for Windows, version 4.2.3 and the data presented in tables. Results: The expression of the genes ATG12, TNFRSF10A, PARK2, BCL2, CFLAR and STX7 was evaluated by qPCR and the expression between patients without reaction (PB + MB) and patients with reaction (RR and ENH) was compared and there was no statistically significant association in this comparison. Our results showed a correlation between miRNAs and ATG12 (miR-125a-3p), TNFRSF10A (miR-146b-5p), PARK2, CFLAR and STX7 (miR-132-5p) genes. In the epidemiological analysis, we observed that the MB form is more prevalent in males and that disease forms within this spectrum are more prone to the development of reactions, as well as affecting patients with lower educational and economic levels. Conclusion: We reinforce a role for these miRNAs in the pathogenesis of leprosy, influencing mechanisms such as apoptosis and autophagy in the skin; The MB form of the disease occurs within a social context of greater social vulnerability compared to PB patients.pt_BR
dc.description.sponsorshipINCT – DT (Instituto Nacional de Ciências e Tecnologia em Doenças Tropicais)pt_BR
dc.description.sponsorshipBolsa de Estudo da FAPESBpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.subjectmiRNAspt_BR
dc.subjectGenept_BR
dc.subjecthanseníasept_BR
dc.subjectATG12pt_BR
dc.subjectTNFRSF10Apt_BR
dc.subjectPARK2pt_BR
dc.subjectBCL2pt_BR
dc.subjectCFLARpt_BR
dc.subjectSTX7pt_BR
dc.subject.othermiRNAspt_BR
dc.subject.otherGenept_BR
dc.subject.otherleprosypt_BR
dc.subject.otherATG12pt_BR
dc.subject.otherTNFRSF10Apt_BR
dc.subject.otherPARK2pt_BR
dc.subject.otherBCL2pt_BR
dc.subject.otherCFLARpt_BR
dc.subject.otherSTX7pt_BR
dc.titleCaracterização do perfil clínico-epidemiológico de uma população com hanseníase na Bahia e avaliação de microRNAs (miRNAs) ligados à via dos TLRs e sua correlação com genes de morte celular em biópsias de pacientes com hanseníasept_BR
dc.title.alternativeCharacterization of the clinical-epidemiological profile of a population with leprosy in Bahia and evaluation of microRNAs (miRNAs) linked to the TLR pathway and their correlation with cell death genes in biopsies from patients with leprosy.pt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPós-Graduação em Ciências da Saúde (POS_CIENCIAS_SAUDE) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDE::MEDICINA::CLINICA MEDICA::DERMATOLOGIApt_BR
dc.subject.cnpqCNPQ::CIENCIAS DA SAUDE::SAUDE COLETIVA::EPIDEMIOLOGIApt_BR
dc.subject.cnpqCNPQ::CIENCIAS BIOLOGICAS::GENETICA::GENETICA MOLECULAR E DE MICROORGANISMOSpt_BR
dc.subject.cnpqCNPQ::CIENCIAS BIOLOGICAS::IMUNOLOGIA::IMUNOLOGIA CELULARpt_BR
dc.subject.cnpqCNPQ::CIENCIAS BIOLOGICAS::IMUNOLOGIA::IMUNOGENETICApt_BR
dc.contributor.advisor1Castellucci, Léa Cristina-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-9625-2469pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6921235090872091pt_BR
dc.contributor.advisor2Machado, Paulo Roberto Lima-
dc.contributor.advisor2IDhttps://orcid.org/0000-0003-1894-6171pt_BR
dc.contributor.advisor2Latteshttp://lattes.cnpq.br/7641162535517337pt_BR
dc.contributor.referee1Castellucci, Léa Cristina-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-9625-2469pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6921235090872091pt_BR
dc.contributor.referee2Takenami, Iukary Oliveira-
dc.contributor.referee2IDhttps://orcid.org/0000-0001-5660-7766pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5629405326727831pt_BR
dc.contributor.referee3Schriefer, Nicolaus Albert Borges-
dc.contributor.referee3IDhttps://orcid.org/0000-0002-5496-6789pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/3427260889880733pt_BR
dc.creator.IDhttps://orcid.org/0009-0007-3579-361Xpt_BR
dc.creator.Latteshttp://lattes.cnpq.br/1794273267123075pt_BR
dc.description.resumoIntrodução: A hanseníase é uma doença infecciosa crônica causada pelo Mycobacterium leprae. Cerca de 30-40% dos pacientes desenvolvem episódios inflamatórios súbitos e agudos, as chamadas reações hansênicas. Estudos anteriores mostraram uma série de miRNAs associados aos fenótipos da hanseníase, evidenciando o papel desse mecanismo epigenético na patogênese da doença. Objetivo: Esse trabalho teve como objetivos avaliar a correlação de miRNAs previamente associados à hanseníase com genes ligados à apoptose e autofagia em lesões de pacientes com hanseníase, comparar o padrão de expressão dos genes em biópsias de pacientes com e sem reações e descrever o perfil clínico e epidemiológico de pacientes com hanseníase, atendidos em centros de referência do estado da Bahia, HUPES-AMN e ICOM. Métodos: Biópisas de 28 pacientes com e sem reações hansênicas, com as diversas formas clínicas da hanseníase foram recrutados. Para fins de análise, estes pacientes foram alocados de acordo com a classificação da OMS como paucibacilares (PB) ou multibacilares (MB), e separados em pacientes com ou sem reações. Foram utilizadas amostras de RNA contidas em nosso biorepositório, extraídas pelo método do utilizandoTRIzol® Reagente (Ambion®). A obtenção de DNA complementar (cDNA) foi realizada utilizando o kit comercialmente disponível High Capacity (ThermoFisher). Os genes foram escolhidos por serem importantes em processos de morte celular e serem regulados pelos miRNAs previaente analisados pelo grupo. Expressão gênica pelo método de qPCR em tempo real por TaqMan® foi realizada e os dados analisados comparando-se o ciclo limiar (Ct) entre grupos de amostras. A análise de correlação entre genes e miRNAs foi realizada por meio do teste de Correlação de Spearman, utilizando GraphPad Prism8. As diferenças foram consideradas significativas quando o valor de p ficou abaixo de 0,05 (p ˂ 0,05). O banco de dados clínico-epidemiológico dos pacientes foi analisado através do programa R para Windows, versão 4.2.3 e os dados apresentados por tabelas. Resultados: Foi avaliado por qPCR a expressão dos genes ATG12, TNFRSF10A, PARK2, BCL2, CFLAR e STX7 e comparada a expressão entre pacientes sem reação (PB + MB) e pacientes com reação, (RR e ENH) e não houve associação estatisticamente significante nesta comparação. Nossos resultados mostraram uma correlação entre os miRNAs e os genes ATG12 (miR-125a-3p), TNFRSF10A (miR-146b-5p), PARK2, CFLAR e STX7 (miR-132-5p). Na análise epidemiológica, observamos que a forma MB é mais predominante no sexo masculino e que formas doença dentro deste espectro são mais propensas ao desenvolvimento de reações, assim como atinge pacientes com menor nível educacional e econômico. Conclusão: Reforçamos um papel para esses miRNAs na patogênese da hanseníase, influenciando mecanismos como apoptose e autofagia na pele; A forma MB da doença ocorre dentro de um contexto social de maior vulnerabilidade social se comparado aos pacientes PB.pt_BR
dc.publisher.departmentFaculdade de Medicina da Bahiapt_BR
dc.relation.referencesACHUTHAN A, MASENDYCZ P, LOPEZ JA et al., Regulation of the endosomal SNARE protein syntaxin 7 by colony-stimulating factor 1 in macrophages. Mol Cell Biol. 2008;28(20):6149-6159. doi:10.1128/MCB.00220-08 ALVES ACR, LEMOS GS, PAIVA PDR, Perfil socioeconômico dos pacientes atendidos pelo Centro de Referência em Reabilitação da Hanseníase da Zona da Mata Mineira. HU Rev, 2017; 43(2):99-104. AN W, YAO S, SUN X, et al., Glucocorticoid modulatory element-binding protein 1 (GMEB1) interacts with the de-ubiquitinase USP40 to stabilize CFLARL and inhibit apoptosis in human non-small cell lung cancer cells. J Exp Clin Cancer Res. 2019;38(1):181. Published 2019 May 2. doi:10.1186/s13046-019-1182-3 ARAI M, GENDA Y, ISHIKAWA M, SHUNSUKE T, OKABE T, SAKAMOTO A, The miRNA and mRNA changes in rat hippocampi after chronic constriction injury. Pain Med, 2013, 14(5):720-9. doi: 10.1111/pme.12066. AVANZI C, SINGH P, TRUMAN RW, SUFFYS PN, Molecular epidemiology of leprosy: An update. Infect Genet Evol, 2020 Dec;86:104581. doi: 10.1016/j.meegid.2020.104581. Epub 2020 Oct 4. PMID: 33022427. BARBOSA MGdeM, SILVA BJdeA, ASSIS TQ, PRATA RBdaS, FERREIRA H, ANDRADE PR, OLIVEIRA JAdaPde, SILVA GMSda, NERY JAdaC, SARNO EM, PINHEIRO RO, Autophagy Impairment Is Associated With Increased Inflammasome Activation and Reversal Reaction Development in Multibacillary Leprosy. Front. Immunol, 2018, 9:1223. http://doi:10.3389/fimmu.2018.01223 BARTEL DP, MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, v. 116, p. 281- 297, 2004. https://doi.org/10.1016/S0092-8674(04)00045-5 BELACHEW WA, NAAFS B, Position statement: LEPROSY: Diagnosis, treatment and follow-up. 03 April 2019. https://doi.org/10.1111/jdv.15569 BERTHELOOT D, LATZ E, FRANKLIN BS, Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021 May;18(5):1106-1121. Epub 2021 Mar 30. PMID: 33785842; PMCID: PMC8008022. doi: 10.1038/s41423-020-00630-3. BHANDARI J, AWAIS M, ROBBINS BA, GUPTA V, Leprosy. In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559307/ BOLDIN MP, TAGANOV KD, RAO DS, YANG L, ZHAO JL, KALWANI M et al., miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J Exp Med 2011; 208(6):1189-201. doi: 10.1084/jem.20101823. ___.BRASIL, Protocolo Clínico e Diretrizes Terapêuticas da Hanseníase, 2022. Disponível em: https://www.gov.br/conitec/pt-br/midias/protocolos/20220818_pcdt_hanseniase.pdf ___.BRASIL, Leprosy Epidemiological Record 2023, 2023, Número Especial, Jan, 2023. ISSN: 9352-7864. Disponível em: https://www.gov.br/saude/pt-br/centrais-de-conteudo/publicacoes/boletins/epidemiologicos/especiais/2023/boletim_hanseniase-2023_internet_completo.pdf/view ___.BRASIL, Secretaria de Vigilância em Saúde Departamento de Vigilância e Doenças Transmissíveis, 2017. Disponível em: https://bvsms.saude.gov.br/bvs/publicacoes/guia_pratico_hanseniase.pdf ___.BRASIL, SECRETARIA DE CIÊNCIA, TECNOLOGIA, INOVAÇÃO E INSUMOS ESTRATÉGICOS EM SAÚDE, 2022. https://www.gov.br/conitec/pt-br/midias/protocolos/20220818_pcdt_hanseniase.pdf BRITO de SOUZA VN, IYER AM, LAMMAS DA, NAAFS B, DAS PK, Advances in leprosy immunology and the field application: A gap to bridge. Clin Dermatol. 2016 Jan-Feb;34(1):82-95. doi: 10.1016/j.clindermatol.2015.10.013. Epub 2015 Nov 6. PMID: 26773628. BROUWER I, LENSTRA TL, Visualizing transcription: key to understanding gene expression dynamics, Current Opinion in Chemical Biology, Volume 51, 2019, Pages 122-129, ISSN 1367-5931, https://doi.org/10.1016/j.cbpa.2019.05.031. CASTELLUCCI LC, ALMEIDA L, CHERLIN S et al., A Genome-wide Association Study Identifies SERPINB10, CRLF3, STX7, LAMP3, IFNG-AS1, and KRT80 As Risk Loci Contributing to Cutaneous Leishmaniasis in Brazil. Clin Infect Dis. 2021;72(10):e515-e525. doi:10.1093/cid/ciaa1230 CEZAR-de-MELLO PF, TOLEDO-PINTO TG, MARQUES CS, ARNEZ LE, CARDOSO CC, GUERREIRO LT, ANTUNES SL, JARDIM MM, COVAS Cde J, ILLARAMENDI X, DIAS-BAPTISTA IM, ROSA PS, DURÃES SM, PACHECO AG, RIBEIRO-ALVES M, SARNO EN, MORAES MO. Pre-miR-146a (rs2910164 G>C) single nucleotide polymorphism is genetically and functionally associated with leprosy. PLoS Negl Trop Dis. 2014 Sep 4;8(9):e3099. http://doi:10.1371/journal.pntd.0003099. PMID: 25187983; PMCID: PMC4154665. CHATTREE V, KHANNA N, BISHT V, RAO DN. Liposomal delivery of Mycobacterium leprae antigen(s) with murabutide and Trat peptide inhibits Fas-mediated apoptosis of peripheral blood mononuclear cells derived from leprosy patients. Indian J Biochem Biophys. 2007 Oct;44(5):386-93. PMID: 18341215. COONEY R, BAKER J, BRAIN O, DANIS B, PICHULIK T, ALLAN P, FERGUSON DJ, CAMPBELL BJ, JEWELL D, SIMMONS A. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat Med. 2010 Jan;16(1):90-7. http://doi:10.1038/nm.2069. Epub 2009 Dec 6. PMID: 19966812. DIVEP/SESAB, 2023. Boletim Epidemiológico de Hanseníase - Detecção Geral. Nº 01 - Janeiro de 2023. Disponível em: https://www.saude.ba.gov.br/wp-content/uploads/2017/11/boletimHanseniaseGeral_No_01_janeiro2023.pdf DOMINGOS J, COELHO T, TAIPA R, BASTO JP, MELO-PIRES M, MAGALHÃES MJ, PARK2 presenting as a disabling peripheral axonal neuropathy. Neurol Sci. 2015;36(2):341-343. doi:10.1007/s10072-014-1898-y DONATE PB, ALVES DE LK, PERES RS, ALMEIDA F, FUKADA SY, SILVA TA et al. Cigarette smoke induces miR-132 in Th17 cells that enhance osteoclastogenesis in inflammatory arthritis. Proc Natl Acad Sci USA. 2021;118(1):e2017120118. doi: 10.1073/pnas.2017120118. DUCATTI I. A hanseníase no Brasil na era Vargas e a profilaxia do isolamento compulsório: estudos sobre o discurso científico legitimador. 2009. Tese (Doutorado em História Social) - Faculdade de Filosofia, Letras e Ciências Humanas, Universidade de São Paulo, São Paulo, 2009. doi:10.11606/T.8.2009.tde-09032009-171024. Acesso em: 2023-07-19. EBENEZER GJ, SCOLLARD DM. Treatment and Evaluation Advances in Leprosy Neuropathy. Neurotherapeutics 18, 2337–2350 (2021). https://doi.org/10.1007/s13311-021-01153-z . Epub 2021 Nov 19. PMID: 34799845; PMCID: PMC8604554 ELLERTSEN LK, WIKER HG, EGEBERG NT, HETLAND G; Allergic Sensitisation in Tuberculosis and Leprosy Patients. Int Arch Allergy Immunol 1 November 2005; 138 (3): 217–224. https://doi.org/10.1159/000088722 FAIZ A, HEIJINK IH, VERMEULEN CJ, et al., Cigarette smoke exposure decreases CFLAR expression in the bronchial epithelium, augmenting susceptibility for lung epithelial cell death and DAMP release. Sci Rep. 2018;8(1):12426. Published 2018 Aug 20. doi:10.1038/s41598-018-30602-7 FANG L, WU HM, DING PS, LIU RY. TLR2 mediates phagocytosis and autophagy through JNK signaling pathway in Staphylococcus aureus-stimulated RAW264.7 cells. Cell Signal. 2014 Apr;26(4):806-14. http://doi:10.1016/j.cellsig.2013.12.016. Epub 2014 Jan 8. PMID: 24412754. FARAG AGA, LABEEB AZ, GERGES ANA, ELSHAIB ME. Interleukin-17A in Egyptian leprosy patients: a clinical, genetic, and biochemical study. Anais Brasileiros de Dermatologia, Volume 97, Issue 6, 2022. Pages 735-741, ISSN 0365-0596, https://doi.org/10.1016/j.abd.2021.09.016. FAVA VM, DALLMANN-SAUER M, SCHURR E. Genetics of leprosy: today and beyond. Hum Genet. 2020; 139(6-7):835-846. doi: 10.1007/s00439-019-02087-5. FROES JUNIOR LAR, SOTTO MN, TRINDADE MAB. Leprosy: clinical and immunopathological characteristics. Anais Brasileiros de Dermatologia, Volume 97, Issue 3, 2022, Pages 338-347, ISSN 0365-0596, https://doi.org/10.1016/j.abd.2021.08.006. FULCO TdeO, ANDRADE PR, BARBOSA MGdeM, PINTO TG, FERREIRA PF, FERREIRA H, NERY JAdaC , REAL SC, BORGES VM, MORAES MO, SARNO EN, SAMPAIO EP, PINHEIRO RO. Effect of apoptotic cell recognition on macrophage polarization and mycobacterial persistence. Infect Immun. 2014 Sep;82(9):3968-78. http://doi:10.1128/IAI.02194-14. Epub 2014 Jul 14. PMID: 25024361; PMCID: PMC4187838. GASCHIGNARD J, GRANT AV, THUC NV, ORLOVA M, COBAT A, HUONG NT, BA NN, THAI VH, ABEL L, SCHURR E, ALCAÏS A. 2016. Pauci- and Multibacillary Leprosy: Two Distinct, Genetically Neglected Diseases. PLoS Negl Trop Dis 10(5): e0004345. https://doi.org/10.1371/journal.pntd.0004345 GENG J, KLIONSKY DJ. The ATG8 and ATG12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep. 2008 Sep;9(9):859-64. doi: 10.1038/embor.2008.163. PMID: 18704115; PMCID: PMC2529362. HA M, KIM VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014 Aug;15(8):509-24. doi: 10.1038/nrm3838. Epub 2014 Jul 16. PMID: 25027649. HAN XY, SEO YH, SIZER KC et al., A new Mycobacterium species causing diffuse lepromatous leprosy. Am J Clin Pathol. 2008;130(6):856-864. doi:10.1309/AJCPP72FJZZRRVMM HASAN Z, ASHRAF M, TAYYEBI A, HUSSAIN R. M. leprae inhibits apoptosis in THP-1 cells by downregulation of Bad and Bak and upregulation of Mcl-1 gene expression. BMC Microbiol. 2006 Sep 18;6:78. http://doi:10.1186/1471-2180-6-78. PMID: 16978419; PMCID: PMC1592106. HASTINGS RC, GILLIS TP, KRAHENBUHL JL, FRANZBLAU SG. Leprosy. Clin Microbiol Rev. 1988 Jul;1(3):330-48. doi: 10.1128/CMR.1.3.330. PMID: 3058299; PMCID: PMC358054. HUSSEIN A, Mohammed H, Eltahir A, A.Sidig, Gadour MOH. 2010. Frequency of neurological deficits in Sudanese lepromatic patients. Vol. 5, N°. 1, Mar 2010. http://doi:10.4314/sjms.v5i1.56025 JACOB JT, FRANCO-PAREDES C. The Stigmatization of Leprosy in India and Its Impact on Future Approaches to Elimination and Control. PLoS Negl Trop Dis 2(1): e113. https://doi.org/10.1371/journal.pntd.0000113. 2008 JORGE KTOS, SOUZA RP, ASSIS MTA, ARAÚJO MG, LOCATI M, JESUS AMR, DIAS BAPTISTA IMF, LIMA CX, TEIXEIRA AL, TEIXEIRA MM, SORIANI FM. 2017. Characterization of microRNA expression profiles and identification of potential biomarkers in leprosy. J Clin Microbiol 55:1516 –1525. https://doi.org/10.1128/JCM .02408-16. JUNIOR FLAR, SOTTO MN, TRINDADE MAB. Leprosy: clinical and immunopathological characteristics. Anais Brasileiros de Dermatologia, Volume 97, Issue 3, 2022. Pages 338-347, ISSN 0365-0596, https://doi.org/10.1016/j.abd.2021.08.006. KACZYNSKI TJ et al., Dysregulation of a lncRNA within the TNFRSF10A locus activates cell death pathways. Cell Death Discov. 2023 Jul 13;9(1):242. doi: 10.1038/s41420-023-01544-5. PMID: 37443108; PMCID: PMC10344863. KAHAWITA IP, WALKER SL, LOCKWOOD DNJ, Leprosy type 1 reactions and erythema nodosum leprosum. An Bras Dermatol. 2008; 83(1):75–82. https://doi.org/10.1590/S0365-05962008000100010 KAMATH S, VACCARO SA, REA TH, OCHOA MT, Recognizing and managing the immunologic reactions in leprosy. J Am Acad Dermatol. 2014 Oct;71(4):795-803. doi: 10.1016/j.jaad.2014.03.034. Epub 2014 Apr 24. PMID: 24767732. KIM JK, YUK JM, KIM SY, KIM TS, JIN HS, YANG CS, JO EK, MicroRNA-125a Inhibits Autophagy Activation and Antimicrobial Responses during Mycobacterial Infection. J Immunol. 2015 Jun 1;194(11):5355-65. http://doi:10.4049/jimmunol.1402557. Epub 2015 Apr 27. PMID: 25917095. KIM V, MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6, 376–385 (2005). https://doi.org/10.1038/nrm1644 LIANG J, CAO R, WANG X, ZHANG Y, WANG P, GAO H, LI C, YANG F, ZENG R, WEI P, LI D, LI W, YANG W, Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing BCL2. Cell Res. 2017 Mar;27(3):329-351. doi: 10.1038/cr.2016.159. Epub 2016 Dec 30. PMID: 28035139; PMCID: PMC5339831. LIAO D, Chapter 1 - Apoptosis, necroptosis, and pyroptosis in health and disease: an overview of molecular mechanisms, targets for therapeutic development, and known small molecule and biologic modulators. Mechanisms of Cell Death and Opportunities for Therapeutic Development 2022;1-46. doi.org/10.1016/B978-0-12-814208-0.00008-7. LI H, LI L, QIU X, ZHANG J, HUA Z, The interaction of CFLAR with p130Cas promotes cell migration. Biochim Biophys Acta Mol Cell Res. 2023;1870(2):119390. doi:10.1016/j.bbamcr.2022.119390 LI J, TONG Y, ZHOU Y, et al., LncRNA KCNQ1OT1 as a miR-26a-5p sponge regulates ATG12-mediated cardiomyocyte autophagy and aggravates myocardial infarction. Int J Cardiol. 2021;338:14-23. doi:10.1016/j.ijcard.2021.05.053 LI T, SU L, LEI Y, LIU X, ZHANG Y, LIU X, DDIT3 and KAT2A Proteins Regulate TNFRSF10A and TNFRSF10B Expression in Endoplasmic Reticulum Stress-mediated Apoptosis in Human Lung Cancer Cells. J Biol Chem. 2015;290(17):11108-18. doi: 10.1074/jbc.M115.645333. LIU PT, WHEELWRIGHT M, TELES R, KOMISOPOULOU E, EDFELDT K, FERGUSON B, MEHTA MD, VAZIRNIA A, REA TH, SARNO EN, GRAEBER TG, MODLIN RL, MicroRNA-21 targets the vitamin D-dependent antimicrobial pathway in leprosy. Nat Med. 2012 Jan 29;18(2):267-73. http://doi:10.1038/nm.2584. PMID: 22286305; PMCID: PMC3274599. LOCKWOOD DNJ, Leprosy. BMJ Clin Evid. 2007 Apr 1; 2007:0915. PMID: 19454067; PMCID: PMC2943824. MACHADO PR, MACHADO LM, SHIBUYA M, REGO J, JOHNSON WD, GLESBY MJ, Viral Co-infection and Leprosy Outcomes: A Cohort Study. PLoS Negl Trop Dis. 2015 Aug 12;9(8):e0003865. doi: 10.1371/journal.pntd.0003865. PMID: 26267882; PMCID: PMC4534371. MANZANILLO PS, AYRES JS, WATSON RO, COLLINS AC, SOUZA G, RAE CS et al., The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 2013;501(7468): 512-516. doi.org/10.1038/nature12566. MAROTTA M, DALLOLIO L, TONI G, TONI F, LEONI E, Diagnosis of leprosy in a Nigerian migrant: implementation of surveillance measures in the current migration context. Ann Ig. 2020 Jul-Aug;32(4):336-343. doi: 10.7416/ai.2020.2357. PMID: 32744292. MAYMONE MBC, LAUGHTER M, VENKATESH S, DACSO MM, RAO PN, STRYJEWSKA BM, HUGH J, DELLAVALLE RP, DUNNICK CA, Leprosy: Clinical aspects and diagnostic techniques. J Am Acad Dermatol. 2020 Jul;83(1):1-14. doi:10.1016/j.jaad.2019.12.080. Epub 2020 Mar 27. PMID: 32229279. METLAPALLY R, GONZALEZ P, HAWTHORNE FA, TRAN-VIET K-N, WILDSOET CF, YOUNG TL, Scleral Micro-RNA Signatures in Adult and Fetal Eyes. PLoS ONE, 2013, 8(10): e78984. http://doi:10.1371/journal.pone.0078984 MINUZZO DA, O Homem Paciente de Hanseníase (Lepra): Representação Social, Rede Social Familiar, Experiência e Imagem Corporal. 140 f. Dissertação (Mestrado em Políticas de Bem-Estar em perspectiva: evolução, conceitos e actores), Universidade de Évora, Évora, 2008. MI Z, LIU H, ZHANG F, Advances in the Immunology and Genetics of Leprosy. Sec. Microbial Immunology. Front. Immunol., 16 April 2020. Volume 11 - 2020 https://doi.org/10.3389/fimmu.2020.00567 MIZUNO Y, More than 20 years of the discovery of PARK2. Neuroscience Research, Volume 159, 2020, Pages 3-8, ISSN 0168-0102, https://doi.org/10.1016/j.neures.2020.02.002. MIZUSHIMA N, The ATG conjugation systems in autophagy. Current Opinion in Cell Biology, Volume 63, 2020, Pages 1-10, ISSN 0955-0674, https://doi.org/10.1016/j.ceb.2019.12.001 MOHR R, ÖZDIRIK B, LAMBRECHT J, DEMIR M, ESCHRICH J, GEISLER L, HELLBERG T, LOOSEN SH, LUEDDE T, TACKE F, HAMMERICH L, RODERBURG C, From Liver Cirrhosis to Cancer: The Role of Micro-RNAs in Hepatocarcinogenesis. International Journal of Molecular Sciences. 2021; 22(3):1492. https://doi.org/10.3390/ijms22031492 MOHAMMAD AS, MARIAM A AL-FADHLI, JAFAR AQ, Diabetic status of patients with leprosy in Kuwait. Journal of Infection and Public Health, Volume 5, Issue 5, 2012, Pages 360-365, ISSN 1876-0341, https://doi.org/10.1016/j.jiph.2012.08.001 MORI K et al., TNFRSF10A downregulation induces retinal pigment epithelium degeneration during the pathogenesis of age-related macular degeneration and central serous chorioretinopathy. Hum Mol Genet. 2022 Jul 7;31(13):2194-2206. doi: 10.1093/hmg/ddac020. PMID: 35103281. MUNGROO MR, KHAN NA, SIDDIQUI R, Mycobacterium leprae: Pathogenesis, diagnosis, and treatment options. Microbial Pathogenesis, Volume 149, 2020, 104475, ISSN 0882-4010, https://doi.org/10.1016/j.micpath.2020.104475. MURCHISON EP, HANNON GJ, miRNAs on the move: miRNA biogenesis and the RNAi machinery. Current Opinion in Cell Biology, Volume 16, Issue 3, 2004. Pages 223-229, ISSN 0955-0674, https://doi.org/10.1016/j.ceb.2004.04.003. MURROW L, DEBNATH J, ATG12-ATG3 connects basal autophagy and late endosome function. Autophagy. 2015;11(6):961-2. doi: 10.1080/15548627.2015.1040976. PMID: 25998418; PMCID: PMC4502820. NATH I, SAINI C, VALLURI VL, Immunology of leprosy and diagnostic challenges. Clinics in Dermatology, Volume 33, Issue 1, 2015. Pages 90-98, ISSN 0738-081X, https://doi.org/10.1016/j.clindermatol.2014.07.005. O'CONNELL RM, RAO DS, BALTIMORE D, microRNA regulation of inflammatory responses. Annu Rev Immunol. 2012;30:295-312. doi: 10.1146/annurev-immunol-020711-075013. Epub 2012 Jan 3. PMID: 22224773. O'NEILL LA, SHEEDY FJ, MCCOY CE, MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol 2011;11(3):163-75. doi: 10.1038/nri2957. OLIVEIRA RB, OCHOA MT, SIELING PA, REA TH, RAMBUKKANA A, SARNO EN, MODLIN RL, Expression of Toll-like receptor 2 on human Schwann cells: a mechanism of nerve damage in leprosy. Infect Immun, 2003 Mar;71(3):1427-33. http://doi:10.1128/IAI.71.3.1427-1433.2003. PMID: 12595460; PMCID: PMC148832. PARVEEN S, KHAMARI A, RAJU J, COPPOLINO MG, DATTA S, Syntaxin 7 contributes to breast cancer cell invasion by promoting invadopodia formation. J Cell Sci. 2022;135(12):jcs259576. doi:10.1242/jcs.259576 PATTU V, QU B, MARSHALL M, BECHERER U, JUNKER C, MATTI U, et al., Syntaxin7 is required for lytic granule release from cytotoxic T lymphocytes. Traffic 2011;12(7):890-901. doi: 10.1111/j.1600-0854.2011.01193.x. PENG Y, CROCE C, The role of MicroRNAs in human cancer. Sig Transduct Target Ther 1, 15004 (2016). https://doi.org/10.1038/sigtrans.2015.4 PERRY MM, MOSCHOS SA, WILLIAMS AE, SHEPHERD NJ, LARNER-SVENSSON HM, LINDSAY MA, Rapid changes in microRNA-146a expression negatively regulate the IL-1beta-induced inflammatory response in human lung alveolar epithelial cells. J Immunol 2008;180(8):5689-98. doi: 10.4049/jimmunol.180.8.5689. PRAGASAM V, VASUDEVAN B, MOORCHUNG N, Cytokine gene polymorphisms in type I and type II reactions in Hansen's disease. Indian J Dermatol Venereol Leprol. 2020 Sep-Oct;86(5):482-488. doi: 10.4103/ijdvl.IJDVL_619_18. PMID: 32372760. RADOSHEVICH L, DEBNATH J, ATG12-ATG3 and mitochondria. Autophagy. 2011 Jan;7(1):109-11. doi: 10.4161/auto.7.1.13998. Epub 2011 Jan 1. PMID: 21068544; PMCID: PMC3039733. RANDHAWA A, KAPILA R, AND SCHWARTZ RA, Leprosy: what is new. Int J Dermatol, 2022, 61: 733-738. https://doi.org/10.1111/ijd.15998 RÊGO JL, Genes de resposta imune no desenvolvimento de episódios reacionais na hanseníase. 2018. Tese (Doutorado em Ciências da Saúde) - Universidade Federal da Bahia. RÊGO JL, SANTANA NL, AGUIAR ER, QUEIROZ IS, CARVALHO LP, MACHADO PRL, et al., Serum immune markers as triggers of reactional episodes in multibacillary patients with leprosy. Leprosy Review 2020;91(4), 393-402. doi:10.47276/lr.91.4.393.RIBEIRO MDA, SILVA JCA, OLIVEIRA SB. Estudo epidemiológico da hanseníase no Brasil: reflexão sobre as metas de eliminação. Rev Panam Salud Publica. 2018;42:e42. https://doi.org/10.26633/RPSP.2018.42 RIDLEY DS, JOPLING WH, Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis. 1966;34(3):255-73. PMID: 5950347. ROCHA DC, GARCÊS-FILHO AQ, CUNHA AMA, MONTE RC, OLIVEIRA IS, FERREIRA IG, MONTEIRO WM, CERNI FA, PUCCA MB, Leprosy Overview: Pathophysiology, Immune Responses, and Epidemiology in Brazil. Biomed J Sci & Tech Res 48(4)-2023. BJSTR. MS.ID.007676. http://doi.org/10.26717/BJSTR.2023.48.007676 RODRIGUES de SOUSA J, MAGNO FALCÃO LF, VIRGOLINO GL, et al., Different cell death mechanisms are involved in leprosy pathogenesis. Microb Pathog. 2022;166:105511. doi:10.1016/j.micpath.2022.105511 RODRIGUES JÚNIOR IA, GRESTA LT, NOVIELLO MDE L, CARTELLE CT, LYON S, ARANTES RM, Leprosy classification methods: a comparative study in a referral center in Brazil. Int J Infect Dis. 2016;45:118-122. doi:10.1016/j.ijid.2016.02.018 RUBINSTEIN AD, EISENSTEIN M, BER Y, BIALIK S, KIMCHI A, The autophagy protein Atg12 associates with antiapoptotic Bcl-2 family members to promote mitochondrial apoptosis. Mol Cell. 2011;44(5):698-709. doi: 10.1016/j.molcel.2011.10.014. SALGADO CG, PINTO P, BOUTH RC, GOBBO AR, MESSIAS ACC, SANDOVAL TV, dos SANTOS AMR, MOREIRA FC, VIDAL AF, GOULART LR, BARRETO JG, da SILVA MB, FRADE MAC, SPENCER JS, SANTOS S, RIBEIRO-dos-SANTOS Â, miRNome Expression Analysis Reveals New Players on Leprosy Immune Physiopathology. Front Immunol. 2018 Mar 9;9:463. http://doi:10.3389/fimmu.2018.00463. PMID: 29593724; PMCID: PMC5854644. SARKAR RK, PRADHAN S, Leprosy and women. International Journal of Women's Dermatology, Volume 2, Issue 4, 2016, Pages 117-121, ISSN 2352-6475.https://doi.org/10.1016/j.ijwd.2016.09.001. (https://www.sciencedirect.com/science/article/pii/S235264751630020X) SAVASSI LCM, Hanseníase: políticas públicas e qualidade de vida de pacientes e seus cuidadores. 2010. 196 f. Dissertação (Mestrado em Ciências) – Fundação Oswaldo Cruz, Belo Horizonte, 2010 SCHENK M, KRUTZIK SR, SIELING PA, LEE DJ, TELES RM, OCHOA MT, KOMISOPOULOU E, SARNO EN, REA TH, GRAEBER TG, KIM S, CHENG G, MODLIN RL, NOD2 triggers an interleukin-32-dependent human dendritic cell program in leprosy. Nat Med. 2012 Mar 25;18(4):555-63. http://doi:10.1038/nm.2650. PMID: 22447076; PMCID: PMC3348859. SESAB/DIVEP, Boletim Epidemiológico Hanseníase - Detecção Geral. Nº 01, julho de 2022 (dados/2020). Disponível em: https://www.saude.ba.gov.br/wp-content/uploads/2017/11/boletimHanseniaseDeteccaoGeral_No012022_dados2020.pdf SESAB/DIVEP, Boletim Epidemiológico Hanseníase - Menores de 15 anos. Nº 02, julho de 2022 (dados/2020). Disponível em: https://www.saude.ba.gov.br/wp-content/uploads/2017/11/boletimHanseniaseMenor15-anosNo01_2022_dados2021.pdf SHAN C, CHEN X, CAI H, HAO X, LI J, ZHANG Y, et al., The Emerging Roles of Autophagy-Related MicroRNAs in Cancer. Int J Biol Sci 2021;17(1):134-150. doi: 10.7150/ijbs.50773. SHIBUYA M, BERGHEME G, PASSOS S, QUEIROZ I, RÊGO J, CARVALHO LP, MACHADO PRL, Evaluation of monocyte subsets and markers of activation in leprosy reactions. Microbes and Infection, Volume 21, Issue 2, 2019, Pages 94-98. SSN 1286-4579, https://doi.org/10.1016/j.micinf.2018.10.003. SHIN DM, YUK JM, LEE HM, LEE SH, SON JW, HARDING CV, KIM JM, MODLIN RL, JO EK, Mycobacterial lipoprotein activates autophagy via TLR2/1/CD14 and a functional vitamin D receptor signalling. Cell Microbiol. 2010 Nov;12(11):1648-65. http://doi:10.1111/j.1462-5822.2010.01497.x. Epub 2010 Jul 20. PMID: 20560977; PMCID: PMC2970753. SILVA BJ, BARBOSA MG, ANDRADE PR, FERREIRA H, NERY JA, CÔRTE-REAL S, SILVA GMda, ROSA PS, FABRI M, SARNO EN, PINHEIRO RO, Autophagy Is an Innate Mechanism Associated with Leprosy Polarization. PLoS Pathog. 2017 Jan 5;13(1):e1006103. http://doi:10.1371/journal.ppat.1006103. PMID: 28056107; PMCID: PMC5215777. SOUSA JRde, FALCÃO LFM, VIRGOLINO GL, CRUZ MFS, TEIXEIRA VF, AARÃO TLde S, FURLANETO IP, CARNEIRO FRO, AMIN G, FUZII HT, QUARESMA JAS, Different cell death mechanisms are involved in leprosy pathogenesis. Microbial Pathogenesis, Volume 166, 2022. 105511, ISSN 0882-4010. https://doi.org/10.1016/j.micpath.2022.105511. SOUZA CS, Hanseníase: formas clínicas e diagnóstico diferencial. Medicina (Ribeirão Preto), [S. l.], v. 30, n. 3, p. 325-334, 1997. DOI: 10.11606/issn.2176-7262.v30i3p325-334. Disponível em: https://www.revistas.usp.br/rmrp/article/view/1185. Acesso em: 25 maio. 2023. SOUZA VNBde, IYER AM, LAMMAS DA, NAAFS B, DAS PK, Advances in leprosy immunology and the field application: A gap to bridge. Clinics in Dermatology, Volume 34, Issue 1, 2016. Pages 82-95, ISSN 0738-081X. https://doi.org/10.1016/j.clindermatol.2015.10.013. SIGNOR SA, NUZHDIN SV, The Evolution of Gene Expression in cis and trans. Trends Genet. 2018 Jul;34(7):532-544. doi: 10.1016/j.tig.2018.03.007. Epub 2018 Apr 18. PMID: 29680748; PMCID: PMC6094946 SINGH A, ANANG V, VERMA C, SARASWATI S, RANA A, BANDYOPADHYAY U, CHADHA A, NATARAJAN K, BCL2 negatively regulates Protective Immune Responses During Mycobacterial Infection. Biomolecular Concepts. 2021;12(1): 94-109. https://doi.org/10.1515/bmc-2021-0010 SI W, SHEN J, ZHENG H, FAN W, The role and mechanisms of action of microRNAs in cancer drug resistance. Clin Epigenet 11, 25 (2019). https://doi.org/10.1186/s13148-018-0587-8 SUN YM, LIN KY, CHEN YQ, Diverse functions of miR-125 family in different cell contexts. J Hematol Oncol. 2013 15;6:6. doi: 10.1186/1756-8722-6-6. TAMGUE O, MEZAJOU CF, NGONGANG NN, KAMENI C, NGUM JA, SIMO USF, TATANG FJ, AKAMI M, NGONO NA, Non-Coding RNAs in the Etiology and Control of Major and Neglected Human Tropical Diseases. Front Immunol. 2021 Oct 19;12:703936. doi: 10.3389/fimmu.2021.703936. PMID: 34737736; PMCID: PMC8560798. TENÓRIO MDL, ARAUJO JMS, MELO EVde, CAZZANIGA RA, ARAGÃO AF, VALOIS LQ, SEVERO J, SANTOS-FILHO MAA, MENEZES-SILVA L, MACHADO JA, REED SG, DUTHIE MS, ALMEIDA RPde, BEZERRA-SANTOS M, JESUS ARde, Association between asthma, rhinitis and atopic dermatitis with leprosy: A case-control study. Indian J Dermatol Venereol Leprol. 2023 Feb 2:1-8. doi: 10.25259/IJDVL_347_2021. Epub ahead of print. PMID: 37067141. TIJERO B et al., Autonomic involvement in Parkinsonian carriers of PARK2 gene mutations. Parkinsonism Relat Disord. 2015 Jul;21(7):717-22. doi: 10.1016/j.parkreldis.2015.04.012. Epub 2015 Apr 23. PMID: 25960264. UDDIN S, MUNIR MZ, GULL S, KHAN AH, KHAN A, KHAN D, KHAN MA, WU Y, SUN Y, LI Y, Transcriptome Profiling Reveals Role of MicroRNAs and Their Targeted Genes during Adventitious Root Formation in Dark-Pretreated Micro-Shoot Cuttings of Tetraploid Robinia pseudoacacia L. Genes 2022, 13, 441. https://doi.org/10.3390/genes13030441 VALENCIA-SANCHEZ MA, LIU J, HANNON GJ, PARKER R, Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 2006 Mar 1;20(5):515-24. doi: 10.1101/gad.1399806. PMID: 16510870. VOGLER M. Targeting BCL2-Proteins for the Treatment of Solid Tumours. Adv Med. 2014;2014:943648. doi: 10.1155/2014/943648. Epub 2014 Aug 27. PMID: 26556430; PMCID: PMC4590949. VON MOSTERT HR, The classification of leprosy (an historical survey of the problem with comments on the recent system proposed at Madrid). Cent Afr J Med. 1956 Jun;2(6):225-33. PMID: 13356306. YONEMOTO ACF, CHOPTIAN JÚNIOR MC, MATTARA VAdeO, ABREU MAMMde, Pathophysiology of leprosy: immunological response related to clinical forms. Research, Society and Development, [S. l.], v. 11, n. 9, p. e42211932058, 2022. http://doi10.33448/rsd-v11i9.32058. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/32058. Acesso em: 25 may. 2023. WALKER SL, LOCKWOOD DNJ, The clinical and immunological features of leprosy. British Medical Bulletin, Volume 77-78, Issue 1, 2006, Pages 103–121, https://doi.org/10.1093/bmb/ldl010 WANG DD et al., Long noncoding RNA TNFRSF10A-AS1 promotes colorectal cancer through upregulation of HuR. World J Gastroenterol. 2022 May 28;28(20):2184-2200. doi: 10.3748/wjg.v28.i20.2184. PMID: 35721888; PMCID: PMC9157619. WANG H, FRELIN L, PEVSNER J, Human syntaxin 7: a Pep12p/Vps6p homologue implicated in vesicle trafficking to lysosomes. Gene, 1997;199(1-2):39-48. doi: 10.1016/s0378-1119(97)00343-0. ___. WHO, 2016. Operational Manual 2016 – Global Leprosy Strategy 2016−2020. Accelerating towards a leprosy-free world. Guideline 15 August 2016. ISBN: 978 92 9022 525 6. Disponível em: https://www.who.int/publications/i/item/9789290225256 ___. WHO, 2019. Global leprosy (Hansen disease) update, 2019: time to step-up prevention initiatives. Weekly epidemiological record, 3 September 2020. WHO REFERENCE NUMBER: WER No 36, 2020, 95, 417–440. Disponível em: https://www.who.int/publications/i/item/who-wer9536 ___.WHO, 2020. Lepra/Hanseníase: Gestão das reacções e prevenção das incapacidades. Orientações técnicas. Disponível em: https://www.who.int/pt/publications/i/item/9789290227595 ___. WHO, 2021. Estratégia Global de Hanseníase 2021–2030 – “Rumo à zero hanseníase”. ISBN: 978 92 9022842 4. Disponível em: https://www.who.int/pt/publications/i/item/9789290228509 ___. WHO, 2022. Leprosy - Number of leprosy cases: 2021. Disponível em: https://apps.who.int/neglected_diseases/ntddata/leprosy/leprosy.html WILLIAMS AE, PERRY MM, MOSCHOS SA, LARNER-SVENSSON HM, LINDSAY MA, Role of miRNA-146a in the regulation of the innate immune response and cancer. Biochem Soc Trans 2008;36(6):1211-5. doi: 10.1042/BST0361211. WU J, ZHANG H, YANG L, CHEN Y, LI J, YANG M, ZHANG X, HE C, WANG X, XU X, Syntaxin 7 modulates seizure activity in epilepsy. Neurobiology of Disease, Volume 181, 2023, 106118, ISSN 0969-9961, https://doi.org/10.1016/j.nbd.2023.106118. ZHANG R, HUANG M, CAO Z, QI J, QIU Z, CHIANG LY, MeCP2 plays an analgesic role in pain transmission through regulating CREB / miR-132 pathway. Mol Pain 2015;(12)11-19. doi:10.1186/s12990-015-0015-4. ZHAO JL, RAO DS, BOLDIN MP, TAGANOV KD, O'CONNELL RM, BALTIMORE D, NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci USA 2011;108(22):9184-9. doi: 10.1073/pnas.1105398108.pt_BR
dc.type.degreeMestrado Acadêmicopt_BR
Appears in Collections:Dissertação (PPgCS)



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.