Skip navigation
Universidade Federal da Bahia |
Repositório Institucional da UFBA
Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/36099
Registro completo de metadados
Campo DCValorIdioma
dc.creatorPereira, Victor Martinez Vidal-
dc.date.accessioned2022-10-04T13:52:05Z-
dc.date.available2022-10-04T13:52:05Z-
dc.date.issued2022-06-21-
dc.identifier.citationPEREIRA, Victor Martinez Vidal. Exploiting linked data in Dbpedia to reduce prediction error in matrix factorization recommenders. 2022. 64 f. Dissertação (Mestrado em Ciências da Computação) Instituto de Computação, Universidade Federal da Bahia, Salvador, Ba, 2022.pt_BR
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/36099-
dc.description.abstractRecommender Systems provide suggestions for items that are most likely of interest to users. Providing personalized recommendations is a challenge that can be addressed by filtering algorithms among which Collaborative Filtering (CF) has demonstrated much progress in the last few years. By using Matrix Factorization (MF) techniques, CF methods reduce prediction error by using optimization algorithms. However, they usually face problems such as data sparsity and prediction error. Studies point to the use of data available in Semantic Web as a path to improve recommender systems and address the challenges related to CF techniques. Motivated by these premises, the present work, conducted by me at RecSys Research Group at UFBA, developed a data pipeline along with an algorithm that processes the Ratings Matrix combining semantic similarities of Linked Open Data (LOD) and estimates missing ratings. The experiments took subsets of 1000 samples from three di↵erent datasets (Movielens, LastFM and LibraryThing), calculated two semantic similarity metrics, Linked Data Similarity Distance (LDSD) and Resource Similarity (RESIM), and applied three MF-based algorithms (SVD, SVD++ and NMF). Results suggest the proposed pipeline is able to reduce Root Mean Square Error (RMSE) of all subsets with statistical confidence supported by parametric test one-way ANOVA followed by Tukey’s multiple comparison test.pt_BR
dc.languageengpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.subjectSistemas de recomendaçãopt_BR
dc.subjectFatorização de matrizespt_BR
dc.subjectDados abertospt_BR
dc.subjectErro preditopt_BR
dc.subject.otherRecommender systemspt_BR
dc.subject.otherMatrix factorizationpt_BR
dc.subject.otherLinked open datapt_BR
dc.subject.otherPrediction errorpt_BR
dc.titleExploiting linked data in Dbpedia to reduce prediction error in matrix factorization recommenderspt_BR
dc.title.alternativeExplorando Linked Data na DBpedia para reduzir Erro Predito em Recomendadores baseados em Fatorização de Matrizpt_BR
dc.title.alternativeExploração de dados vinculados na Dbpedia para reduzir erro de previsão em recomendadores de factorização matricialpt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Ciência da Computação (PGCOMP) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO::SISTEMAS DE INFORMACAOpt_BR
dc.contributor.advisor1Durão, Frederico Araujo-
dc.contributor.advisor1ID0000-0002-7766-6666pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6271096128174325pt_BR
dc.contributor.referee1Durão, Frederico Araujo-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-7766-6666pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/6271096128174325pt_BR
dc.contributor.referee2Pereira, Adriano César Machado-
dc.contributor.referee2IDhttps://orcid.org/0000-0003-2389-0512pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/6813736989856243pt_BR
dc.contributor.referee3Coimbra, Danilo Barbosa-
dc.contributor.referee3ID0000-0003-2218-1351pt_BR
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9590398895954821pt_BR
dc.creator.IDhttps://orcid.org/0000-0002-2438-8439pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/2228036140992682pt_BR
dc.description.resumoRecommender Systems provide suggestions for items that are most likely of interest to users. Providing personalized recommendations is a challenge that can be addressed by filtering algorithms among which Collaborative Filtering (CF) has demonstrated much progress in the last few years. By using Matrix Factorization (MF) techniques, CF methods reduce prediction error by using optimization algorithms. However, they usually face problems such as data sparsity and prediction error. Studies point to the use of data available in Semantic Web as a path to improve recommender systems and address the challenges related to CF techniques. Motivated by these premises, the present work, conducted by me at RecSys Research Group at UFBA, developed a data pipeline along with an algorithm that processes the Ratings Matrix combining semantic similarities of Linked Open Data (LOD) and estimates missing ratings. The experiments took subsets of 1000 samples from three di↵erent datasets (Movielens, LastFM and LibraryThing), calculated two semantic similarity metrics, Linked Data Similarity Distance (LDSD) and Resource Similarity (RESIM), and applied three MF-based algorithms (SVD, SVD++ and NMF). Results suggest the proposed pipeline is able to reduce Root Mean Square Error (RMSE) of all subsets with statistical confidence supported by parametric test one-way ANOVA followed by Tukey’s multiple comparison test.pt_BR
dc.publisher.departmentInstituto de Computação - ICpt_BR
Aparece nas coleções:Dissertação (PGCOMP)

Arquivos associados a este item:
Não existem arquivos associados a este item.
Mostrar registro simples do item Visualizar estatísticas


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.