Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/34957
Registro completo de metadados
Campo DCValorIdioma
dc.creatorCosta, Naíma Loureiro de Souza-
dc.date.accessioned2022-03-29T15:22:43Z-
dc.date.available2022-03-29T15:22:43Z-
dc.date.issued2022-02-04-
dc.identifier.urihttps://repositorio.ufba.br/handle/ri/34957-
dc.description.abstractIntroduction: It is known that different types of meditation induce different responses in brain activity. Among these different types, there are those accompanied by music, however, little is known about the role of this tool in the brain electrical activity during meditation. Objective: To evaluate delta, theta, alpha, beta and gamma power and the functional connectivity pattern of brain networks during Raja Yoga meditation, with and without musical induction, in experienced meditators. Methods: 9 women and 3 men participated, with a mean age (SD) of 48.71 (16.27) years. They were all Raja Yoga meditators, at Brahma Kumaris institution, Salvador-BA-Brazil. The data collection was performed using EEG with 22 channels and divided into 4 stages: relaxation (RL), meditation without music (MD), meditation with specific music (SM) and meditation with unspecific music (UM). The data were filtered, and the power frequencies were extracted. The frequencies that presented significant differences on the power evaluation were selected for the frequency brain network construction and extraction of the weighted degree (Kp), using the motifs method. Results: ANOVA results showed an increase in frontal gamma power during meditations with music (SM and UM) compared to meditation without music (MD), as well as an increase in frontal beta power during UM compared to MD. For beta network, an increase in cortical connectivity was observed in the right hemisphere, during UM compared to SM and MD, and in the frontal area during UM in comparison to MD and SM. For gamma network, there was an increase in connectivity in the frontal area during UM compared to MD. Effect size analyzes demonstrated greater magnitude in the left frontal (LF) than in the right frontal (RF) area for UM x MD comparison, and greater magnitude in RF than in LF for MD x SM comparison. Conclusion: Frontal power and cortical connectivity of beta and gamma frequencies seem to be involved in musical processing during meditation, with differences of activation pattern according to the type of music.pt_BR
dc.description.sponsorshipCAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Bahiapt_BR
dc.rightsAcesso Abertopt_BR
dc.subjectEEG quantitativopt_BR
dc.subjectRedes funcionais cerebraispt_BR
dc.subjectRitmos cerebraispt_BR
dc.subjectEstado alterado de consciênciapt_BR
dc.subject.otherQuantitative EEGpt_BR
dc.subject.otherFunctional Brain Networkspt_BR
dc.subject.otherBrain Rhythmspt_BR
dc.subject.otherAltered State of Consciousnesspt_BR
dc.titleMeditação e música: EEGq e redes funcionais cerebraispt_BR
dc.title.alternativeMeditation and music: EEGq and brain functional networkspt_BR
dc.typeDissertaçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas (PPGORGSISTEM) pt_BR
dc.publisher.initialsUFBApt_BR
dc.publisher.countryBrasilpt_BR
dc.subject.cnpqCNPQ::CIENCIAS BIOLOGICAS::FISIOLOGIA::FISIOLOGIA GERAL::NEUROFISIOLOGIApt_BR
dc.contributor.advisor1Sena, Eduardo Pondé de-
dc.contributor.advisor1IDhttps://orcid.org/0000-0002-6166-8093pt_BR
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/0566823974343659pt_BR
dc.contributor.advisor-co1Miranda, José Garcia Vivas-
dc.contributor.advisor-co1IDhttps://orcid.org/0000-0002-7752-8319pt_BR
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/1608472474770322pt_BR
dc.contributor.referee1Miranda, José Garcia Vivas-
dc.contributor.referee1IDhttps://orcid.org/0000-0002-7752-8319pt_BR
dc.contributor.referee1Latteshttp://lattes.cnpq.br/1608472474770322pt_BR
dc.contributor.referee2Rosário, Raphael Silva do-
dc.contributor.referee2Latteshttp://lattes.cnpq.br/5601958689947032pt_BR
dc.contributor.referee3Costa, Isis da Silva-
dc.contributor.referee3Latteshttp://lattes.cnpq.br/9368785979837768pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/pt_BR
dc.description.resumoIntrodução: Sabe-se que diferentes tipos de meditação induzem diferentes respostas na atividade cerebral. Dentre esses diferentes tipos, existem aqueles acompanhadas de música, entretanto, pouco se sabe a respeito do papel dessa ferramenta na atividade elétrica cerebral durante a meditação. Objetivo: Comparar as potências das frequências delta, teta, alfa, beta e gama e o padrão de conectividade funcional cortical durante a meditação Raja Yoga, com e sem indução musical, em meditadores experientes. Métodos: Participaram 9 mulheres e 3 homens, com idade média (DP) de 48,71 (16,27) anos, praticantes da meditação Raja Yoga, na instituição Brahma Kumaris, Salvador-BA-Brasil. A coleta foi realizada através de um EEG com 22 canais e dividida em 4 etapas: relaxamento (RL), meditação sem música (MD), meditação com música específica (ME) e meditação com música inespecífica (MI). Os dados foram filtrados e as potências das frequências, extraídas. As frequências que apresentaram diferenças significativas na avaliação das potências foram selecionadas para a construção de redes de frequência e extração do grau ponderado (Kp), através do método motifs. Resultados: O resultado da ANOVA demonstrou um aumento da potência gama na região frontal durante as meditações com música (ME e MI) em relação à sem música, bem como um aumento da potência beta na região frontal durante a MI em relação à MD. Para a rede de frequência beta, foi observado um aumento da conectividade cortical no hemisfério direito, na MI em relação à ME e à MD, e na região frontal durante a MI em comparação à MD e à ME. Para a rede gama, houve um aumento da conectividade na região frontal durante a MI comparado à MD. As análises de tamanho de efeito demonstraram maior magnitude na região frontal esquerda (FE) do que na região frontal direita (FD) na avaliação MI x MD e na região FD comparado à FE, na avaliação MD x ME. Conclusão: A atividade das potências e conectividade cortical das frequências beta e gama na região frontal parecem estar envolvidas no processamento musical durante a meditação, havendo diferenças no padrão de ativação de acordo com o tipo de música utilizada.pt_BR
dc.publisher.departmentInstituto de Ciências da Saúde - ICSpt_BR
dc.relation.references1. Newberg AB, Iversen J. The neural basis of the complex mental task of meditation: neurotransmitter and neurochemical considerations. Med Hypotheses. 2003 Aug;61(2):282-91. 2. Lagopoulos J, Xu J, Rasmussen I, Vik A, Malhi GS, Eliassen CF, et al. Increased theta and alpha EEG activity during nondirective meditation. J Altern Complement Med. 2009 Nov;15(11):1187-92. 3. Innes KE, Selfe TK, Khalsa DS, Kandati S. Meditation and music improve memory and cognitive function in adults with subjective cognitive decline: a pilot randomized controlled trial. J Alzheimers Dis. 2017;56(3):899-916. 4. Koelsch S. Brain correlates of music-evoked emotions. Nat Rev Neurosci. 2014 Mar;15(3):170-80. 5. Peck KJ, Girard TA, Russo FA, Fiocco AJ. Music and memory in Alzheimer’s disease and the potential underlying mechanisms. J Alzheimers Dis. 2016;51(4):949-59. 6. Aftanas LI, Golocheikine SA. Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci Lett. 2001 Sept 7;310(1):57-60. 7. Costa NL de S, Toutain TGL de O, Miranda JGV, Baptista AF, Sena EP de. Frequência Alfa na meditação Gurdjieff. Rev Ciênc Méd Biol. 2020 Dec 30;19(4):531-6. 8. Takahashi T, Murata T, Hamada T, Omori M, Kosaka H, Kikuchi M, et al. Changes in EEG and autonomic nervous activity during meditation and their association with personality traits. Int J Psychophysiol. 2005 Feb;55(2):199-207. 9. Xue S-W, Tang Y-Y, Tang R, Posner MI. Short-term meditation induces changes in brain resting EEG theta networks. Brain Cogn. 2014 June;87:1-6. 10. Jo J-M. Analysis of EEG Characteristics for the effectiveness verification of meditation music. J Korea institute electronic communication sciences. 2014;9(10):1139-44. 11. Craig J. Music therapy to reduce agitation in dementia. Nurs Times. 2014 Aug 6;110(32-33):12-5. 12. Tan X, Yowler CJ, Super DM, Fratianne RB. The Interplay of Preference, Familiarity and Psychophysical Properties in Defining Relaxation Music. J Music Ther. 2012;49(2):150-79. 13. Varotto G, Fazio P, Rossi Sebastiano D, Avanzini G, Franceschetti S, Panzica F, et al. Music and emotion: an EEG connectivity study in patients with disorders of consciousness. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:5206-9. 14. Braboszcz C, Cahn BR, Levy J, Fernandez M, Delorme A. Increased Gamma brainwave amplitude compared to control in three different meditation traditions. PLoS One. 2017 Jan 24;12(1):e0170647. 15. Judith A. Cohen, Cheryl Laskowski, Betty A. Rambur. The experience of movement meditation: a dance of rhythmic paradox and time. Int J Hum Caring. 2008 Apr 1;12(3):65-73. 16. Sharma K, Achermann P, Panwar B, Sahoo S, Angarai R, Pascual-Marqui RD, et al. Brain-electric activity during eyes open Brahma Kumaris Rajayoga meditation. Religious Studies [Internet]. 2020 May 8 [cited 2021 Sept 24]. Available from: https://mindrxiv.org/e48bv/ 17. Kasamatsu A, Hirai T. An electroencephalographic study on the zen meditation (Zazen). Folia Psychiatr Neurol Jpn. 1966;20(4):315-36. 18. Jo J-M. Analysis of EEG Characteristics for the effectiveness verification of meditation music. 2014. 19. Kaundinya SD, Kaundinya DV. Meditation [Dhyan] versus relaxation a review with comprehensive bibliography. Int J Basic Appl Physiol. 2013;2(1):18. 20. Jadhav N, Manthalkar R, Joshi Y. Effect of meditation on emotional response: an EEG-based study. Biomed Signal Process Control. 2017 Apr 1;34:101-13. 21. Cahn BR, Polich J. Meditation states and traits: EEG, ERP, and neuroimaging studies. Psychol Bull. 2006 Mar;132(2):180-211. 22. Lutz A, Slagter HA, Dunne JD, Davidson RJ. Attention regulation and monitoring in meditation. Trends Cogn Sci. 2008 Apr;12(4):163-9. 23. Fell J, Axmacher N, Haupt S. From alpha to gamma: electrophysiological correlates of meditation-related states of consciousness. Med Hypotheses. 2010 Aug;75(2):218-24. 24. Alexander CN, Langer EJ, Newman RI, Chandler HM, Davies JL. Transcendental meditation, mindfulness, and longevity: an experimental study with the elderly. J Pers Soc Psychol. 1989 Dec;57(6):950-64. 25. Khanna S, Greeson JM. A Narrative review of yoga and mindfulness as complementary therapies for addiction. Complement Ther Med. 2013 June;21(3):244-52. 26. Vøllestad J, Nielsen MB, Nielsen GH. Mindfulness- and acceptance-based interventions for anxiety disorders: a systematic review and meta-analysis. Br J Clin Psychol. 2012 Sept;51(3):239-60. 27. Janakiramaiah N, Gangadhar BN, Naga Venkatesha Murthy PJ, Harish MG, Subbakrishna DK, Vedamurthachar A. Antidepressant efficacy of Sudarshan Kriya Yoga (SKY) in melancholia: a randomized comparison with electroconvulsive therapy (ECT) and imipramine. J Affect Disord. 2000 Mar;57(1-3):255-9. 28. Lakhan SE, Schofield KL. Mindfulness-based therapies in the treatment of somatization disorders: a systematic review and meta-analysis. PLoS One. 2013;8(8):e71834. 29. Jacobs TL, Epel ES, Lin J, Blackburn EH, Wolkowitz OM, Bridwell DA, et al. Intensive meditation training, immune cell telomerase activity, and psychological mediators. Psychoneuroendocrinology. 2011 June;36(5):664-81. 30. Grossman P, Niemann L, Schmidt S, Walach H. Mindfulness-based stress reduction and health benefits. A meta-analysis. J Psychosom Res. 2004 July;57(1):35-43. 31. Jha AP, Stanley EA, Kiyonaga A, Wong L, Gelfand L. Examining the protective effects of mindfulness training on working memory capacity and affective experience. Emotion. 2010 Feb;10(1):54-64. 32. Aftanas L, Golosheykin S. Impact of regular meditation practice on EEG activity at rest and during evoked negative emotions. Int J Neurosci. 2005 June;115(6):893-909. 33. Farb NAS, Anderson AK, Mayberg H, Bean J, McKeon D, Segal ZV. Minding One’s Emotions: mindfulness training alters the neural expression of sadness. Emotion. 2010 Feb;10(1):25-33. 34. Chan D, Woollacott M. Effects of level of meditation experience on attentional focus: is the efficiency of executive or orientation networks improved? J Altern Complement Med. 2007 Aug;13(6):651-7. 35. Hodgins HS, Adair KC. Attentional processes and meditation. Consciousness and Cognition. 2010 Dec 1;19(4):872-8. 36. Pagnoni G, Cekic M. Age effects on gray matter volume and attentional performance in Zen meditation. Neurobiol Aging. 2007 Oct;28(10):1623-7. 37. Barnes VA, Treiber FA, Davis H. Impact of transcendental meditation on cardiovascular function at rest and during acute stress in adolescents with high normal blood pressure. J Psychosom Res. 2001 Oct;51(4):597-605. 38. Anderson JW, Liu C, Kryscio RJ. Blood pressure response to transcendental meditation: a meta-analysis. Am J Hypertens. 2008 Mar;21(3):310-6. 39. Zamarra JW, Schneider RH, Besseghini I, Robinson DK, Salerno JW. Usefulness of the transcendental meditation program in the treatment of patients with coronary artery disease. Am J Cardiol. 1996 Apr 15;77(10):867-70. 40. Cunningham C, Brown S, Kaski JC. Effects of transcendental meditation on symptoms and electrocardiographic changes in patients with cardiac syndrome X. Am J Cardiol. 2000 Mar 1;85(5):653-5, A10. 41. Tang Y-Y, Ma Y, Wang J, Fan Y, Feng S, Lu Q, et al. Short-term meditation training improves attention and self-regulation. PNAS. 2007 Oct 23;104(43):17152-6. 42. Schneider RH, Nidich SI, Salerno JW, Sharma HM, Robinson CE, Nidich RJ, et al. Lower lipid peroxide levels in practitioners of the Transcendental Meditation program. Psychosom Med. 1998 Feb;60(1):38-41. 43. Davidson RJ, Kabat-Zinn J, Schumacher J, Rosenkranz M, Muller D, Santorelli SF, et al. Alterations in brain and immune function produced by mindfulness meditation. Psychosom Med. 2003 Aug;65(4):564-70. 44. Sahu A, Dubey DSP. Rajyoga Meditation and effects: a comprehensive review [Internet]. 2016 [cited 2021 Nov 1]. Available from: https://www.semanticscholar.org/paper/Rajyoga-Meditation-and-Effects%3A-A-Comprehensive-Sahu-Dubey/4fea3a227f5639fb461634ac4d64bafaf33f91ba 45. Maini S, Kaur H, Maini N. Effect of rajyoga meditation on the heart rate, blood pressure and ECG. J Clin Diagn Res. 2011;5:4. 46. Brahma Kumaris. Brahma Kumaris Brasil - Home [Internet]. 2021 [cited 2021 Nov 21]. Available from: https://www.brahmakumaris.org.br/ 47. Brahma Kumaris Brasil - Home [Internet]. [cited 2021 Nov 1]. Available from: https://www.brahmakumaris.org.br/ 48. Ramsay T, Manderson L, Smith W. Changing a Mountain into a mustard seed: spiritual practices and responses to disaster among new york brahma kumaris. J Contemp Relig. 2010 Jan 1;25:89-105. 49. Toutain TG, Baptista AF, Japyassú HF, Rosário RS, Porto JA, Campbell FQ, et al. Does meditation lead to a stable mind? Synchronous stability and time-varying graphs in meditators. J Complex Netw [Internet]. 2021 Mar 7 [cited 2021 Nov 11];8(6). Available from: https://doi.org/10.1093/comnet/cnaa049 50. Toutain T. Estudo da conectividade cortical em estado alterado de consciência: meditação [Internet]. Salvador: Universidade Federal da Bahia; 2016 [cited 2021 Nov 10]. Available from: https://www.google.com/search?q=ESTUDO+DA+CONECTIVIDADE+CORTICAL+EM+ESTADO+ALTERADO+DE+CONSCIE%CC%82NCIA%3A+MEDITAC%CC%A7A%CC%83O&oq=ESTUDO+DA+CONECTIVIDADE+CORTICAL+EM+ESTADO+ALTERADO+DE+CONSCIE%CC%82NCIA%3A+MEDITAC%CC%A7A%CC%83O&aqs=chrome.0.69i59l2.545j0j7&sourceid=chrome&ie=UTF-8 51. Toutain TGL de O, Rosário R, Mendes CMC, Sena EP de. Alfa no estado alterado de consciência: meditação raja yoga. Rev Ciênc Méd Biol. 2019 July 3;18(1):38-43. 52. Jadhav N, Manthalkar R, Joshi Y. Effect of meditation on emotional response: an EEG-based study. Biomedical Signal Processing and Control. 2017 Apr 1;34:101-13. 53. Faber PL, Lehmann D, Gianotti LRR, Milz P, Pascual-Marqui RD, Held M, et al. Zazen meditation and no-task resting EEG compared with LORETA intracortical source localization. Cogn Process. 2015 Feb;16(1):87-96. 54. Saby JN, Marshall PJ. The utility of EEG band power analysis in the study of infancy and early childhood. Dev Neuropsychol. 2012;37(3):253-73. 55. Berger H. Über das Elektrenkephalogramm des menschen. Dtsch Med Wochenschr. 1934 Dec;60(51):1947-9. 56. Ray WJ, Cole HW. EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes. Science. 1985 May 10;228(4700):750-2. 57. Cooper NR, Burgess AP, Croft RJ, Gruzelier JH. Investigating evoked and induced electroencephalogram activity in task-related alpha power increases during an internally directed attention task. Neuroreport. 2006 Feb 6;17(2):205-8. 58. Jensen O, Gelfand J, Kounios J, Lisman JE. Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex. 2002 Aug;12(8):877-82. 59. Fink A, Benedek M. EEG alpha power and creative ideation. Neurosci Biobehav Rev. 2014 July 1;44:111-23. 60. Banquet JP. Spectral analysis of the EEG in meditation. Electroencephalogr Clin Neurophysiol. 1973 Aug;35(2):143-51. 61. Taneli B, Krahne W. EEG changes of transcendental meditation practitioners. Adv Biol Psychiatry. 1987;16:41-71. 62. Travis F. Autonomic and EEG patterns distinguish transcending from other experiences during Transcendental Meditation practice. Int J Psychophysiol. 2001 Aug;42(1):1-9. 63. Wallace RK. Physiological effects of transcendental meditation. Science. 1970 Mar 27;167(3926):1751-4. 64. Corby JC, Roth WT, Zarcone VP, Kopell BS. Psychophysiological correlates of the practice of Tantric Yoga meditation. Arch Gen Psychiatry. 1978 May;35(5):571-7. 65. Aftanas LI, Golosheĭkin SA. [Changes in cortical activity during altered state of consciousness: study of meditation by high resolution EEG]. Fiziol Cheloveka. 2003 Apr;29(2):18-27. 66. Zhang JZ, Li JZ, He QN. Statistical brain topographic mapping analysis for EEGs recorded during Qi Gong state. Int J Neurosci. 1988 Feb;38(3-4):415-25. 67. Henz D, Schöllhorn WI. EEG Brain activity in dynamic health qigong training: same effects for mental practice and physical training? Front Psychol. 2017;8:154. 68. Satyanarayana M, Rajeswari KR, Rani NJ, Krishna CS, Rao PV. Effect of Santhi Kriya on certain psychophysiological parameters: a preliminary study. Indian J Physiol Pharmacol. 1992 Apr;36(2):88-92. 69. Dunn BR, Hartigan JA, Mikulas WL. Concentration and mindfulness meditations: unique forms of consciousness? Appl Psychophysiol Biofeedback. 1999 Sept;24(3):147-65. 70. Lutz A, Greischar LL, Rawlings NB, Ricard M, Davidson RJ. Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16369-73. 71. Tei S, Faber PL, Lehmann D, Tsujiuchi T, Kumano H, Pascual-Marqui RD, et al. Meditators and non-meditators: EEG source imaging during resting. Brain Topogr. 2009 Nov;22(3):158-65. 72. Yang SH, Yang QF, Shi JM. [Observation of electroencephalogram spectrum changes over one year of Qigong training]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 1994 Nov;14(11):643-6. 73. Thomas J, Jamieson G, Cohen M. Low and then high frequency oscillations of distinct right cortical networks are progressively enhanced by medium and long term Satyananda Yoga meditation practice. Front Hum Neurosci. 2014;8:197. 74. Cervone RL, Blum AS. Normal variant EEG patterns. In: Blum AS, Rutkove SB, editors. The clinical neurophysiology primer [Internet]. Totowa: Humana Press; 2007 [cited 2021 Sept 18]. p. 83-100. Available from: https://doi.org/10.1007/978-1-59745-271-7_7 75. Hebert R, Lehmann D. Theta bursts: an EEG pattern in normal subjects practising the transcendental meditation technique. Electroencephalogr Clin Neurophysiol. 1977 Mar;42(3):397-405. 76. Stigsby B, Rodenberg JC, Moth HB. Electroencephalographic findings during mantra meditation (transcendental meditation). A controlled, quantitative study of experienced meditators. Electroencephalogr Clin Neurophysiol. 1981 Apr;51(4):434-42. 77. Fenwick PB, Donaldson S, Gillis L, Bushman J, Fenton GW, Perry I, et al. Metabolic and EEG changes during transcendental meditation: an explanation. Biol Psychol. 1977 June;5(2):101-18. 78. Harne BP, Hiwale AS. EEG spectral analysis on OM mantra meditation: a pilot study. Appl Psychophysiol Biofeedback. 2018 June;43(2):123-9. 79. Mari-Acevedo J, Yelvington K, Tatum WO. Normal EEG variants. Handb Clin Neurol. 2019;160:143-60. 80. Cahn BR, Delorme A, Polich J. Event-related delta, theta, alpha and gamma correlates to auditory oddball processing during Vipassana meditation. Soc Cogn Affect Neurosci. 2013 Jan;8(1):100-11. 81. Lazar SW, Kerr CE, Wasserman RH, Gray JR, Greve DN, Treadway MT, et al. Meditation experience is associated with increased cortical thickness. Neuroreport. 2005 Nov 28;16(17):1893-7. 82. Lehmann D, Faber PL, Tei S, Pascual-Marqui RD, Milz P, Kochi K. Reduced functional connectivity between cortical sources in five meditation traditions detected with lagged coherence using EEG tomography. Neuroimage. 2012 Apr 2;60(2):1574-86. 83. Badawi K, Wallace RK, Orme-Johnson D, Rouzere AM. Electrophysiologic characteristics of respiratory suspension periods occurring during the practice of the transcendental meditation program. Psychosom Med. 1984 June;46(3):267-76. 84. Saggar M, King BG, Zanesco AP, MacLean KA, Aichele SR, Jacobs TL, et al. Intensive training induces longitudinal changes in meditation state-related EEG oscillatory activity. Front Hum Neurosci. 2012 Sept 10;6:256. 85. Gaillard R, Dehaene S, Adam C, Clémenceau S, Hasboun D, Baulac M, et al. Converging Intracranial Markers of Conscious Access. PLOS Biology. 2009 Mar 17;7(3):e1000061. 86. Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci. 2001 Apr;2(4):229-39. 87. Jokisch D, Jensen O. Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. J Neurosci. 2007 Mar 21;27(12):3244-51. 88. Lachaux J-P, George N, Tallon-Baudry C, Martinerie J, Hugueville L, Minotti L, et al. The many faces of the gamma band response to complex visual stimuli. Neuroimage. 2005 Apr 1;25(2):491-501. 89. Landau AN, Esterman M, Robertson LC, Bentin S, Prinzmetal W. Different effects of voluntary and involuntary attention on eeg activity in the gamma band. J Neurosci. 2007 Oct 31;27(44):11986-90. 90. Tallon-Baudry C, Bertrand O, Hénaff M-A, Isnard J, Fischer C. Attention modulates gamma-band oscillations differently in the human lateral occipital cortex and fusiform gyrus. Cereb Cortex. 2005 May;15(5):654-62. 91. Conner CR, Ellmore TM, Pieters TA, DiSano MA, Tandon N. Variability of the relationship between electrophysiology and BOLD-fMRI across cortical regions in humans. J Neurosci. 2011 Sept 7;31(36):12855-65. 92. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001 July 12;412(6843):150-7. 93. Hauswald A, Übelacker T, Leske S, Weisz N. What it means to be Zen: marked modulations of local and interareal synchronization during open monitoring meditation. Neuroimage. 2015 Mar;108:265–73. 94. Hinterberger T, Schmidt S, Kamei T, Walach H. Decreased electrophysiological activity represents the conscious state of emptiness in meditation. Front Psychol. 2014 Feb 17;5:99. 95. van Lutterveld R, van Dellen E, Pal P, Yang H, Stam CJ, Brewer J. Meditation is associated with increased brain network integration. Neuroimage. 2017 Sept;158:18-25. 96. Jao T, Li C-W, Vértes PE, Wu CW, Achard S, Hsieh C-H, et al. Large-Scale Functional brain network reorganization during taoist meditation. Brain Connect. 2016 Feb;6(1):9-24. 97. Panda R, Bharath RD, Upadhyay N, Mangalore S, Chennu S, Rao SL. Temporal dynamics of the default mode network characterize meditation-induced alterations in consciousness. Front Hum Neurosci. 2016 July 22;10:372. 98. Knight WE, Rickard NS. Relaxing music prevents stress-induced increases in subjective anxiety, systolic blood pressure, and heart rate in healthy males and females. J Music Ther. 2001;38(4):254-72. 99. Sharman L, Dingle GA. Extreme metal music and anger processing. Front Hum Neurosci. 2015;9:272. 100. Van den Tol AJM, Edwards J. Exploring a rationale for choosing to listen to sad music when feeling sad. Psychol Music. 2013 July 1;41(4):440-65. 101. Kamioka H, Tsutani K, Yamada M, Park H, Okuizumi H, Tsuruoka K, et al. Effectiveness of music therapy: a summary of systematic reviews based on randomized controlled trials of music interventions. Patient Prefer Adherence. 2014;8:727-54. 102. Särkämö T, Tervaniemi M, Laitinen S, Numminen A, Kurki M, Johnson JK, et al. Cognitive, emotional, and social benefits of regular musical activities in early dementia: randomized controlled study. Gerontologist. 2014 Aug;54(4):634-50. 103. Australian Psychological Society. Stress & wellbeing how australians are coping with life [Internet]. 2015 [cited 2021 Nov 21]. Available from: https://www.google.com/search?q=Stress+%26+wellbeing+HOW+AUSTRALIANS+ARE+COPING+WITH+LIFE&oq=Stress+%26+wellbeing+HOW+AUSTRALIANS+ARE+COPING+WITH+LIFE&aqs=chrome..69i57j69i60.415j0j4&sourceid=chrome&ie=UTF-8 104. Hunter PG, Glenn Schellenberg E, Stalinski SM. Liking and identifying emotionally expressive music: age and gender differences. J Exp Child Psychol. 2011 Sept;110(1):80-93. 105. Randall WM, Rickard NS, Vella-Brodrick DA. Emotional outcomes of regulation strategies used during personal music listening: a mobile experience sampling study. Musicae Scientiae. 2014;18(3):275–91. 106. Weth K, Raab M, Carbon C-C. Investigating emotional responses to self-selected sad music via self-report and automated facial analysis. Musicae Scientiae. 2015 Sept 23;19:412-32. 107. Lundqvist L-O, Carlsson F, Hilmersson P, Juslin PN. Emotional responses to music: experience, expression, and physiology. Psychol Music. 2009 Jan 1;37(1):61-90. 108. Lee-Harris G, Timmers R, Humberstone N, Blackburn D. Music for relaxation: a comparison across two age groups. J Music Ther. 2018 Dec 11;55(4):439-62. 109. Huron D. Sweet anticipation: music and the psychology of expectation. V. 1. 2006. 110. Laukka P, Juslin PN. Similar patterns of age-related differences in emotion recognition from speech and music. Motiv Emot. 2007;31(3):182-91. 111. Vieillard S, Gilet A-L. Age-related differences in affective responses to and memory for emotions conveyed by music: a cross-sectional study. Front Psychol. 2013;4:711. 112. Kim H, Lee M-H, Chang H-K, Lee T-H, Lee H-H, Shin M-C, et al. Influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats. Brain Dev. 2006 Mar;28(2):109-14. 113. Angelucci F, Fiore M, Ricci E, Padua L, Sabino A, Tonali PA. Investigating the neurobiology of music: brain-derived neurotrophic factor modulation in the hippocampus of young adult mice. Behav Pharmacol. 2007 Sept;18(5-6):491-6. 114. Trainor LJ, McDonald KL, Alain C. Automatic and controlled processing of melodic contour and interval information measured by electrical brain activity. J Cogn Neurosci. 2002 Apr 1;14(3):430-42. 115. Zentner M, Eerola T. Rhythmic engagement with music in infancy. PNAS. 2010 Mar 30;107(13):5768-73. 116. Perani D, Saccuman MC, Scifo P, Spada D, Andreolli G, Rovelli R, et al. Functional specializations for music processing in the human newborn brain. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4758-63. 117. Sammler D, Grigutsch M, Fritz T, Koelsch S. Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology. 2007 Mar;44(2):293-304. 118. Demorest SM, Morrison SJ, Stambaugh LA, Beken M, Richards TL, Johnson C. An fMRI investigation of the cultural specificity of music memory. Soc Cogn Affect Neurosci. 2010;5(2-3):282-91. 119. Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci. 2011 Feb;14(2):257-62. 120. Bhattacharya J, Petsche H. Musicians and the gamma band: a secret affair? Neuroreport. 2001 Feb 12;12(2):371-4. 121. Platel H, Price C, Baron JC, Wise R, Lambert J, Frackowiak RS, et al. The structural components of music perception. A functional anatomical study. Brain. 1997 Feb;120(2):229-43. 122. Nakamura S, Sadato N, Oohashi T, Nishina E, Fuwamoto Y, Yonekura Y. Analysis of music-brain interaction with simultaneous measurement of regional cerebral blood flow and electroencephalogram beta rhythm in human subjects. Neurosci Lett. 1999 Nov 19;275(3):222-6. 123. Kay BP, Meng X, Difrancesco MW, Holland SK, Szaflarski JP. Moderating effects of music on resting state networks. Brain Res. 2012 Apr 4;1447:53-64. 124. Davidson RJ. EEG measures of cerebral asymmetry: conceptual and methodological issues. Int J Neurosci. 1988 Mar;39(1-2):71-89. 125. Davidson RJ, Ekman P, Saron CD, Senulis JA, Friesen WV. Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology. I. J Pers Soc Psychol. 1990 Feb;58(2):330-41. 126. Schmidt LA, Trainor LJ. Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cogn Emotion. 2001;15(4):487-500. 127. Trochidis K, Bigand E. EEG-based emotion perception during music listening. 2012. 128. Blood AJ, Zatorre RJ, Bermudez P, Evans AC. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci. 1999 Apr;2(4):382-7. 129. Trainor L. Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cogn Emotion. 2001 July 1;15:487-500. 130. Wedin L. A multidimensional study of perceptual-emotional qualities in music. Scand J Psychol. 1972;13(4):241-57. 131. Wilkins RW, Hodges DA, Laurienti PJ, Steen M, Burdette JH. Network science and the effects of music preference on functional brain connectivity: from Beethoven to Eminem. Sci Rep. 2014 Aug 28;4(1):6130. 132. Wu J, Zhang J, Ding X, Li R, Zhou C. The effects of music on brain functional networks: a network analysis. Neuroscience. 2013 Oct 10;250:49-59. 133. Innes KE, Selfe TK, Kandati S, Wen S, Huysmans Z. Effects of mantra meditation versus music listening on knee pain, function, and related outcomes in older adults with knee osteoarthritis: an exploratory Randomized Clinical Trial (RCT). Evid Based Complement Alternat Med. 2018;2018:7683897. 134. Innes KE, Selfe TK, Khalsa DS, Kandati S. Effects of Meditation versus music listening on perceived stress, mood, sleep, and quality of life in adults with early memory loss: a pilot randomized controlled trial. J Alzheimers Dis. 2016 Apr 8;52(4):1277-98. 135. Sorensen S, Steindl SR, Dingle GA, Garcia A. Comparing the effects of Loving-Kindness Meditation (LKM), music and lkm plus music on psychological well-being. J Psychol. 2019;153(3):267-87. 136. Henz D, Taenny P, Schöllhorn W. Attentional effects of practising qigong with and without music: an eeg study. 2014. S35 p. 137. Nicolaou N, Malik A, Daly I, Weaver J, Hwang F, Kirke A, et al. Directed motor-auditory EEG Connectivity is modulated by music tempo. Front Hum Neurosci. 2017;11:502. 138. Lima MRR de, Figueiredo SLF de. Exercícios de Teoria musical: uma abordagem prática. 6th ed. São Paulo: Embraform; 2004. 139. Messias I de A, Okuno E, Colacioppo S. Exposição ocupacional de fisioterapeutas aos campos elétrico e magnético e a eficácia das gaiolas de Faraday. Rev Panam Salud Publica. 2011 Oct;30:309-16. 140. Tavares MC. EEG e Potenciais evocados – uma introdução. 2011. 13p. 141. Stam CJ. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol. 2005 Oct;116(10):2266-301. 142. Rosário R, Cardoso PT, Muñoz M, Montoya P, Miranda JG. Motif-Synchronization: a new method for analysis of dynamic brain networks with EEG. Phys A: Stat Mech Appl. 2015 Dec 1;439:7-19. 143. Boccaletti S, Latora V, Moreno Y, Chavez M and, Hwang D-U. Complex networks: Structure and dynamics. Physics Reports. 2006 Feb 1;424:175-308. 144. Reijneveld JC, Ponten SC, Berendse HW, Stam CJ. The application of graph theoretical analysis to complex networks in the brain. Clin Neurophysiol. 2007 Nov;118(11):2317-31. 145. Lakens D. Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs. Front Psychol. 2013 Nov 26;4:863. 146. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale: L. Erlbaum Associates; 1988. 567 p. 147. Schmidt LA, Trainor LJ. Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cogn Emotion. 2001 July 1;15(4):487-500. 148. Höller Y, Thomschewski A, Schmid EV, Höller P, Crone JS, Trinka E. Individual brain-frequency responses to self-selected music. Int J Psychophysiol. 2012 Dec;86(3):206-13.pt_BR
Aparece nas coleções:Dissertação (PPGPIOS)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Meditação e Música- EEGq e RFC _ Final.pdf2,34 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.