Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/35746
Registro completo de metadados
Campo DCValorIdioma
dc.creatorMartins, Luís Oscar Silva-
dc.date.accessioned2022-07-26T13:50:02Z-
dc.date.available2022-07-26T13:50:02Z-
dc.date.issued2022-05-31-
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/35746-
dc.description.abstractThe growing demand for electricity in Brazil could have significant economic implications for the market. Therefore, it is important to investigate alternative sources that attend to this demand, in addition to understanding the main factors that influence this process. Therefore, this research was developed under two problematizing parts: the first one is related to the analysis of residential and industrial electricity demand, and the second one, is to the potential for generating electricity from vegetable biomass and the analysis of electricity consumption from of sugarcane bagasse. It is exploratory research of a predominantly quantitative nature. In the biomass mapping, Geographic Information System (GIS) techniques were used, whose results were displayed in thematic maps. To evaluate residential and industrial consumption, balanced panels were used. The models were estimated by the Generalized Moments Method (GMM), in a version known as System – GMM (SY – GMM). In the industrial case, in addition to the estimated price and income parameters, the differences between the consumption of more and less industrialized States were estimated, as well as part of the effects of the COVID 19 pandemic on electricity consumption. Regarding the electricity consumption from sugarcane bagasse, the econometric strategy was also based on a balanced panel composed of the main sugar bagasse electricity-producing States. The model was also estimated by GMM and analyzed the demand for sugar-alcohol electricity for Brazil and for States considered richer and poorer. The biomass mapping revealed that Brazil still has a significant electricity generation potential, capable of making the electric matrix even more renewable. The price and income parameters of residential demand, to the national scenario, were consistent with economic theory and with the literature, however, for regional scenarios, the current consumption policy control harms the more vulnerable regions. With regard to the industrial sector, the main result is related to a possible systematic effect of the levels of development of each state on price elasticity. More developed States tend to be more price-sensitive than less developed regions. In addition, due to the particularities of each market, less developed States had smaller reductions in industrial electrical consumption than more developed States, including during the period of incidence of COVID-19. The modeling of sugarcane bioelectricity demand evidenced the complementarity effect of this source with hydroelectricity and a possible systematic effect between income levels on the price elasticity of demand for electricity from sugarcane. The results of this research can be useful for public managers who work in the energy planning environment, where supply and demand must be analyzed together, seeking to avoid mismatches between consumption and generation. In addition, electricity generating companies, and also eventual private investors in the electricity sector could use the results achieved here as a source of analysis for programming the production and purchase of electricity and also for economic and financial feasibility studies for future projects in electricity generation.pt_BR
dc.description.sponsorshipCAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.subjectEnergia elétricapt_BR
dc.subjectModelos econométricospt_BR
dc.subjectMapeamento de biomassa vegetalpt_BR
dc.subjectBagaço de cana-de-açúcarpt_BR
dc.subjectBioeletricidade sucroenergéticapt_BR
dc.subject.otherElectricitypt_BR
dc.subject.otherEconometric Modelspt_BR
dc.subject.otherMapping of plant biomasspt_BR
dc.subject.otherSugarcane bagassept_BR
dc.subject.otherSugar-energy bioelectricitypt_BR
dc.titleO mercado de energia elétrica no Brasil: mapeamento, análise econométrica e geração por biomassa de cana-de-açúcarpt_BR
dc.title.alternativeThe electric energy market in Brazil: mapping, econometric analysis and sugarcane biomass generationpt_BR
dc.typeTesept_BR
dc.contributor.refereesTorreta, Vincenzo-
dc.publisher.programCentro Interdisciplinar de Energia e Ambiente (CIEnAm-PG) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqGrande área: Engenharias. Área: Engenharia Ambiental. Subárea: Planejamento Energético. Especialidade: Política energética regional e nacional.pt_BR
dc.contributor.advisor1Torres, Ednildo Andrade-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-0574-5306pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2483185411923070pt_BR
dc.contributor.advisor2Silva, Marcelo Santana-
dc.contributor.advisor2IDhttps://orcid.org/0000-0002-6556-9041pt_BR
dc.contributor.advisor2Latteshttp://lattes.cnpq.br/4414535367915782pt_BR
dc.contributor.referee1Torres, Ednildo Andrade-
dc.contributor.referee1Latteshttps://orcid.org/0000-0002-0574-5306pt_BR
dc.contributor.referee2Silva, Marcelo Santana-
dc.contributor.referee2IDhttps://orcid.org/ 0000-0002-6556-9041pt_BR
dc.contributor.referee2Latteshttp://lattes.cnpq.br/4414535367915782pt_BR
dc.contributor.referee3Pontes, Karen Valverde-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/5444380855577045pt_BR
dc.contributor.referee4Pereira Júnior, Amaro Olímpio-
dc.contributor.referee4IDhttps://orcid.org/ 0000-0001-9766-1080pt_BR
dc.contributor.referee4Latteshttp://lattes.cnpq.br/2040156874891038pt_BR
dc.contributor.referee5Santos Sánchez, Antonio-
dc.contributor.referee5Latteshttp://lattes.cnpq.br/3597713836269795pt_BR
dc.creator.IDhttps://orcid.org/0000-0002-0040-7762pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/3412627894520906pt_BR
dc.description.resumoA crescente demanda por eletricidade no Brasil pode ter implicações econômicas significativas para o mercado. Por isso é importante investigar fontes alternativas que possam vir a atender esta demanda, além de compreender os principais fatores que influenciam esse processo. Sendo assim, esta pesquisa se desenvolveu sob dois eixos problematizadores: o primeiro está relacionado à análise da demanda residencial e industrial de eletricidade e o segundo, ao potencial de geração de energia elétrica a partir de biomassa vegetal e a análise do consumo de eletricidade a partir do bagaço de cana-de-açúcar. Trata-se de uma pesquisa exploratória de caráter predominantemente quantitativo. No mapeamento das biomassas, foram utilizadas técnicas de Sistema de Informações Geográficas (SIG), cujos resultados foram expostos em mapas temáticos. Para avaliação do consumo residencial e industrial foram utilizados painéis balanceados. Os modelos foram estimados pelo Método de Momentos Generalizados (GMM), em uma versão conhecida como System – GMM (SY – GMM). Na demanda industrial, além das estimativas dos parâmetros de preço e renda, foram estimadas as diferenças entre o consumo de Estados mais e menos industrializados, bem como, parte dos efeitos da pandemia do COVID 19 no consumo de eletricidade. Em relação ao consumo de eletricidade a partir do bagaço da cana-de-açúcar, a estratégia econométrica também foi baseada em um painel balanceado composto pelos principais Estados produtores de bioeletricidade sucroenergética. O modelo foi estimado por GMM e analisou a demanda por eletricidade sucroalcooleira para o Brasil e para os Estados considerados mais ricos e mais pobres. O mapeamento das biomassas revelou que o Brasil ainda possui potencial de geração de eletricidade expressivo, capaz de tornar a matriz elétrica ainda mais renovável. Para a estimativa dos parâmetros de preço e renda da demanda residencial, os valores encontrados para o cenário nacional foram condizentes com a teoria econômica e com a literatura, no entanto, para os cenários regionais, a atual política de controle do consumo prejudica as regiões mais vulneráveis. No setor industrial, o principal resultado está relacionado a um possível efeito sistemático dos níveis de desenvolvimento de cada Estado na elasticidade-preço. Estados mais desenvolvidos tendem a ser mais sensíveis ao preço que regiões menos desenvolvidas. Além disso, devido as particularidades de cada mercado, Estados menos desenvolvidos tiveram menores reduções no consumo elétrico industrial que Estados mais desenvolvidos, inclusive no período de incidência da COVID-19. A modelagem utilizada na demanda da bioeletricidade sucroalcooleira evidenciou o efeito de complementariedade desta fonte com a hidreletricidade e um possível efeito sistemático entre os níveis de renda na elasticidade-preço da demanda por eletricidade proveniente da cana. Os resultados desta pesquisa podem ser úteis para gestores públicos que atuam no ambiente do planejamento energético, onde oferta e demanda variam conjuntamente, buscando evitar desencaixes entre consumo e geração. Além disso, empresas geradoras de eletricidade e investidores privados do setor elétrico, poderiam utilizar os resultados alcançados, como uma fonte de análise para programação da produção e compra de eletricidade, bem como para estudos de viabilidade econômica e financeira para futuros projetos na área de geração elétrica.pt_BR
dc.publisher.departmentEscola Politécnicapt_BR
dc.relation.referencesABAS, N. et al. Cooperative control of regional transboundary air pollutants. Environmental Systems Research, v. 8, n. 1, p. 10, 30 dez. 2019. ABAS, N.; KALAIR, A.; KHAN, N. Review of fossil fuels and future energy technologies. Futures, v. 69, p. 31–49, maio 2015. ABT, R. C.; ABT, K. L. Potential Impact of Bioenergy Demand on the Sustainability of the Southern Forest Resource. Journal of Sustainable Forestry, v. 32, n. 1–2, p. 175–194, jan. 2013. ADOM, P. K. The long-run price sensitivity dynamics of industrial and residential electricity demand: The impact of deregulating electricity prices. Energy Economics, v. 62, p. 43–60, 1 fev. 2017. ADOM, P. K.; BEKOE, W.; AKOENA, S. K. K. Modelling aggregate domestic electricity demand in Ghana: An autoregressive distributed lag bounds cointegration approach. Energy Policy, v. 42, p. 530–537, mar. 2012. AEEME-SP. . São Paulo: [s.n.]. Disponível em: <http://dadosenergeticos.energia.sp.gov.br/portalcev2/intranet/BiblioVirtual/diversos/anuario_energetico_municipio.pdf>. Acesso em: 23 set. 2019. AFAZELI, H. et al. Investigation Yield and Energy Balances for Biogas Production from Cow and Poultry Manure. [s.l: s.n.]. Disponível em: <https://pdfs.semanticscholar.org/2604/6d900a8e0db031dc3cd3794b45d9481eb7b8.pdf>. Acesso em: 1 ago. 2019. AFFUL-DADZIE, A. et al. Power generation capacity planning under budget constraint in developing countries. Applied Energy, v. 188, p. 71–82, fev. 2017. AGYEMANG, M.; ZHU, Q.; TIAN, Y. Analysis of opportunities for greenhouse emission reduction in the global supply chains of cashew industry in West Africa. Journal of Cleaner Production, v. 115, p. 149–161, 1 mar. 2016. AHMAD, S.; BIN MAT TAHAR, R. Using system dynamics to evaluate renewable electricity development in Malaysia. Kybernetes, v. 43, n. 1, p. 24–39, 28 jan. 2014. ALARENAN, S.; GASIM, A. A.; HUNT, L. C. Modelling industrial energy demand in Saudi Arabia. Energy Economics, v. 85, p. 104554, 2020. ALBERINI, A.; FILIPPINI, M. Response of residential electricity demand to price: The effect of measurement error. Energy Economics, v. 33, n. 5, p. 889–895, set. 2011. ALBERINI, A.; GANS, W.; VELEZ-LOPEZ, D. Residential consumption of gas and electricity in the U.S.: The role of prices and income. Energy Economics, v. 33, n. 5, p. 870–881, set. 2011a. ALCOCER, J. C. ALVARADO et al. Mass and Energy Balance of a Cashew Nut Shell Gasification Pilot Unit Utilized in Power Generation. IEEE Latin America Transactions, v. 13, n. 10, p. 3333–3337, 1 out. 2015. ALEXANDER, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, v. 111, n. D5, p. D05109, 2006. ALVAREZ, J.; ARELLANO, M. The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators. Econometrica, v. 71, n. 4, p. 1121–1159, 2003. AMID, S. et al. Energy use pattern and optimization of energy required for broiler production using data envelopment analysis. Information Processing in Agriculture, v. 3, n. 2, p. 83–91, jun. 2016. ANA. Levantamento da cana-de-açúcar irrigada e fertirrigada no Brasil. Brasília: [s.n.]. Disponível em: <https://www.gov.br/ana/pt-br>. ANCA-COUCE, A. et al. Single large wood log conversion in a stove: Experiments and modelling. Renewable Energy, v. 143, p. 890–897, dez. 2019. ANDRADE, T. A.; LOBÃO, W. J. A. Elasticidade renda e preço da demanda residencial de energia elétrica no Brasil. 1997. ANEEL. RESOLUÇÃO NORMATIVA No 109/2004. Brasília, DF, Brasil: ANEEL, 2004. Disponível em: <http://www2.aneel.gov.br/cedoc/bren2004109.pdf>. Acesso em: 19 ago. 2021. ANEEL. Atlas de energia elétrica do Brasil. Bras: [s.n.]. Disponível em: <www.aneel.gov.br>. Acesso em: 30 jun. 2020. ANEEL. Perdas de Energia Elétrica. Brasília: [s.n.]. Disponível em: <http://www2.aneel.gov.br/area.cfm?idArea=801&idPerfil=4>. ANEEL. Microsoft Power BI. Disponível em: <https://app.powerbi.com/view?r=eyJrIjoiNjc4OGYyYjQtYWM2ZC00YjllLWJlYmEtYzdkNTQ1MTc1NjM2IiwidCI6IjQwZDZmOWI4LWVjYTctNDZhMi05MmQ0LWVhNGU5YzAxNzBlMSIsImMiOjR9>. Acesso em: 30 jun. 2020a. ANEEL. Relatórios de Consumo e Receita de Distribuição - ANEEL. Disponível em: <https://www.aneel.gov.br/relatorios-de-consumo-e-receita>. Acesso em: 2 jun. 2020b. ANEEL. Agência Nacional de Energia Elétrica - ANEEL. Disponível em: <https://www2.aneel.gov.br/aplicacoes/capacidadebrasil/Combustivel.cfm>. Acesso em: 14 maio. 2020c. ANEEL. Relatórios de Consumo e Receita de Distribuição - ANEEL. Disponível em: <https://www.aneel.gov.br/relatorios-de-consumo-e-receita>. Acesso em: 22 dez. 2021a. ANEEL. Geração - ANEEL. Disponível em: <https://www.aneel.gov.br/dados/geracao>. Acesso em: 1 dez. 2021b. ANEEL. Matriz Elétrica Brasileira - Capacidade instalada. Brasília, DF: [s.n.]. ANG, J. B. CO2 emissions, energy consumption, and output in France. Energy Policy, v. 35, n. 10, p. 4772–4778, out. 2007. ANP. Anuário Estatístico 2021 — Português (Brasil). Rio de Janeiro: [s.n.]. Disponível em: <https://www.gov.br/anp/pt-br/centrais-de-conteudo/publicacoes/anuario-estatistico/anuario-estatistico-2021>. Acesso em: 5 ago. 2021a. ANP. Série histórica do levantamento de preços do Etanol. Disponível em: <https://www.gov.br/anp/pt-br/assuntos/precos-e-defesa-da-concorrencia/precos/precos-revenda-e-de-distribuicao-combustiveis/serie-historica-do-levantamento-de-precos>. Acesso em: 24 dez. 2021b. APERGIS, N.; ELEFTHERIOU, S.; VOLIOTIS, D. Asymmetric spillover effects between agricultural commodity prices and biofuel energy prices. International Journal of Energy Economics and Policy, v. 7, n. 1, p. 166–177, 2017. APERGIS, N.; PAYNE, J. E. Renewable energy consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy, v. 38, n. 1, p. 656–660, jan. 2010. APERGIS, N.; PAYNE, J. E. Renewable and non-renewable energy consumption-growth nexus: Evidence from a panel error correction model. Energy Economics, 2012. ARABATZIS, G. et al. A demand scenario based fuelwood supply chain: A conceptual model. Renewable and Sustainable Energy Reviews, v. 25, p. 687–697, set. 2013. ARAUJO, E. et al. An investigation into shapes and determinants of deindustrialization processes: Theory and evidence for developed and developing countries (1970–2017). EconomiA, 9 mar. 2021. ARAÚJO, R. B. Etanol versus bioeletricidade: aplicação dos conceitos de fronteira eficiente de markowitz para o aproveitamento do bagaço residual do setor sucroenergético. [s.l.] Universidade Federal do Rio de Janeiro, 2017. ARELLANO, M.; BOND, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. The Review of Economic Studies, v. 58, n. 2, p. 277, abr. 1991. ARISOY, I.; OZTURK, I. Estimating industrial and residential electricity demand in Turkey: A time varying parameter approach. Energy, v. 66, p. 959–964, mar. 2014. ASUMADU-SARKODIE, S.; OWUSU, P. A. Carbon dioxide emissions, GDP per capita, industrialization and population: An evidence from Rwanda. Environmental Engineering Research, v. 22, n. 1, p. 116–124, 7 nov. 2016. ASUMADU-SARKODIE, S.; OWUSU, P. A. The causal nexus between carbon dioxide emissions and agricultural ecosystem—an econometric approach. Environmental Science and Pollution Research, v. 24, n. 2, p. 1608–1618, 27 jan. 2017a. ASUMADU-SARKODIE, S.; OWUSU, P. A. Recent evidence of the relationship between carbon dioxide emissions, energy use, GDP, and population in Ghana: A linear regression approach. Energy Sources, Part B: Economics, Planning, and Policy, v. 12, n. 6, p. 495–503, 3 jun. 2017b. ATALLA, T.; BIGERNA, S.; BOLLINO, C. A. Energy demand elasticities and weather worldwide. Economia Politica, v. 35, n. 1, p. 207–237, 7 abr. 2018. AZADEH, A. et al. A novel benchmark methodology for estimating industrial electricity demand considering unsteady socio-economic conditions. International Journal of Business Performance Management, v. 18, n. 2, p. 196–215, 2017. AZEVEDO, B. S. Análise das elasticidades preço e renda da demanda por combustíveis no Brasil e desagregadas por regiões geográficas. [s.l.] IBMEC, 2007. BAHMANYAR, A.; ESTEBSARI, A.; ERNST, D. The impact of different COVID-19 containment measures on electricity consumption in Europe. Energy Research & Social Science, v. 68, p. 101683, 1 out. 2020. BAJRACHARYA, D. Fuel, food or forest? Dilemmas in a Nepali village. World Development, v. 11, n. 12, p. 1057–1074, dez. 1983. BALCILAR, M. et al. The renewable energy consumption and growth in the G-7 countries: Evidence from historical decomposition method. Renewable Energy, v. 126, p. 594–604, out. 2018. BALTAGI, B. H.; GRIFFIN, J. M. Short and Long Run Effects in Pooled Models. International Economic Review, v. 25, n. 3, p. 631, out. 1984. BARRIENTOS, J. et al. On the estimation of the price elasticity of electricity demand in the manufacturing industry of Colombia. Lecturas de Economia, n. 88, p. 155–182, 2018. BCB. Banco Central do Brasil. Disponível em: <https://www.bcb.gov.br/>. Acesso em: 18 jun. 2021. BEHESHTI TABAR, I.; KEYHANI, A.; RAFIEE, S. Energy balance in Iran’s agronomy (1990–2006). Renewable and Sustainable Energy Reviews, v. 14, n. 2, p. 849–855, fev. 2010. BERNSTEIN, M. A.; GRIFFIN, J. Regional Differences in the Price-Elasticity of Demand for Energy. California: [s.n.]. Disponível em: <https://www.nrel.gov/docs/fy06osti/39512.pdf>. BHAT, J. A. Renewable and non-renewable energy consumption—impact on economic growth and CO2 emissions in five emerging market economies. Environmental Science and Pollution Research, v. 25, n. 35, p. 35515–35530, 22 dez. 2018. BILDIRICI, M. CO 2 emissions and militarization in G7 countries: panel cointegration and trivariate causality approaches. Environment and Development Economics, v. 22, n. 6, p. 771–791, 31 dez. 2017a. BILDIRICI, M. E. Relationship between biomass energy and economic growth in transition countries: panel ARDL approach. GCB Bioenergy, v. 6, n. 6, p. 717–726, nov. 2014. BILDIRICI, M. E. CO<SUB align="right">2 emission, oil consumption and production, economic growth in MENAP countries: ARDL and ANOVA methods. International Journal of Oil, Gas and Coal Technology, v. 14, n. 3, p. 264, 2017b. BILGILI, F. et al. Can biomass energy be an efficient policy tool for sustainable development? Renewable and Sustainable Energy Reviews, v. 71, p. 830–845, maio 2017. BILGILI, F.; OZTURK, I. Biomass energy and economic growth nexus in G7 countries: Evidence from dynamic panel data. Renewable and Sustainable Energy Reviews, v. 49, p. 132–138, set. 2015. BINDER, M.; HSIAO, C.; PESARAN, M. H. Estimation and inference in short panel vector autoregressions with unit roots and cointegration. Econometric Theory, v. 21, n. 4, p. 795–837, ago. 2005. BJØRNER, T. B.; TOGEBY, M.; JENSEN, H. H. Industrial companies’ demand for electricity: Evidence from a micropanel. Energy Economics, v. 23, n. 5, p. 595–617, 2001. BLÁZQUEZ GOMEZ, L. M.; FILIPPINI, M.; HEIMSCH, F. Regional impact of changes in disposable income on Spanish electricity demand: A spatial econometric analysis. Energy Economics, v. 40, dez. 2013. BLÁZQUEZ, L.; BOOGEN, N.; FILIPPINI, M. Residential electricity demand in Spain: New empirical evidence using aggregate data. Energy Economics, v. 36, p. 648–657, mar. 2013. BLOCH, H.; RAFIQ, S.; SALIM, R. Economic growth with coal, oil and renewable energy consumption in China: Prospects for fuel substitution. Economic Modelling, v. 44, p. 104–115, jan. 2015. BLOIS, H. D. et al. Silvicultura: Cenários Prospectivos para Geração de Energia Elétrica. Revista de Gestão Ambiental e Sustentabilidade, v. 6, n. 1, p. 140–159, 1 abr. 2017. BLUNDELL, R.; BOND, S. Initial conditions and moment restrictions in dynamic panel data modelsJournal of Econometrics. [s.l: s.n.]. BORDONAL, R. DE O. et al. Sustainability of sugarcane production in Brazil. A review. Agronomy for Sustainable Development, v. 38, n. 2, p. 13, 27 abr. 2018. BORGES, A. C. P. et al. Renewable energy: a contextualization of the biomass as power supply. REDE: Revista Eletrônica do PRODEMA, v. 10, n. 02, p. 23–36, 2016. BRAND, M. A. Potencial De Uso Da Biomassa Florestal Da Caatinga, Sob Manejo Sustentável, Para Geração De Energia Tt - Potential Use of Caatinga Forest Biomass Under Sustainable Management for Energy Generation. Ciência Florestal, v. 27, n. 1, p. 117–127, 2017. BRASIL. Lei Federal No 10.848, de 15 de março de 2004. Dispõe sobre a comercialização de energia elétrica, altera as Leis nºs 5.655, de 20 de maio de 1971, 8.631, de 4 de março de 1993, 9.074, de 7 de julho de 1995, 9.427, de 26 de dezembro de 1996, 9.478, de 6 de agosto de 1997, 9.648, de 27 de maio de 1998, 9.991, de 24 de julho de 2000, 10.438, de 26 de abril de 2002, e dá outras providências. Disponível em: < http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/lei/l10.848.htm#:~:text=%22%20Art.,27%20de%20maio%20de%201998.> Acesso em: dez. 2021. BRASIL. Senado Federal. PLS 232/2016. . 2016. BRASIL. 2020 Statistical Yearbook of electricity: 2019 baseline yearEmpresa de Pesquisa Energética. Rio de Janeiro: [s.n.]. Disponível em: <https://www.epe.gov.br/pt%0Ahttp://www.epe.gov.br>. BRASIL. Covid-19 Casos e Óbitos. Disponível em: <https://qsprod.saude.gov.br/extensions/covid-19_html/covid-19_html.html>. Acesso em: 28 set. 2021. CALVIN, K. et al. Implications of uncertain future fossil energy resources on bioenergy use and terrestrial carbon emissions. Climatic Change, v. 136, n. 1, p. 57–68, 15 maio 2016. CAMERON, A. C.; TRIVEDI, P. K. Microeconometrics Using Stata. Lakeway: Stata Press, 2009. CAMPBELL, A. Price and income elasticities of electricity demand: Evidence from Jamaica. Energy Economics, v. 69, p. 19–32, 2018. CAMPBELL, R. M.; VENN, T. J.; ANDERSON, N. M. Heterogeneity in Preferences for Woody Biomass Energy in the US Mountain West. Ecological Economics, v. 145, n. January 2017, p. 27–37, 2018. CARDOZO, S. A. Comércio internacional, estrutura produtiva industrial, emprego e renda nas macrorregiões brasileiras (2004-2014). Revista Brasileira de Estudos Urbanos e Regionais, v. 20, n. 2, p. 401–420, 27 mar. 2018. CARMO, V. B. Avaliação da eficiência energética renovável de biomassas alternativas para geração de eletricidade. [s.l.] Universidade Estadual de Campinas, 2013. CASTELLANELLI, M. et al. Desempenho de motor ciclo Diesel em bancada dinamométrica utilizando misturas diesel/biodiesel. Engenharia Agrícola, v. 28, n. 1, p. 145–153, mar. 2008. CASTRO, A. F. N. M. et al. Quantification of forestry and carbonization waste. Renewable Energy, v. 103, p. 432–438, 1 abr. 2017. CAVES, D. W.; CHRISTENSEN, L. R. Econometric analysis of residential time-of-use electricity pricing experiments. Journal of Econometrics, v. 14, n. 3, p. 287–306, 1980. CAVES, D. W.; CHRISTENSEN, L. R.; HERRIGES, J. A. Consistency of residential customer response in time-of-use electricity pricing experiments. Journal of Econometrics, v. 26, n. 1–2, p. 179–203, 1984. CCEE. CCEE - O que fazemos - CCEE - Procedimentos de Comercialização - PdCs - Energia Elétrica - PdCs - Energia Elétrica. Disponível em: <https://www.ccee.org.br/portal/faces/oquefazemos_menu_lateral/procedimentos?_adf.ctrl-state=1ctnrwcqh4_60&_afrLoop=56701446809053#!%40%40%3F_afrLoop%3D56701446809053%26_adf.ctrl-state%3D1ctnrwcqh4_64>. Acesso em: 19 ago. 2021. CEBULA, R. J. US residential electricity consumption: The effect of states’ pursuit of energy efficiency policies. Applied Economics Letters, v. 19, n. 15, p. 1499–1503, out. 2012. CEISE BR. Estado de São Paulo importa mais de 60% da energia que consome. Disponível em: <http://www.ceisebr.com/conteudo/estado-de-sao-paulo-importa-mais-de-60-da-energia-que-consome.html>. Acesso em: 12 nov. 2019. CHANG, B.; KANG, S. J.; JUNG, T. Y. Price and output elasticities of energy demand for industrial sectors in OECD countries. Sustainability (Switzerland), v. 11, n. 6, p. 1786, 2019. CHEN, S. et al. Tracking the Economic Impact of COVID-19 and Mitigation Policies in Europe and the United States. IMF Working Papers, v. 20, n. 125, 2020. CHOWDHURY, M. S. R. et al. Reduction of GHG emissions by utilizing biomass co-firing in a swirl-stabilized furnace. Renewable Energy, v. 143, p. 1201–1209, dez. 2019. CHURCH, J.; WARE, R. Industrial Organization: A Strategic Approach. [s.l.] McGraw-Hill, 2000. CIALANI, C.; MORTAZAVI, R. Household and industrial electricity demand in Europe. Energy Policy, v. 122, p. 592–600, 2018. CNI. Indicadores de competitividade da indústria. Indústria barsileira perde participação na economia mundial. São Paulo [2019]. Disponível em:< http://arquivos.portaldaindustria.com.br/app/cni_estatistica_2/2016/11/07/205/IndicadoresDeCompetitividadeDaIndustriaBrasileira_2019.pdf>. Acesso: 04 mai. 2022. CNI. Nota Econômica. Indústria brasileira perde participação há uma década. São Paulo [2015]. Disponível em: < http://arquivos.portaldaindustria.com.br/app/conteudo_24/2015/02/20/526/Notaeconomica01-Competitividade.pdf>. Acesso em: 04 mai. 2022. COELHO, S. T.; MONTEIRO, M. B.; KARNIOL, M. DA R. Atlas de Bioenergia do Brasil. São Paulo: [s.n.]. COLOMBO, E.; MASERA, D.; BOLOGNA, S. Renewable Energies to Promote Local Development. In: Renewable Energy for Unleashing Sustainable Development. Cham: Springer International Publishing, 2013. p. 3–25. CONRAD, J. L. et al. Wood-to-energy expansion, forest ownership changes, and mill closure: Consequences for U.S. South’s wood supply chain. Forest Policy and Economics, v. 12, n. 6, p. 399–406, jul. 2010. COOKE, P.; KÖHLIN, G.; HYDE, W. F. Fuelwood, forests and community management – evidence from household studies. Environment and Development Economics, v. 13, n. 1, p. 103–135, fev. 2008. CORTEZ, L. A. B.; LORA, E. E. S.; GÓMEZ, E. O. Biomassa para Energia. 1. ed. Campinas: Editora da UNICAMP, 2008. CSEREKLYEI, Z. Price and income elasticities of residential and industrial electricity demand in the European Union. Energy Policy, v. 137, 2020. DA SILVA, M. R. V. et al. ENERGIA EÓLICA, SOLAR E DE BIOMASSA: USO, PERSPECTIVA E DESAFIOS. Biodiversidade, v. 19, n. 4, p. 2020–137, 17 out. 2020. DANTAS, F. D. C.; COSTA, E. M.; DA SILVA, J. L. M. Elasticidade Preço E Renda Da Demanda Por Energia Elétrica Nas Regiões Brasileiras: Uma Abordagem Através De Painel Dinâmico. Revista de Economia, v. 43, n. 3, 2016. DANTAS, F. DA COSTA et al. Elasticidade preço e renda da demanda por energia elétrica nos estados do nordeste brasileiro: uma abordagem através de painel dinâmico. Revista Observatorio de la Economía Latinoamericana, v. 232, n. 6, p. 1–24, 2017. DARMAWAN, A. et al. Integrated system of rice production and electricity generation. Applied Energy, v. 220, p. 672–680, 15 jun. 2018. DARMSTADTER, J. et al. Energy in the world economy; a statistical review of trends in output, trade, and consumption since 1925,. [s.l.] Published for Resources for the Future by the Johns Hopkins Press, 1971. DE SOUZA, P. K. et al. Evaluation of Second-Generation Ethanol Production from Mixtures of Banana Pseudostem, Peel and Rejected Fruit Using Aspen Hysys Simulation. Industrial Biotechnology, v. 15, n. 4, p. 268–278, ago. 2019. DERGIADES, T.; TSOULFIDIS, L. Estimating residential demand for electricity in the United States, 1965-2006. Energy Economics, v. 30, n. 5, p. 2722–2730, set. 2008. DESSBESELL, L. et al. Economic and Environmental Analysis of Pellets’ Production in Rio Pardo Watershed, Brazil. Floresta e Ambiente, v. 26, n. 4, 2019. DIAS, M. O. S. et al. Biorefineries for the production of first and second generation ethanol and electricity from sugarcane. Applied Energy, v. 109, p. 72–78, 1 set. 2013. DONG, K.; SUN, R.; DONG, X. CO2 emissions, natural gas and renewables, economic growth: Assessing the evidence from China. Science of the Total Environment, v. 640–641, p. 293–302, 2018. DUTTA, B. Y. A. et al. Impact of COVID-19 on Global Energy Markets. p. 26–29, 2020. EGGLESTON, G.; LIMA, I. Sustainability Issues and Opportunities in the Sugar and Sugar-Bioproduct Industries. Sustainability, v. 7, n. 9, p. 12209–12235, 3 set. 2015. EGNELL, G. A review of Nordic trials studying effects of biomass harvest intensity on subsequent forest production. Forest Ecology and Management, v. 383, p. 27–36, 1 jan. 2017. EMBRAPA. Nova cultivar de capim-elefante apresenta produtividade 30% maior. Disponível em: <https://www.embrapa.br/busca-de-noticias/-/noticia/17002039/nova-cultivar-de-capim-elefante-apresenta-produtividade-30-maior>. Acesso em: 11 nov. 2019. EPE. Mapa de infraestrutura de gasodutos de transporte. Disponível em: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/mapa-da-infraestrutura-de-gasodutos-de-transporte. Acesso em: 03 mai. 2022. EPE. Balanço Energético Nacional, 2020 - Ano base 2019. Rio de Janeiro: [s.n.]. Disponível em: <www.epe.gov.br>. Acesso em: 25 nov. 2020a. EPE. Estudos do Plano Decenal de Expansão de Energia 2031. Rio de Janeiro: [s.n.]. Disponível em: <https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-490/topico-522/Caderno de Demanda de Eletricidade - PDE 2030 (1).pdf>. EPE. Resenha Mensal do Mercado de Energia Elétrica TAXAS MENSAIS DO CONSUMO. Rio de Janeiro: [s.n.]. Disponível em: <https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-153/topico-574/Resenha Janeiro 21 - Claro Final.pdf>. Acesso em: 9 ago. 2021c. EPE. Balanço Energético Nacional - BEN 2021. Empresa de Pesquisa Energética, v. 1, n. 1, p. 268, 2021a. EPE. Anuário Estatístico de Energia Elétrica 2021 - Ano Base: 2020. Rio de Janeiro: [s.n.]. Disponível em: <https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/anuario-estatistico-de-energia-eletrica>. FARRELL, A. E.; GOPAL, A. R. Bioenergy Research Needs for Heat, Electricity, and Liquid Fuels. MRS Bulletin, v. 33, n. 4, p. 373–380, abr. 2008. FERNANDES, F. M. et al. Agricultura familiar, biodiesel e competitividade: O caso do núcleo de produção de oleaginosas de Serra do Ramalho (BA). Organizações Rurais & Agroindustriais, v. 23, n. 1, p. 1752–1769, 2022. FERRAZ, B. P. et al. Residential Demand Response Based on Weighted Load Shifting and Reduction Target. Journal of Control, Automation and Electrical Systems, v. 31, n. 2, p. 422–435, 1 abr. 2020. FERREIRA, J. C. et al. Estimativa da oferta de biomassa florestal em povoamentos de Pinus taeda L. após intervenções culturais. Ciência Florestal, v. 29, n. 3, p. 1459, 30 set. 2019. FERREIRA, T. C. Uso das cinzas de bagaço de cana-de-açúcar e biossólido no manejo nutricional do feijoeiro (Phaseolus vulgaris L.). [s.l.] Universidade de São Paulo, 2021. FIGUEIREDO, R. A. Caracterização dos Produtos da Pirólise da Casca de Castanha de Caju: Influência da Taxa de Aquecimento e da Temperatura. [s.l.] Universidade Estadual de Campinas, 2011. FIGUEIRÓ, C. G. et al. Energy valorization of woody biomass by torrefaction treatment: A Brazilian experimental study. Maderas. Ciencia y tecnología, v. 21, n. ahead, p. 0–0, 2019. FILIPPINI, M. Swiss residential demand for electricity by time-of-use: an application of the almost ideal demand system. Energy Journal, v. 16, n. 1, p. 27–39, 1995. FILIPPINI, M. Swiss residential demand for electricity. Applied Economics Letters, v. 6, n. 8, p. 533–538, 1999. FILIPPINI, M. Short-and long-run time-of-use price elasticities in Swiss residential electricity demand. Energy Policy, v. 39, n. 10, p. 5811–5817, out. 2011. FILIPPINI, M.; PACHAURI, S. Elasticities of electricity demand in urban Indian households. Energy Policy, v. 32, n. 3, p. 429–436, 2004. FONTOURA, C. F.; BRANDÃO, L. E.; GOMES, L. L. Elephant grass biorefineries: Towards a cleaner Brazilian energy matrix? Journal of Cleaner Production, v. 96, p. 85–93, 2015. FREITAS, J. V. et al. Sugarcane biorefineries: potential opportunities towards shifting from wastes to products. Industrial Crops and Products, v. 172, p. 114057, 15 nov. 2021. FULLERTON, T. M.; MACIAS, D. R.; WALKE, A. G. Residential electricity demand in El paso. Journal of Regional Analysis and Policy, v. 46, n. 2, p. 154–167, 2016. FULLERTON, T. M.; RESENDEZ, I. M.; WALKE, A. G. Upward sloping demand for a normal good? Residential electricity in Arkansas. International Journal of Energy Economics and Policy, v. 5, n. 4, p. 1065–1072, 2015. GASPARATOS, A. et al. Renewable energy and biodiversity: Implications for transitioning to a Green Economy. Renewable and Sustainable Energy Reviews, v. 70, p. 161–184, abr. 2017. GAUTAM, T. K.; PAUDEL, K. P. Estimating sectoral demands for electricity using the pooled mean group method. Applied Energy, v. 231, p. 54–67, 1 dez. 2018. GHAEBI, H. et al. Energy, exergy and exergoeconomic analysis of a cogeneration system for power and hydrogen production purpose based on TRR method and using low grade geothermal source. Geothermics, v. 71, p. 132–145, 1 jan. 2018. GÓMEZ, A. et al. An estimation of the energy potential of agro-industrial residues in Spain. Resources, Conservation and Recycling, v. 54, n. 11, p. 972–984, 2010. GONGORA, A.; VILLAFRANCO, D. Sugarcane bagasse cogeneration in Belize: A review. Renewable and Sustainable Energy Reviews, v. 96, p. 58–63, 1 nov. 2018. GRANADOS-FITCH, M. G. et al. Mechanism to H 2 production on rhenium carbide from pyrolysis of coconut shell. International Journal of Hydrogen Energy, v. 44, n. 5, p. 2784–2796, 28 jan. 2019. GROSS, M. M. et al. Análise da Demanda de Energia Elétrica no Setor Industrial no Brasil. Economia Política do Desenvolvimento, v. 8, n. 19, p. 69–93, 2017. GUERRA, J. B. S. DE A. et al. Future scenarios and trends in energy generation in brazil: supply and demand and mitigation forecasts. Journal of Cleaner Production, v. 103, p. 197–210, 15 set. 2015. GUERRA, J. P. et al. Thermodynamic and environmental analysis of scaling up cogeneration units driven by sugarcane biomass to enhance power exports. Energies, v. 11, n. 1, 1 jan. 2018. HALICIOGLU, F. Residential electricity demand dynamics in Turkey. Energy Economics, v. 29, n. 2, p. 199–210, mar. 2007. HANNESSON, R. Energy and GDP growth. International Journal of Energy Sector Management, v. 3, n. 2, p. 157–170, 2009. HARRIS, M. N.; M´TY´S, L.; SEVESTRE, P. Dynamic Models for Short Panels. In: Advanced Studies in Theoretical and Applied Econometrics. [s.l.] Springer, 2008. v. 46p. 249–278. HARRIS, T. M. et al. Logistic growth curve modeling of US energy production and consumption. Renewable and Sustainable Energy Reviews, v. 96, p. 46–57, 2018. HIRATUKA, C.; SARTI, F. Transformações na estrutura produtiva global, desindustrialização e desenvolvimento industrial no Brasil Transformation in the global productive structure, deindustrialization and industrial development in Brazil. Revista de Economia Brasileira, v. 37, n. 146, p. 189–207, 2017. HISSA-TEIXEIRA, K.; HISSA-TEIXEIRA, K. Uma análise da estrutura espacial dos indicadores socioeconômicos do nordeste brasileiro (2000-2010). EURE (Santiago), v. 44, n. 131, p. 101–124, 1 jan. 2018. HOECHLE, D. Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence: https://doi.org/10.1177/1536867X0700700301, v. 7, n. 3, p. 281–312, 1 set. 2007. HOSIER, R. H.; DOWD, J. Household fuel choice in Zimbabwe. Resources and Energy, v. 9, n. 4, p. 347–361, dez. 1987. IBÁ. Indústria Brasileira de Árvores - Relatório 2017. [s.l: s.n.]. Disponível em: <https://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2017.pdf>. IBGE. Produção Agrícola Municipal. Disponível em: <https://sidra.ibge.gov.br/tabela/1613#resultado>. Acesso em: 10 jan. 2019. IBGE. Índice Nacional de Preços ao Consumidor Amplo - IPCA | IBGE. Disponível em: <https://www.ibge.gov.br/estatisticas/economicas/precos-e-custos/9256-indice-nacional-de-precos-ao-consumidor-amplo.html>. Acesso em: 2 jun. 2020. IBGE. PAM - Produção Agrícola Municipal. Sistema IBGE de Recuperação Automática - SIDRA. Disponível em: <https://sidra.ibge.gov.br/pesquisa/pam/tabelas>. Acesso em: 24 fev. 2022a. IBGE. IBGE - Pesquisa Industrial Mensal. Disponível em: <https://www.ibge.gov.br/estatisticas/economicas/industria/9294-pesquisa-industrial-mensal-producao-fisica-brasil.html?=&t=o-que-e>. IBGE. Divulgação trimestral | IBGE. Disponível em: <https://www.ibge.gov.br/estatisticas/sociais/populacao/9173-pesquisa-nacional-por-amostra-de-domicilios-continua-trimestral.html?t=destaques>. Acesso em: 24 dez. 2021c. IBGE. PIB cai 4,1% em 2020 e fecha o ano em R$ 7,4 trilhões. Disponível em: <https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/30165-pib-cai-4-1-em-2020-e-fecha-o-ano-em-r-7-4-trilhoes>. Acesso em: 6 ago. 2021d. IBGE. IBGE | Censo Agro 2017 | IBGE divulga rendimento domiciliar per capita 2020. Disponível em: <https://censos.ibge.gov.br/2013-agencia-de-noticias/releases/30129-ibge-divulga-o-rendimento-domiciliar-per-capita-2020.html>. Acesso em: 28 dez. 2021e. IEA. International Energy Outlook 2017, IEA Repport. 2017. IEA. Key World Energy Statistics 2020Int. Energy Agency. [s.l: s.n.]. Disponível em: <https://www.iea.org/reports/key-world-energy-statistics-2020>. INMET. :: INMET - Instituto Nacional de Meteorologia :: Disponível em: <http://www.inmet.gov.br/portal/>. Acesso em: 2 jun. 2020. IPEA. IPEA - Instituto de Pesquisa Econômica Aplicada - Ipeadata. Disponível em: <http://www.ipeadata.gov.br/Default.aspx>. Acesso em: 9 mar. 2022. IRFFI, G. et al. Previsão da demanda por energia elétrica para classes de consumo na região Nordeste, usando OLS dinâmico e mudança de regime. Economia Aplicada, v. 13, n. 1, p. 69–98, 2009. ISHAQUE, H. Revisiting income and price elasticities of electricity demand in Pakistan. Economic Research-Ekonomska Istrazivanja, v. 31, n. 1, p. 1137–1151, 2018. JANOT, M. M.; GARCIA, M. G. P.; NOVAES, W. Balance sheet effects in currency crises: Evidence from Brazil. EconomiA, v. 22, n. 1, p. 19–37, 1 abr. 2021. JEHLE, G. A.; RENY, P. J. Advanced microeconomic theory. 3. ed. Hampshire: Pearson, 2011. KAMERSCHEN, D. R.; PORTER, D. V. The demand for residential, industrial and total electricity, 1973-1998. Energy Economics, v. 26, n. 1, p. 87–100, jan. 2004. KEBEDE, E.; KAGOCHI, J.; JOLLY, C. M. Energy consumption and economic development in Sub-Sahara Africa. Energy Economics, v. 32, n. 3, p. 532–537, maio 2010. KHATIWADA, D. et al. Power generation from sugarcane biomass – A complementary option to hydroelectricity in Nepal and Brazil. Energy, v. 48, n. 1, p. 241–254, 1 dez. 2012. KHOODARUTH, A. Contribution of the sugar cane industry to reduce carbon dioxide emissions in the energy sector: the case of Mauritius. Environment, Development and Sustainability, v. 18, n. 6, p. 1719–1731, 2016. KO, F.-K. et al. Long-term CO2 emissions reduction target and scenarios of power sector in Taiwan. Energy Policy, v. 38, n. 1, p. 288–300, jan. 2010. KOENKER, R.; MACHADO, J. A. F. GMM inference when the number of moment conditions is large. Journal of Econometrics, v. 93, n. 2, p. 327–344, 1 dez. 1999. KOUTROUMANIDIS, T.; IOANNOU, K.; ARABATZIS, G. Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA–ANN model. Energy Policy, v. 37, n. 9, p. 3627–3634, set. 2009. KWOFIE, E. M.; NGADI, M. A review of rice parboiling systems, energy supply, and consumptionRenewable and Sustainable Energy ReviewsElsevier Ltd, , 2017. LABANDEIRA, X.; LABEAGA, J. M.; LÓPEZ-OTERO, X. A meta-analysis on the price elasticity of energy demand ☆. Energy Policy, v. 102, n. April 2016, p. 549–568, 2017. LAPIG. LAPIG - Atlas das Pastagens Brasileiras. Disponível em: <https://www.lapig.iesa.ufg.br/lapig/index.php/produtos/atlas-digital-das-pastagens-brasileiras>. Acesso em: 30 jun. 2020. LEAN, H. H.; SMYTH, R. Will policies to promote renewable electricity generation be effective? Evidence from panel stationarity and unit root tests for 115 countries. Renewable and Sustainable Energy Reviews, v. 22, p. 371–379, jun. 2013. LEE, C.C.; CHIU, Y.B. Electricity demand elasticities and temperature: Evidence from panel smooth transition regression with instrumental variable approach. Energy Economics, v. 33, p. 896 – 902, sep. 2011. LEMOS, S. V. et al. Agroindustrial best practices that contribute to technical efficiency in Brazilian sugar and ethanol production mills. Energy, v. 177, p. 397–411, 15 jun. 2019. LIN, B.; ATSAGLI, P. Energy consumption, inter-fuel substitution and economic growth in Nigeria. Energy, v. 120, p. 675–685, fev. 2017. LIN, B.; OMOJU, O. E.; OKONKWO, J. U. Factors influencing renewable electricity consumption in China. Renewable and Sustainable Energy Reviews, v. 55, p. 687–696, mar. 2016. LIN, B.; OUYANG, X. Energy demand in China: Comparison of characteristics between the US and China in rapid urbanization stage. 2013. LIN, B.; TIAN, P. Energy conservation in China’s light industry sector: Evidence from inter-factor and inter-fuel substitution. Journal of Cleaner Production, v. 152, p. 125–133, maio 2017. LIN, B.; XU, B. Factors affecting CO2 emissions in China’s agriculture sector: A quantile regression. Renewable and Sustainable Energy Reviews, v. 94, p. 15–27, out. 2018. LISKA, A. J. et al. Biofuels from crop residue can reduce soil carbon and increase CO2 emissions. Nature Climate Change, v. 4, n. 5, p. 398–401, 20 maio 2014. LIU, G. et al. Making Fischer−Tropsch Fuels and Electricity from Coal and Biomass: Performance and Cost Analysis. Energy & Fuels, v. 25, n. 1, p. 415–437, 20 jan. 2011. LONG, X. et al. Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach. Renewable and Sustainable Energy Reviews, v. 82, p. 3962–3971, fev. 2018. LORENZI, B. R.; DE ANDRADE, T. H. N. O ETANOL DE SEGUNDA GERAÇÃO NO BRASIL: POLÍTICAS E REDES SOCIOTÉCNICAS. Revista Brasileira de Ciências Sociais, v. 34, n. 100, 23 set. 2019. LUCINDA, C. R.; ANUATTI NETO, F. Non-linear Demand and Price: An Empirical Analysis of the Brazilian Industrial Electricity Consumption. Brazilian Review of Econometrics, v. 34, n. 2, p. 99–123, 2014. MADDALA, G. S. et al. Estimation of Short-Run and Long-Run Elasticities of Energy Demand From Panel Data Using Shrinkage Estimators. Journal of Business & Economic Statistics, v. 15, n. 1, p. 90–100, jan. 1997. MAINGUY, Y. L’économie de l’énergieDunod, , 1967. Disponível em: <https://infoscience.epfl.ch/record/2259>. Acesso em: 27 ago. 2019 MAPELLI, F.; MUNGWE, J. N. Modern Energies Services for Cooking: from Improved Cook-Stoves to Domestic and Community Biogas Based Systems. In: Renewable Energy for Unleashing Sustainable Development. Cham: Springer International Publishing, 2013. p. 43–74. MARAFON, A. C. et al. Poder Calorífico do Capim-Elefante para a Geração de Energia Térmica Empresa Brasileira de Pesquisa Agropecuária Embrapa Tabuleiros Costeiros Ministério da Agricultura, Pecuária e Abastecimento. Aracaju: [s.n.]. Disponível em: <www.cpatc.embrapa.br>. Acesso em: 30 jun. 2020. MARCELINO, M. M.; DE MELO, S. A. B.; TORRES, E. A. Caracterização da biomassa da casca de coco para obtenção de energia. Bahia Análise & Dados, v. 27, n. 1, p. 337–355, 2017. MARTÍN-MARTÍN, A. et al. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. Journal of Informetrics, v. 12, n. 4, p. 1160–1177, nov. 2018. MARTINS, L. O. S. et al. Potential of electric energy generation from vegetable biomass in different regions of Brazil: mapping and analysis. Revista Tecnologia e Sociedade, v. 15, n. 37, p. 332–359, 2019a. MARTINS, L. O. S. et al. Supply Chain Management of Biomass for Energy Generation: A Critical Analysis of Main Trends. Journal of Agricultural Science, v. 11, n. 13, p. 253, 15 ago. 2019b. MARTINS, L. O. S. et al. The use of econometric models in studies of Eletricity Generation from biomass. Brazilian Journal of Information Science, v. 14, n. 1, p. 130–172, 27 mar. 2020. MARTINS, L. O. S. et al. Price and income elasticities of residential electricity demand in Brazil and policy implications. Utilities Policy, v. 71, p. 101250, 1 ago. 2021. MASON, E. S. Energy requirements and economic growthNational Planning Association, , 1955. Disponível em: <http://agris.fao.org/agris-search/search.do?recordID=US201300602820>. Acesso em: 27 ago. 2019 MATTOS, L. B. DE. Uma estimativa da demanda industrial de energia elétrica no Brasil: 1974-2002. Organizações Rurais & Agroindustriais, v. 7, n. 2, p. 238–246, 2005. MATTOS, L. B. DE; LIMA, J. E. DE. Demanda residencial de energia elétrica em Minas Gerais: 1970-2002. Nova Economia, v. 15, n. 3, p. 31–52, 2005. MAYO, R. Mercados de Eletricidade. 1. ed. Rio de Janeiro: Synergia, 2012. ME. Minitério da Economia - Estatísticas de Comércio Exterior em Dados Abertos — Português (Brasil). Disponível em: <https://www.gov.br/produtividade-e-comercio-exterior/pt-br/assuntos/comercio-exterior/estatisticas/base-de-dados-bruta>. Acesso em: 9 jun. 2021a. ME. Ministério da Economia - Secretaria do Trabalho e Emprego. Disponível em: <https://bi.mte.gov.br/bgcaged/>. Acesso em: 3 abr. 2021b. MEHER, S. Estimating and forecasting residential electricity demand in Odisha. Journal of Public Affairs, 2019. Ministério do Trabalho e Emprego. Disponível em: <https://www.gov.br/trabalho/pt-br>. Acesso em: 20 jun. 2020. MODIANO, E. M. Elasticidade renda e precos da demanda de energia eletrica no Brasil. Rio de Janeiro: PUC/RJ, v. Texto para, p. 25, 1984. MONIR, M. U. et al. Gasification of lignocellulosic biomass to produce syngas in a 50 kW downdraft reactor. Biomass and Bioenergy, v. 119, p. 335–345, 1 dez. 2018. MORAIS, A. C. DA S. Desenvolvimento, otimização e aceitabilidade de extrato hidrossolúvel da amêndoa de castanha de caju. (Anacardium occidentale L.). [s.l.] universidade federal do Ceará, 2009. MOUSAVI-AVVAL, S. H. et al. Energy flow modeling and sensitivity analysis of inputs for canola production in Iran. Journal of Cleaner Production, v. 19, n. 13, p. 1464–1470, 1 set. 2011. MUNIM, J. M. A.; HAKIM, M. M.; ABDULLAH-AL-MAMUN, M. Analysis of energy consumption and indicators of energy use in Bangladesh. Economic Change and Restructuring, v. 43, n. 4, p. 275–302, 3 nov. 2010. NABAVI-PELESARAEI, A.; ABDI, R.; RAFIEE, S. Neural network modeling of energy use and greenhouse gas emissions of watermelon production systems. Journal of the Saudi Society of Agricultural Sciences, v. 15, n. 1, p. 38–47, jan. 2016. NAKAJIMA, T.; HAMORI, S. Change in consumer sensitivity to electricity prices in response to retail deregulation: A panel empirical analysis of the residential demand for electricity in the United States. Energy Policy, v. 38, n. 5, p. 2470–2476, maio 2010. NEJAT, P. et al. A global review of energy consumption, CO 2 emissions and policy in the residential sector (with an overview of the top ten CO 2 emitting countries). Renewable and Sustainable Energy Reviews, v. 43, p. 843–862, mar. 2015. NTANOS, S. et al. Renewable Energy and Economic Growth: Evidence from European Countries. Sustainability, v. 10, n. 8, p. 2626, 26 jul. 2018. OKAJIMA, S.; OKAJIMA, H. Estimation of Japanese price elasticities of residential electricity demand, 1990-2007. Energy Economics, v. 40, p. 433–440, nov. 2013. OLIVEIRA, R. M. M.; NUNES, M. T. A. S.; SOUSA, R. M. S. DE. Pré-Tratamento Químico E Caracterização Do Bagaço Da Cana: Uma Perspectiva Para Produção De Etanol a Partir De Resíduos Agroindustriais / Chemical Pre-Treatment and Characterization of Sugarcane Bagasse: a Perspective for Ethanol Production From Agroindus. Brazilian Journal of Development, v. 6, n. 11, p. 87865–87879, 2020. OLIVEIRA, T. L. et al. Study of biomass applied to a cogeneration system: A steelmaking industry case. Applied Thermal Engineering, v. 80, p. 269–278, 5 abr. 2015. OLIVER, A.; KHANNA, M. What Is the Cost of a Renewable Energy–Based Approach to Greenhouse Gas Mitigation? Land Economics, v. 93, n. 3, p. 437–458, 24 ago. 2017. ONS. EAR Diário por Reservatório - Conjunto de dados - DADOS ABERTOS ONS. Disponível em: <https://dados.ons.org.br/dataset/ear-diario-por-reservatorio>. Acesso em: 30 nov. 2021. OWUSU, P. A.; ASUMADU-SARKODIE, S. Is there a causal effect between agricultural production and carbon dioxide emissions in Ghana? Environmental Engineering Research, v. 22, n. 1, p. 40–54, 5 out. 2016. PACHECO, T. F. Produção de Etanol: Primeira ou Segunda Geração? Brasília, DF: [s.n.]. Disponível em: <https://ainfo.cnptia.embrapa.br/digital/bitstream/item/32985/1/CITE-04.pdf>. PAIVA, F. F. DE A.; GARRUTI, D. DOS S.; SILVA NETO, R. M. DA. Aproveitamento industrial do caju. Fortaleza: [s.n.]. Disponível em: <https://www.agencia.cnptia.embrapa.br/Repositorio/Aproveitamento_industrialCaju_000g0av435602wx5ok026zxpgjh8ac94.pdf>. PARKS, R. W.; WEITZEL, D. Measuring the consumer welfare effects of time-differentiated electricity prices. Journal of Econometrics, v. 26, n. 1–2, p. 35–64, 1984. PEDROSO, D. T. et al. Technical assessment of the Biomass Integrated Gasification/Gas Turbine Combined Cycle (BIG/GTCC) incorporation in the sugarcane industry. Renewable Energy, v. 114, p. 464–479, 2017. PEREIRA, E. Dinâmicas industriais e urbanização no nordeste do brasil. Mercator (Fortaleza), v. 14, n. 4, p. 63–81, 23 dez. 2015. PESARAN, M. H. A simple panel unit root test in the presence of cross-section dependence. Journal of Applied Econometrics, v. 22, n. 2, p. 265–312, 1 mar. 2007. PHYLLIS. Base de dados: Poder Calorífico Inferior. Phyllis. Disponível em: <https://phyllis.nl/Browse/Standard/ECN-Phyllis>. Acesso em: 30 jun. 2020. PINTO, A. S. S. et al. Techno-Economic Feasibility of Biomass Washing in 1G2G Sugarcane Biorefineries. Bioenergy Research, v. 14, n. 4, p. 1253–1264, 1 dez. 2021. PINTO JÚNIOR, H. Q. et al. Economia da Energia. 2. ed. Rio de Janeiro: Elsevier, 2016. PLEVIN, R. J. et al. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change. Environmental Science & Technology, v. 49, n. 5, p. 2656–2664, 3 mar. 2015. PNUD; IPEA. Desenvolvimento humano nas macrorregiões brasileiras. Brasília: [s.n.]. PNUMA. Waste Crime – Waste Risks: Gaps in metting the global waste Challenge. [s.l: s.n.]. Disponível em: <https://gridarendal-website-live.s3.amazonaws.com/production/documents/:s_document/27/original/RRA_WasteCrime_screen.pdf?1483646300>. Acesso em: 23 set. 2019. PORTUGAL-PEREIRA, J. et al. Agricultural and agro-industrial residues-to-energy: Techno-economic and environmental assessment in Brazil. Biomass and Bioenergy, v. 81, n. April, p. 521–533, 2015. PROPEQ. Etanol de segunda geração: o combustível do futuro? - Propeq. Disponível em: <https://propeq.com/etanol-de-segunda-geracao/>. Acesso em: 27 dez. 2021. RAJAEIFAR, M. A. et al. Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran. Energy, v. 66, p. 139–149, mar. 2014. RANGEL, M. S.; BORGES, P. B.; DOS SANTOS, I. F. S. Análise comparativa de custos e tarifas de energias renováveis no Brasil. Revista Brasileira de Energias Renováveis, v. 5, n. 3, p. 267–277, 2016. REHMAN, A. et al. An empirical analysis of rural and urban populations’ access to electricity: evidence from Pakistan. Energy, Sustainability and Society, v. 8, n. 1, p. 40, 19 dez. 2018. REISS, P. C.; WHITE, M. W. Household electricity demand, revisited. Review of Economic Studies, v. 72, n. 3, p. 853–883, jul. 2005. REN21. Renewables 2021 - Global Satatus Report. Paris: [s.n.]. Disponível em: <https://abdn.pure.elsevier.com/en/en/researchoutput/ren21(5d1212f6-d863-45f7-8979-5f68a61e380e).html>. ROMERO, C. W. DA S. et al. Assessment of agricultural biomass residues to replace fossil fuel and hydroelectric power energy: A spatial approach. Energy Science & Engineering, p. ese3.462, 9 set. 2019. ROSA, A. P. et al. Assessing the potential of renewable energy sources (biogas and sludge) in a full-scale UASB-based treatment plant. Renewable Energy, v. 124, p. 21–26, 1 ago. 2018. ROSA, L. P. A crise de energia elétrica: causas e medidas de mitigação. In: BRANCO, A. M. (Ed.). . Política Energética e Crise de Desenvolvimento: a antevisão de Catullo Branco. 1. ed. Rio de Janeiro: Paz e Terra, 2002. ROYO, J. et al. Large-scale analysis of GHG (greenhouse gas) reduction by means of biomass co-firing at country-scale: Application to the Spanish case. Energy, v. 48, n. 1, p. 255–267, 2012. SALLAM, A. A.; MALIK, O. P. Electric distribution systems. New Jersey: John Wiley and Sons Inc., 2011. SÁNCHEZ, A. S.; TORRES, E. A.; KALID, R. A. Renewable energy generation for the rural electrification of isolated communities in the Amazon Region. Renewable and Sustainable Energy Reviews, v. 49, p. 278–290, 1 set. 2015. SANCHEZ, D. L. et al. Biomass enables the transition to a carbon-negative power system across western North America. Nature Climate Change, v. 5, n. 3, p. 230–234, 9 mar. 2015. SANCHEZ MOORE, C. C. et al. Effect of Process Parameters on Bioelectricity Production, Energy and Environmental Performance. Journal of Sustainable Development of Energy, Water and Environment Systems, v. 7, n. 4, p. 567–583, dez. 2019. SANTOS, E. A. DOS; SILVA, D. S. DA; QUEIROZ FILHO, J. L. DE. Aspectos produtivos do capim-elefante (Pennisetum purpureum, Schum.) cv. Roxo no brejo paraibano. Revista Brasileira de Zootecnia, v. 30, n. 1, p. 31–36, fev. 2001. SARAIVA, V. M.; KONIG, A. Produtividade do capim-elefante-roxo irrigado com efluente doméstico tratado no semiárido potiguar e suas utilidades. Holos, v. 29, n. 1, p. 28, 2013. SAUNORIS, J. W.; SHERIDAN, B. J. The dynamics of sectoral electricity demand for a panel of US states: New evidence on the consumption-growth nexus. Energy Policy, v. 61, p. 327–336, 2013. SCHEITERLE, L. et al. From commodity-based value chains to biomass-based value webs: The case of sugarcane in Brazil’s bioeconomy. Journal of Cleaner Production, v. 172, p. 3851–3863, jan. 2018. SCHMIDT, C. A. J.; LIMA, M. A. M. A demanda por energia elétrica no Brasil. Revista Brasileira de Economia, v. 58, n. 1, p. 68–98, mar. 2004. SCHREIBER, M. Restricting the h-index to a publication and citation time window: A case study of a timed Hirsch index. Journal of Informetrics, v. 9, n. 1, p. 150–155, 1 jan. 2015. SCHUTZE, A. M. A demanda de energia elétrica no Brasil. [s.l.] Pontifícia Universidade Católica do Rio de Janeiro, 2015. SHAFIE, S. M. et al. A review on electricity generation based on biomass residue in Malaysia. Renewable and Sustainable Energy Reviews, v. 16, n. 8, p. 5879–5889, out. 2012. SHAFIE, S. M. A review on paddy residue based power generation: Energy, environment and economic perspective. Renewable and Sustainable Energy Reviews. Elsevier Ltd, , 1 jun. 2016. SHAH, A. et al. Techno-economic analysis of a production-scale torrefaction system for cellulosic biomass upgrading. Biofuels, Bioproducts and Biorefining, v. 6, n. 1, p. 45–57, jan. 2012. SHAHBAZ, M. et al. Considering the effect of biomass energy consumption on economic growth: Fresh evidence from BRICS region. Renewable and Sustainable Energy Reviews, v. 60, p. 1442–1450, jul. 2016. SHIMOYA, A. et al. Repetibilidade de características forrageiras do capim-elefante. Scientia Agricola, v. 59, n. 2, p. 227–234, 1 abr. 2002. SILVA, D. A. et al. Propriedades da madeira de Eucalyptus benthamii para produção de energia. Pesquisa Florestal Brasileira, v. 35, n. 84, p. 481, 2015. SILVA, E. P. DA. Fontes renováveis de energia: Produção de energia para um desenvolvimento sustentável. 1. ed. São Paulo: [s.n.]. SILVA, S.; SOARES, I.; PINHO, C. Electricity residential demand elasticities: Urban versus rural areas in Portugal. Energy, v. 144, p. 627–632, 1 fev. 2018. SINHA, A.; SHAHBAZ, M.; SENGUPTA, T. Renewable energy policies and contradictions in causality: A case of Next 11 countries. Journal of Cleaner Production, v. 197, p. 73–84, 2018. SIQUEIRA, M. L.; CORDEIRO JÚNIOR, H. DE H.; CASTELAR, I. A DEMANDA POR ENERGIA ELÉTRICA NO NORDESTE BRASILEIRO APÓS O RACIONAMENTO DE 2001-2002: PREVISÕES DE LONGO PRAZO*. Pesquisa e Planejamento Econômico, v. 36, n. 1, p. 137–178, 2006. SMITH, M. S.; SHIVELY, T. S. Econometric modeling of regional electricity spot prices in the Australian market. Energy Economics, v. 74, p. 886–903, ago. 2018. SOAM, S. et al. Global warming potential and energy analysis of second generation ethanol production from rice straw in India. Applied Energy, v. 184, p. 353–364, 15 dez. 2016. SOARES, T. C.; LOPES, L. S.; DA CUNHA, D. A. A eficiência do consumo residencial de energia elétrica no Brasil. Economia Aplicada, v. 21, n. 3, p. 503–523, 2017. SOLARIN, S. A.; OZTURK, I. On the causal dynamics between hydroelectricity consumption and economic growth in Latin America countries. Renewable and Sustainable Energy Reviews, v. 52, p. 1857–1868, dez. 2015. SONG, N. et al. Analysis of U.S. residential wood energy consumption: 1967-2009. Energy Economics, v. 34, n. 6, p. 2116–2124, 2012. SUH, D. H. Interfuel substitution and biomass use in the U.S. industrial sector: A differential approach. Energy, v. 102, p. 24–30, maio 2016. SUN, C.; OUYANG, X. Price and expenditure elasticities of residential energy demand during urbanization: An empirical analysis based on the household-level survey data in China. Energy Policy, v. 88, p. 56–63, 1 jan. 2016. SUN, Y.; YU, Y. Revisiting the residential electricity demand in the United States: A dynamic partial adjustment modelling approach. Social Science Journal, v. 54, n. 3, p. 295–304, 1 set. 2017. SURAMAYTHANGKOOR, T.; GHEEWALA, S. H. Potential of practical implementation of rice straw-based power generation in Thailand. Energy Policy, v. 36, n. 8, p. 3193–3197, 2008. TEJADA, G. et al. Evaluating spatial coverage of data on the aboveground biomass in undisturbed forests in the Brazilian Amazon. Carbon Balance and Management, v. 14, n. 1, p. 11, 3 dez. 2019. THELWALL, M. Dimensions: A competitor to Scopus and the Web of Science? Journal of Informetrics, v. 12, n. 2, p. 430–435, 1 maio 2018. TIAN, T. et al. Effects of biochemical composition on hydrogen production by biomass gasification. International Journal of Hydrogen Energy, v. 42, n. 31, p. 19723–19732, ago. 2017. TIWARI, A. K.; EAPEN, L. M.; NAIR, S. R. Electricity consumption and economic growth at the state and sectoral level in India: Evidence using heterogeneous panel data methods. Energy Economics, v. 94, p. 105064, 2021. TOLMASQUIM, M. T. Novo Modelo do Setor Elétrico Brasileiro. 2. ed. Rio de Janeiro: Synergia, 2015. TOLMASQUIM, M. T. Energia Renovável: Hidráulica, Biomassa, Eólica, Solar, Oceânica. 1. ed. Rio de Janeiro: EPE, 2016. TROMBETA, N. DE C.; CAIXETA FILHO, J. V. Potencial e Disponibilidade de Biomassa de Cana-de-açúcar na Região Centro-Sul do Brasil: indicadores agroindustriais. Revista de Economia e Sociologia Rural, v. 55, n. 3, p. 479–496, 2017. TUGCU, C. T.; TIWARI, A. K. Does renewable and/or non-renewable energy consumption matter for total factor productivity (TFP) growth? Evidence from the BRICS. Renewable and Sustainable Energy Reviews, v. 65, p. 610–616, nov. 2016. UHR, D. DE A. P.; CHAGAS, A. L. S.; UHR, J. G. Z. Demand for Residential Energy in Brazil Revisited: A Dynamic Panel Data Approach. The Empirical Economics Letters, v. 16, n. 8, p. 747–753, 2017. UHR, D. DE A. P.; CHAGAS, A. L. S.; UHR, J. G. Z. Estimation of elasticities for electricity demand in Brazilian households and policy implications. Energy Policy, v. 129, n. February, p. 69–79, 2019. UNICA. Bieletricidade em números: Fechamento de 2020. São Paulo: [s.n.]. Disponível em: <https://unica.com.br/>. VERBRUGGEN, A.; LAUBER, V. Assessing the performance of renewable electricity support instruments. Energy Policy, v. 45, p. 635–644, 1 jun. 2012. VILLAREAL, M. J. C.; MOREIRA, J. M. L. Household consumption of electricity in Brazil between 1985 and 2013. Energy Policy, v. 96, p. 251–259, 1 set. 2016. WALTMAN, L.; VAN ECK, N. J. A new methodology for constructing a publication-level classification system of science. 2 mar. 2012. WANG, N.; MOGI, G. Industrial and residential electricity demand dynamics in Japan : How did price and income elasticities evolve from 1989 to 2014 ? Energy Policy, v. 106, n. March, p. 233–243, 2017. WEI, M. et al. Deep carbon reductions in California require electrification and integration across economic sectors. Environmental Research Letters, v. 8, n. 1, p. 014038, 1 mar. 2013. WOO, C. K. et al. Price elasticities of retail energy demands in the United States: New evidence from a panel of monthly data for 2001–2016. Applied Energy, v. 222, p. 460–474, 15 jul. 2018. WOOLDRIDGE, J. M. Introdução à Econometria. 4. ed. São Paulo: Cencage, 2012. YIN, F. et al. Novel Calcium-Looping-Based Biomass-Integrated Gasification Combined Cycle: Thermodynamic Modeling and Experimental Study. Energy and Fuels, v. 30, n. 3, p. 1730–1740, 17 mar. 2016. YIN, H.; ZHOU, H.; ZHU, K. Long- and short-run elasticities of residential electricity consumption in China: a partial adjustment model with panel data. Applied Economics, v. 48, n. 28, p. 2587–2599, 14 jun. 2016. YOON, S. J. et al. Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renewable Energy, v. 42, p. 163–167, jun. 2012. ZAMBRZYCKI, G. C. Potencial energético de biomassa residuais e atributos de solos em ambientes agrícolas e florestais. [s.l.] Universidade de Brasília (UNB), 2018. ZHANG, P. et al. Carbon sources/sinks analysis of land use changes in China based on data envelopment analysis. Journal of Cleaner Production, v. 204, p. 702–711, dez. 2018. ZHAO, M.; MINETT, A. I.; HARRIS, A. T. A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2Energy and Environmental Science, jan. 2013. ZHONG, H. et al. Implications of COVID-19 for the electricity industry: A comprehensive review. CSEE Journal of Power and Energy Systems, v. 6, n. 3, p. 489–495, 1 set. 2020. ZHOU, Y. et al. Joint R&D in low-carbon technology development in China: A case study of the wind-turbine manufacturing industry. Energy Policy, v. 46, p. 100–108, jul. 2012. ZHU, X. et al. A meta-analysis on the price elasticity and income elasticity of residential electricity demand. Journal of Cleaner Production, v. 201, p. 169–177, 10 nov. 2018.pt_BR
Aparece nas coleções:Tese (PPGEnAm)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Tese Luís Oscar_Versão Final.pdf2,65 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.