Please use this identifier to cite or link to this item:
metadata.dc.type: Artigo de Periódico
Title: Galilean covariance and non-relativistic Bhabha equations
Other Titles: Journal of Physics -London- a Mathematical and General
Authors: Santana, Ademir Eugênio de
Montigny, M. de
Khanna, Faqir C.
Santos, E. S.
metadata.dc.creator: Santana, Ademir Eugênio de
Montigny, M. de
Khanna, Faqir C.
Santos, E. S.
Abstract: We apply a five-dimensional formulation of Galilean covariance to construct non-relativistic Bhabha first-order wave equations which, depending on the representation, correspond either to the well known Dirac equation (for particles with spin 1/2) or the Duffin-Kemmer-Petiau equation (for spinless and spin 1 particles). Here the irreducible representations belong to the Lie algebra of the `de Sitter group' in 4+1 dimensions, SO(5,1). Using this approach, the non-relativistic limits of the corresponding equations are obtained directly, without taking any low-velocity approximation. As a simple illustration, we discuss the harmonic oscillator.
metadata.dc.rights: Acesso Aberto
Issue Date: 2001
Appears in Collections:Artigo Publicado em Periódico (FIS)

Files in This Item:
File Description SizeFormat 
A. E. Santana.pdf144,69 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.