| Campo DC | Valor | Idioma |
| dc.contributor.author | Brandl, Rolf | - |
| dc.contributor.author | Sica, Carmela | - |
| dc.contributor.author | Tota, Maria | - |
| dc.creator | Brandl, Rolf | - |
| dc.creator | Sica, Carmela | - |
| dc.creator | Tota, Maria | - |
| dc.date.accessioned | 2014-04-10T12:01:28Z | - |
| dc.date.issued | 2013 | - |
| dc.identifier.issn | 0026-9255 | - |
| dc.identifier.uri | http://repositorio.ufba.br/ri/handle/ri/14817 | - |
| dc.description | Texto completo: acesso restrito. p. 151-159 | pt_BR |
| dc.description.abstract | For a group G , denote by ω(G) the number of conjugacy classes of normalizers of subgroups of G . Clearly, ω(G)=1 if and only if G is a Dedekind group. Hence if G is a 2-group, then G is nilpotent of class ≤2 and if G is a p -group, p>2 , then G is abelian. We prove a generalization of this. Let G be a finite p -group with ω(G)≤p+1 . If p=2 , then G is of class ≤3 ; if p>2 , then G is of class ≤2 . | pt_BR |
| dc.language.iso | en | pt_BR |
| dc.rights | Acesso Aberto | pt_BR |
| dc.source | http://dx.doi.org/10.1007/s00605-012-0473-y | pt_BR |
| dc.subject | Conjugacy classes | pt_BR |
| dc.subject | Normalizers | pt_BR |
| dc.subject | Finite p-groups | pt_BR |
| dc.subject | p-Groups of maximal class | pt_BR |
| dc.title | TeX -Groups with few conjugacy classes of normalizers | pt_BR |
| dc.title.alternative | Monatshefte fur Mathematik | pt_BR |
| dc.type | Artigo de Periódico | pt_BR |
| dc.identifier.number | v. 172, n. 2 | pt_BR |
| dc.embargo.liftdate | 10000-01-01 | - |
| Aparece nas coleções: | Artigo Publicado em Periódico (IME)
|