https://repositorio.ufba.br/handle/ri/18103| Tipo: | Artigo de Periódico |
| Título: | Dip-adaptive singular-value decomposition filtering for seismic reflection enhancement |
| Título(s) alternativo(s): | Geophysical Prospecting |
| Autor(es): | Porsani, Milton José Ursin, Bjorn Silva, Michelângelo Gomes da Melo, Paulo E. M. |
| Autor(es): | Porsani, Milton José Ursin, Bjorn Silva, Michelângelo Gomes da Melo, Paulo E. M. |
| Abstract: | We present a singular value decomposition (SVD) filtering method for the enhancement of coherent reflections and for attenuation of noise. The method is applied in two steps. First normal move-out (NMO) correction is applied to shot or CMP records, with the purpose of flattening the reflections. We use a spatial SVD filter with a short sliding window to enhance coherent horizontal events. Then the data are sorted in common-offset panels and the local dip is estimated for each panel. The next SVD filtering is performed on a small number of traces and a small number of time samples centred around the output sample position. Data in a local window are corrected for linear moveout corresponding to the dips before SVD. At the central time sample position, we sum over the dominant eigenimages of a few traces, corresponding to SVD dip filtering. We illustrate the method using land seismic data from the Tacutu basin, located in the north-east of Brazil. The results show that the proposed method is effective and is able to reveal reflections masked by ground-roll and other types of noise. |
| Palavras-chave: | Local dip Eigenimage |
| País: | Brasil |
| Tipo de Acesso: | Acesso Aberto |
| URI: | http://repositorio.ufba.br/ri/handle/ri/18103 |
| Data do documento: | 2013 |
| Aparece nas coleções: | Artigo Publicado em Periódico (IGEO) |
| Arquivo | Descrição | Tamanho | Formato | |
|---|---|---|---|---|
| Milton J. Porsani.pdf | 8,72 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.