Use este identificador para citar ou linkar para este item: https://repositorio.ufba.br/handle/ri/24499
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorGonzález-Moya, Johan Rene-
dc.contributor.authorGarcia-Basabe, Yunier-
dc.contributor.authorRocco, Maria Luiza-
dc.contributor.authorPereira, Marcelo Barbalho-
dc.contributor.authorPrincival, Jefferson Luiz-
dc.contributor.authorMachado, Giovanna-
dc.contributor.authorAlmeida, Luciano Costa-
dc.contributor.authorAraújo, Carlos M-
dc.contributor.authorDavid, Denis G F-
dc.contributor.authorSilva, Antonio Ferreira da-
dc.creatorGonzález-Moya, Johan Rene-
dc.creatorGarcia-Basabe, Yunier-
dc.creatorRocco, Maria Luiza-
dc.creatorPereira, Marcelo Barbalho-
dc.creatorPrincival, Jefferson Luiz-
dc.creatorMachado, Giovanna-
dc.creatorAlmeida, Luciano Costa-
dc.creatorAraújo, Carlos M-
dc.creatorDavid, Denis G F-
dc.creatorSilva, Antonio Ferreira da-
dc.date.accessioned2017-11-01T13:20:50Z-
dc.date.available2017-11-01T13:20:50Z-
dc.date.issued2016-06-02-
dc.identifier.issn1361-6528-
dc.identifier.issn0957-4484-
dc.identifier.issn0957-4484-
dc.identifier.urihttp://repositorio.ufba.br/ri/handle/ri/24499-
dc.description.abstractAbstract Hydrogen fuels generated by water splitting using a photocatalyst and solar irradiation are currently gaining the strength to diversify the world energy matrix in a green way. CdS quantum dots have revealed a hydrogen generation improvement when added to TiO2 materials under visible-light irradiation. In the present paper, we investigated the performance of TiO2 nanotubes coupled with CdS quantum dots, by a molecular bifunctional linker, on photocatalytic hydrogen generation. TiO2 nanotubes were obtained by anodization of Ti foil, followed by annealing to crystallize the nanotubes into the anatase phase. Afterwards, the samples were sensitized with CdS quantum dots via an in situ hydrothermal route using 3-mercaptopropionic acid as the capping agent. This sensitization technique permits high loading and uniform distribution of CdS quantum dots onto TiO2 nanotubes. The XPS depth profile showed that CdS concentration remains almost unchanged (homogeneous), while the concentration relative to the sulfate anion decreases by more than 80% with respect to the initial value after ∼100 nm in depth. The presence of sulfate anions is due to the oxidation of sulfide and occurs in greater proportion in the material surface. This protection for air oxidation inside the nanotubular matrix seemingly protected the CdS for photocorrosion in sacrificial solution leading to good stability properties proved by long duration, stable photocurrent measurements. The effect of the size and the distribution of sizes of CdS quantum dots attached to TiO2 nanotubes on the photocatalytic hydrogen generation were investigated. The experimental results showed three different behaviors when the reaction time of CdS synthesis was increased in the sensitized samples, i.e. similar, deactivation and activation effects on the hydrogen production with regard to TiO2 nanotubes. The deactivation effect was related to two populations of sizes of CdS, where the population with a shorter band gap acts as a trap for the electrons photogenerated by the population with a larger band gap. Electron transfer from CdS quantum dots to TiO2 semiconductor nanotubes was proven by the results of UPS measurements combined with optical band gap measurements. This property facilitates an improvement of the visible-lightpt_BR
dc.language.isoenpt_BR
dc.publisherNANOTECHNOLOGY (BRISTOL. PRINT)pt_BR
dc.rightsAcesso Abertopt_BR
dc.source10.1088/0957-4484/27/28/285401pt_BR
dc.subjecthydrogen generationpt_BR
dc.subjectcharge transferpt_BR
dc.subjectBrazilian MRSpt_BR
dc.subjectTiO2 nanotubespt_BR
dc.subjectquantum dotspt_BR
dc.subjectphotocatalysispt_BR
dc.titleEffects of the large distribution of CdS quantum dot sizes on the charge transfer interactions into TiO2 nanotubes for photocatalytic hydrogen generationpt_BR
dc.typeArtigo de Periódicopt_BR
dc.identifier.numberv.27pt_BR
dc.publisher.countryBrasilpt_BR
Aparece nas coleções:Artigo Publicado em Periódico (Renorbio)

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
González-Moya_2016_Nanotechnology_27_285401.pdf2,12 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.