DSpace/Manakin Repository

Efeito modulador in vitro de um complexo de inclusão resveratrol-metil-β-ciclodextrina sobre a inflamação e o estresse oxidativo induzidos pela hemina na doença falciforme.

Mostrar registro simples

dc.creator Oliveira, Yasmin da Silva
dc.date.accessioned 2025-10-03T17:57:02Z
dc.date.available 2027-06-17
dc.date.available 2025-10-03T17:57:02Z
dc.date.issued 2025-06-17
dc.identifier.citation OLIVEIRA, Yasmin da Silva. Efeito modulador in vitro de um complexo de inclusão resveratrol-metil-β-ciclodextrina sobre a inflamação e o estresse oxidativo induzido pela hemina na doença falciforme. Orientador: Vitor Fortuna; Coorientador: Roberto José Meyer Nascimento. 2025. 75 f. Dissertação (Mestrado em Imunologia) - Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador (BA), 2025. pt_BR
dc.identifier.uri https://repositorio.ufba.br/handle/ri/43133
dc.description.abstract Introduction: Sickle cell disease (SCD) is a hemoglobinopathy characterized by the formation of hemoglobin S (HbS). When deoxygenated, HbS triggers polymerization, aggregation, and hemolysis, releasing products such as heme, which in turn initiate inflammatory processes and oxidative stress. Resveratrol (RES) is a polyphenol described as having anti-inflammatory and antioxidant properties in vitro, but with limited bioavailability. Cyclodextrins (CD) enable the formation of inclusion complexes with hydrophobic molecules like resveratrol, enhancing its bioavailability. Objective: To investigate the effect of a resveratrol–methyl-β-cyclodextrin (RES-MBCD) inclusion complex on hemin-induced oxidative and pro-inflammatory stress in THP-1 cells and peripheral blood mononuclear cells (PBMC) from SCD patients. Materials and Methods: Cells were pre-treated with RES-MBCD (5, 15, and 25 µM) prior to induction of stress with hemin (30 or 70 µM). RES-MBCD cytotoxicity, DPPH radical scavenging activity, reactive oxygen species (ROS) production, lipid peroxide levels, and the quantification of pro-inflammatory cytokines (TNF-α and IL-6) were assessed. Results: RES-MBCD did not exhibit significant cytotoxicity on THP-1 cells at 24 hours and showed lower cytotoxicity compared to free RES at 72 hours (p < 0.0001), along with greater DPPH radical scavenging capacity (p < 0,05). RES-MBCD reduced ROS production (p < 0.01) and TNF-α quantification (p < 0.05) induced by hemin in THP-1 cells. However, it increased TNF-α (p < 0.05) and IL-6 (p < 0,05) quantification in PBMC from SCD patients. Conclusion: These findings suggest that RES-MBCD exhibits remarkable antioxidant and immunomodulatory effects against hemin-induced stress, with lower cytotoxicity compared to free RES, highlighting the potential of resveratrol as a bioactive compound of therapeutic interest in SCD. pt_BR
dc.description.sponsorship Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pt_BR
dc.description.sponsorship Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) pt_BR
dc.language por pt_BR
dc.publisher Universidade Federal da Bahia pt_BR
dc.rights Acesso Restrito/Embargado pt_BR
dc.subject Doença falciforme pt_BR
dc.subject Anemia Falciforme pt_BR
dc.subject Heme pt_BR
dc.subject Inflamação pt_BR
dc.subject Estresse oxidativo pt_BR
dc.subject Resveratrol pt_BR
dc.subject Ciclodextrinas pt_BR
dc.subject.other Sickle cell disease pt_BR
dc.subject.other Anemia, Sickle Cell pt_BR
dc.subject.other Heme pt_BR
dc.subject.other Inflammation pt_BR
dc.subject.other Oxidative stress pt_BR
dc.subject.other Resveratrol pt_BR
dc.subject.other Cyclodextrins pt_BR
dc.title Efeito modulador in vitro de um complexo de inclusão resveratrol-metil-β-ciclodextrina sobre a inflamação e o estresse oxidativo induzidos pela hemina na doença falciforme. pt_BR
dc.title.alternative In vitro modulatory effect of a resveratrol-methyl-β-cyclodextrin inclusion complex on hemin-induced inflammation and oxidative stress in sickle cell disease. pt_BR
dc.type Dissertação pt_BR
dc.publisher.program Programa de Pós-Graduação em Imunologia - (PPGIM)  pt_BR
dc.publisher.initials UFBA pt_BR
dc.publisher.country Brasil pt_BR
dc.subject.cnpq CNPQ::CIENCIAS BIOLOGICAS::IMUNOLOGIA pt_BR
dc.contributor.advisor1 Fortuna, Vitor Antonio
dc.contributor.advisor1ID https://orcid.org/0000-0001-7281-3287 pt_BR
dc.contributor.advisor1Lattes http://lattes.cnpq.br/3535550424970530 pt_BR
dc.contributor.advisor-co1 Nascimento, Roberto José Meyer
dc.contributor.advisor-co1ID https://orcid.org/0000-0002-4727-4805 pt_BR
dc.contributor.advisor-co1Lattes http://lattes.cnpq.br/9574426480028427 pt_BR
dc.contributor.referee1 Fortuna, Vitor Antonio
dc.contributor.referee1ID https://orcid.org/0000-0001-7281-3287 pt_BR
dc.contributor.referee1Lattes http://lattes.cnpq.br/3535550424970530 pt_BR
dc.contributor.referee2 Barbosa, Cynara Gomes
dc.contributor.referee2ID https://orcid.org/0000-0003-2856-3756 pt_BR
dc.contributor.referee2Lattes http://lattes.cnpq.br/1464729909848094 pt_BR
dc.contributor.referee3 Silva, Victor Diógenes Amaral da
dc.contributor.referee3ID https://orcid.org/0000-0001-8032-9663 pt_BR
dc.contributor.referee3Lattes http://lattes.cnpq.br/6166491745017786 pt_BR
dc.creator.ID https://orcid.org/0009-0003-7415-5128 pt_BR
dc.creator.Lattes http://lattes.cnpq.br/2606151750393033 pt_BR
dc.description.resumo Introdução: A doença falciforme (DF) é uma hemoglobinopatia caracterizada pela formação de hemoglobina S (HbS). Quando desoxigenada, a HbS desencadeia polimerização, agregação e hemólise, liberando produtos como o heme, que provoca processos inflamatórios e estresse oxidativo. O resveratrol (RES) é um polifenol descrito como anti-inflamatório e antioxidante in vitro, mas com biodisponibilidade limitada. Ciclodextrinas (CD) permitem a formação de complexos de inclusão com moléculas hidrofóbicas como o resveratrol, melhorando sua biodisponibilidade. Objetivo: Investigar o efeito do complexo de inclusão resveratrol-metil-β-ciclodextrina (RES-MBCD) no estresse oxidativo e pró-inflamatório induzido por hemina em células THP-1 e células mononucleares do sangue periférico (PBMC) de pacientes com doença falciforme. Materiais e métodos: As células foram pré-tratadas com RES MBCD (5, 15 e 25 µM) antes da indução do estresse com hemina (30 ou 70 µM). A citotoxicidade do RES-MBCD, inibição do radical DPPH, produção de espécies reativas de oxigênio, peróxidos lipídicos e quantificação de citocinas pró-inflamatórias (TNF-α e IL-6) foram avaliadas. Resultados: O RES-MBCD não demonstrou citotoxicidade significativa sobre células THP-1 em 24h e menor citotoxicidade em células THP-1 em comparação ao resveratrol livre em 72h (p < 0,0001), além de maior capacidade de inibição do radical DPPH (p < 0,05). RES-MBCD diminuiu a produção de ERO (p < 0,01) e a quantificação de TNF-α (p < 0,05) induzida pela hemina em células THP-1. Entretanto, aumentou a quantificação de TNF-α (p < 0,05) e IL-6 (p < 0,05) em PBMC de pacientes com DF. Conclusão: Esses dados sugerem que o RES MBCD tem notável efeito antioxidante e imunomodulador frente ao estresse causado pela hemina, com menor citotoxicidade em relação ao RES livre, reforçando o potencial do resveratrol como composto bioativo de interesse terapêutico na DF. pt_BR
dc.publisher.department Instituto de Ciências da Saúde - ICS pt_BR
dc.relation.references BRASIL. Ministério da Saúde. Doença falciforme: Condutas básicas para o tratamento. Secretaria de Atenção à Saúde, Departamento de Atenção Especializada. Brasília - DF, 2012. BRASIL. Ministério da Saúde. Manual de Normas Técnicas e Rotinas Operacionais do Programa Nacional de Triagem Neonatal. Secretaria de Assistência à Saúde, Departamento de Atenção Especializada. Brasília - DF, 2002. ACHARYA, B. et al. Recent progress in the treatment of sickle cell disease: an up-todate review. Beni-Suef University Journal of Basic and Applied Sciences, [s. l.], v. 12, n. 1, p. 38, 2023. ADENIYI, J. N. et al. Phytochemical profile and in vitro antioxidant activity of Emelia M (EMB), Mshikazi and Delosma H herbal medicines as demonstrated in THP-1 and Jurkat leukaemia cell lines. African Health Sciences, [s. l.], v. 21, n. 4, p. 1924– 1937, 2021. ALI, M. A. et al. Pyridine and isoxazole substituted 3-formylindole-based chitosan Schiff base polymer: Antimicrobial, antioxidant and in vitro cytotoxicity studies on THP-1 cells. International Journal of Biological Macromolecules, [s. l.], v. 225, p. 1575–1587, 2023. ALIPOUR, M. et al. Resveratrol plus low-dose hydroxyurea compared to high-dose hydroxyurea alone is more effective in γ-globin gene expression and ROS reduction in K562 cells. Natural Product Research, [s. l.], v. 37, n. 6, p. 985–989, 2023. ALLALI, S. et al. HbS promotes TLR4-mediated monocyte activation and proinflammatory cytokine production in sickle cell disease. Blood, [s. l.], v. 140, n. 18, p. 1972–1982, 2022. AMER, J. et al. Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. British Journal of Haematology, [s. l.], v. 132, n. 1, p. 108–113, 2006. ANSARI, K. A. et al. Cyclodextrin-Based Nanosponges for Delivery of Resveratrol: In Vitro Characterisation, Stability, Cytotoxicity and Permeation Study. AAPS PharmSciTech, [s. l.], v. 12, n. 1, p. 279–286, 2011. ANTWI-BOASIAKO, C. et al. Hematological parameters in Ghanaian sickle cell disease patients. Journal of Blood Medicine, [s. l.], v. 9, p. 203–209, 2018. ANTWI-BOASIAKO, C. et al. Oxidative Profile of Patients with Sickle Cell Disease. Medical Sciences, [s. l.], v. 7, n. 2, p. 17, 2019. ATAGA, K. I. et al. Crizanlizumab for the Prevention of Pain Crises in Sickle Cell Disease. The New England journal of medicine, [s. l.], v. 376, n. 5, p. 429–439, 2017. 66 AUGUSTINE, R. et al. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Materials Today Communications, [s. l.], v. 25, p. 101692, 2020. BARBU, E. A. et al. Neutrophils remain detrimentally active in hydroxyurea-treated patients with sickle cell disease. PLOS ONE, [s. l.], v. 14, n. 12, p. e0226583, 2019. BASTIN, A. et al. The effects of malvidin on oxidative stress parameters and inflammatory cytokines in LPS-induced human THP-1 cells. Journal of Cellular Physiology, [s. l.], v. 236, n. 4, p. 2790–2799, 2021. BELCHER, J. D. et al. Activated monocytes in sickle cell disease: potential role in the activation of vascular endothelium and vaso-occlusion. Blood, [s. l.], v. 96, n. 7, p. 2451–2459, 2000. BERTACCHE, V. et al. Host–Guest Interaction Study of Resveratrol With Natural and Modified Cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, [s. l.], v. 55, n. 3–4, p. 279–287, 2006. BLAIR, H. A. Crizanlizumab: First Approval. Drugs, [s. l.], v. 80, n. 1, p. 79–84, 2020a. BLAIR, H. A. Voxelotor: First Approval. Drugs, [s. l.], v. 80, n. 2, p. 209–215, 2020b. BOLARINWA, A. B. et al. Antioxidant supplementation for sickle cell disease. The Cochrane Database of Systematic Reviews, [s. l.], v. 2024, n. 5, p. CD013590, 2024. BROWN, M. D.; WICK, T. M.; ECKMAN, J. R. Activation of Vascular Endothelial Cell Adhesion Molecule Expression by Sickle Blood Cells. Pediatric Pathology & Molecular Medicine, [s. l.], 2001. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/15513810109168817. Acesso em: 28 abr. 2025. BUNN, H. F. Pathogenesis and Treatment of Sickle Cell Disease. New England Journal of Medicine, [s. l.], v. 337, n. 11, p. 762–769, 1997. CANÇADO, R. D. et al. Estimated mortality rates of individuals with sickle cell disease in Brazil: real-world evidence. Blood Advances, [s. l.], v. 7, n. 15, p. 3783– 3792, 2023. CAPELETO, D. et al. The anti-inflammatory effects of resveratrol on human peripheral blood mononuclear cells are influenced by a superoxide dismutase 2 gene polymorphism. Biogerontology, [s. l.], v. 16, n. 5, p. 621–630, 2015. CHANPUT, W.; MES, J. J.; WICHERS, H. J. THP-1 cell line: An in vitro cell model for immune modulation approach. International Immunopharmacology, [s. l.], v. 23, n. 1, p. 37–45, 2014. CHEN, G. et al. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood, [s. l.], v. 123, n. 24, p. 3818–3827, 2014. 67 CHEN, G.-D.; YU, W.-D.; CHEN, X.-P. SirT1 activator represses the transcription of TNF-α in THP-1 cells of a sepsis model via deacetylation of H4K16. Molecular Medicine Reports, [s. l.], v. 14, n. 6, p. 5544–5550, 2016. CHENG, L. et al. Resveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: role of Nrf2/ARE pathway. International Journal of Clinical and Experimental Medicine, [s. l.], v. 8, n. 7, p. 10420–10428, 2015. CHINEMBIRI, T. et al. Review of Natural Compounds for Potential Skin Cancer Treatment. [s. l.], v. 19, p. 11679–11721, 2014. CHOWDHURY, P. et al. Hemin-induced reactive oxygen species triggers autophagydependent macrophage differentiation and pro-inflammatory responses in THP1 cells. Experimental Cell Research, [s. l.], v. 442, n. 1, p. 114216, 2024. CLOGSTON, J. D.; PATRI, A. K. Zeta Potential Measurement. In: MCNEIL, S. E. (org.). Characterization of Nanoparticles Intended for Drug Delivery. Totowa, NJ: Humana Press, 2011. (Methods in Molecular Biology). v. 697, p. 63–70. Disponível em: https://link.springer.com/10.1007/978-1-60327-198-1_6. Acesso em: 12 abr. 2025. COSÍN-TOMÀS, M. et al. Role of Resveratrol and Selenium on Oxidative Stress and Expression of Antioxidant and Anti-Aging Genes in Immortalized Lymphocytes from Alzheimer’s Disease Patients. Nutrients, [s. l.], v. 11, n. 8, p. 1764, 2019. DIXON, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, [s. l.], v. 149, n. 5, p. 1060–1072, 2012. DONG, M.; MCGANN, P. T. Changing the Clinical Paradigm of Hydroxyurea Treatment for Sickle Cell Anemia Through Precision Medicine. Clinical pharmacology and therapeutics, [s. l.], v. 109, n. 1, p. 73–81, 2021. DUTRA, F. F. et al. Hemolysis-induced lethality involves inflammasome activation by heme. Proceedings of the National Academy of Sciences, [s. l.], v. 111, n. 39, p. E4110–E4118, 2014. DUTRA, F. F.; BOZZA, M. T. Heme on innate immunity and inflammation. Frontiers in Pharmacology, [s. l.], v. 5, p. 115, 2014. DUTTA, S. et al. In-vitro scientific validation of anti-inflammatory activity of Punica granatum L. on Leukemia monocytic cell line. African Health Sciences, [s. l.], v. 24, n. 4, p. 240–249, 2024. ELENDU, C. et al. Understanding Sickle cell disease: Causes, symptoms, and treatment options. Medicine, [s. l.], v. 102, n. 38, p. e35237, 2023. ESOH, K.; WONKAM, A. Evolutionary history of sickle-cell mutation: implications for global genetic medicine. Human Molecular Genetics, [s. l.], v. 30, n. R1, p. R119– R128, 2021. 68 ESPERTI, S. et al. Increased retention of functional mitochondria in mature sickle red blood cells is associated with increased sickling tendency, hemolysis and oxidative stress. Haematologica, [s. l.], v. 108, n. 11, p. 3086–3094, 2023. FANG, X. et al. Ferroptosis as a target for protection against cardiomyopathy. Proceedings of the National Academy of Sciences of the United States of America, [s. l.], v. 116, n. 7, p. 2672–2680, 2019. FANG, X. et al. ROS-responsive resveratrol-loaded cyclodextrin nanomicelles reduce inflammatory osteolysis. Colloids and Surfaces B: Biointerfaces, [s. l.], v. 219, p. 112819, 2022. FARIA, M. et al. Revisiting cell–particle association in vitro: A quantitative method to compare particle performance. Journal of Controlled Release, [s. l.], v. 307, p. 355– 367, 2019. FIBACH, E. et al. Resveratrol: Antioxidant activity and induction of fetal hemoglobin in erythroid cells from normal donors and β-thalassemia patients. International Journal of Molecular Medicine, [s. l.], v. 29, n. 6, p. 974–982, 2012. FIGUEIREDO, R. T. et al. Characterization of Heme as Activator of Toll-like Receptor 4 *. Journal of Biological Chemistry, [s. l.], v. 282, n. 28, p. 20221–20229, 2007. FORTES, G. B. et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood, [s. l.], v. 119, n. 10, p. 2368–2375, 2012. FORTUNA, V. et al. Ferroptosis as an emerging target in sickle cell disease. Current Research in Toxicology, [s. l.], p. 100181, 2024. GALLIVAN, A. et al. Reticulocyte mitochondrial retention increases reactive oxygen species and oxygen consumption in mouse models of sickle cell disease and phlebotomy-induced anemia. Experimental Hematology, [s. l.], v. 122, p. 55–62, 2023. GAO, X. et al. Immunomodulatory activity of resveratrol: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production1. Biochemical Pharmacology, [s. l.], v. 62, n. 9, p. 1299–1308, 2001. GBOTOSHO, O. T.; KAPETANAKI, M. G.; KATO, G. J. The Worst Things in Life are Free: The Role of Free Heme in Sickle Cell Disease. Frontiers in Immunology, [s. l.], v. 11, 2021. Disponível em: https://www.frontiersin.org/articles/10.3389/fimmu.2020.561917. Acesso em: 18 out. 2023. GERVATAUSKAS, K. et al. PATIENTS WITH SICKLE CELL DISEASE TREATED WITH HIDROXIUREA HAVE HIGHER EXPRESSION OF PD-L1 IN MONOCYTES. Hematology, Transfusion and Cell Therapy, [s. l.], v. 44, p. S20–S21, 2022. GHOSH, S. et al. P-selectin plays a role in haem-induced acute lung injury in sickle mice. British Journal of Haematology, [s. l.], v. 186, n. 2, p. 329–333, 2019. 69 GONÇALVES, M. S. et al. ßS-Haplotypes in sickle cell anemia patients from Salvador, Bahia, Northeastern Brazil. Brazilian Journal of Medical and Biological Research, [s. l.], v. 36, p. 1283–1288, 2003. GOWD, V. et al. Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. The Journal of Nutritional Biochemistry, [s. l.], v. 109, p. 109101, 2022. GRAÇA-SOUZA, A. V. et al. Neutrophil activation by heme: implications for inflammatory processes. Blood, [s. l.], v. 99, n. 11, p. 4160–4165, 2002. GUALDONI, G. A. et al. Resveratrol enhances TNF-α production in human monocytes upon bacterial stimulation. Biochimica et Biophysica Acta (BBA) - General Subjects, [s. l.], v. 1840, n. 1, p. 95–105, 2014. GUARDA, C. C. et al. Hydroxyurea alters circulating monocyte subsets and dampens its inflammatory potential in sickle cell anemia patients. Scientific Reports, [s. l.], v. 9, n. 1, p. 14829, 2019. HEBBEL, R. P.; KEY, N. S. Microparticles in sickle cell anaemia: promise and pitfalls. British Journal of Haematology, [s. l.], v. 174, n. 1, p. 16–29, 2016. HOFSTRA, T. et al. Sickle erythrocytes adhere to polymorphonuclear neutrophils and activate the neutrophil respiratory burst. Blood, [s. l.], v. 87, n. 10, p. 4440–4447, 1996. HOWITZ, K. T. et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature, [s. l.], v. 425, n. 6954, p. 191–196, 2003. IMOTO, S. et al. Haemin-induced cell death in human monocytic cells is consistent with ferroptosis. Transfusion and Apheresis Science, [s. l.], v. 57, n. 4, p. 524–531, 2018. JAFRI, F. et al. L-glutamine for sickle cell disease: more than reducing redox. Annals of Hematology, [s. l.], v. 101, n. 8, p. 1645–1654, 2022. JAGADEESWARAN, R. et al. The Abnormal Presence of Mitochondria in Circulating Red Blood Cells Cause an Increased Oxygen Consumption Rate, ROS Generation and Hemolysis in Patients with Sickle Cell Disease. Blood, [s. l.], v. 130, n. Supplement 1, p. 2237, 2017. KARKI, N. R.; Saunders ,Katherine; AND KUTLAR, A. A critical evaluation of crizanlizumab for the treatment of sickle cell disease. Expert Review of Hematology, [s. l.], v. 15, n. 1, p. 5–13, 2022. KATO, G. J. et al. Levels of soluble endothelium-derived adhesion molecules in patients with sickle cell disease are associated with pulmonary hypertension, organ dysfunction, and mortality. British journal of haematology, [s. l.], v. 130, n. 6, p. 943–953, 2005. KATO, G. J. et al. Sickle cell disease. Nature Reviews Disease Primers, [s. l.], v. 4, n. 1, p. 1–22, 2018. 70 KATO, G. J.; STEINBERG, M. H.; GLADWIN, M. T. Intravascular hemolysis and the pathophysiology of sickle cell disease. The Journal of Clinical Investigation, [s. l.], v. 127, n. 3, p. 750–760, KAVANAGH, P. L.; FASIPE, T. A.; WUN, T. Sickle Cell Disease: A Review. JAMA, [s. l.], v. 328, n. 1, p. 57, 2022. KEHINDE, M. O. et al. l-Arginine supplementation enhances antioxidant activity and erythrocyte integrity in sickle cell anaemia subjects. Pathophysiology: The Official Journal of the International Society for Pathophysiology, [s. l.], v. 22, n. 3, p. 137–142, 2015. KIM, E. N. et al. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging (Albany NY), [s. l.], v. 10, n. 1, p. 83–99, 2018. KUCUKAL, E. et al. Red Blood Cell Adhesion to Heme-Activated Endothelial Cells Reflects Clinical Phenotype in Sickle Cell Disease. American journal of hematology, [s. l.], p. 10.1002/ajh.25159, 2018. KULKARNI, S. S.; CANTÓ, C. The molecular targets of resveratrol. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, [s. l.], v. 1852, n. 6, Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes, p. 1114–1123, 2015. KUMAR, S.; BANDYOPADHYAY, U. Free heme toxicity and its detoxification systems in human. Toxicology Letters, [s. l.], v. 157, n. 3, p. 175–188, 2005. KUMARI, A.; YADAV, S. K. Cellular interactions of therapeutically delivered nanoparticles. Expert Opinion on Drug Delivery, [s. l.], v. 8, n. 2, p. 141–151, 2011. KWON, M.-Y. et al. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget, [s. l.], v. 6, n. 27, p. 24393–24403, 2015. LANARO, C. et al. Altered levels of cytokines and inflammatory mediators in plasma and leukocytes of sickle cell anemia patients and effects of hydroxyurea therapy. Journal of Leukocyte Biology, [s. l.], v. 85, n. 2, p. 235–242, 2009. LEE, J.-Y. et al. Lipid Metabolism and Ferroptosis. Biology, [s. l.], v. 10, n. 3, p. 184, 2021. LEE, M. T.; OGU, U. O. Sickle cell disease in the new era: advances in drug treatment. Transfusion and Apheresis Science, [s. l.], v. 61, n. 5, 2022. Disponível em: https://www.trasci.com/article/S1473-0502(22)00239-7/abstract. Acesso em: 2 out. 2024. LIU, C.-H. et al. Encapsulating curcumin in ethylene diamine-β-cyclodextrin nanoparticle improves topical cornea delivery. Colloids and Surfaces B: Biointerfaces, [s. l.], v. 186, p. 110726, 2020. LOGGETTO, S. R. Sickle cell anemia: clinical diversity and beta S-globin haplotypes. Revista Brasileira de Hematologia e Hemoterapia, [s. l.], v. 35, p. 155–157, 2013. 71 LÓPEZ-NICOLÁS, J. M.; RODRÍGUEZ-BONILLA, P.; GARCÍA-CARMONA, F. Cyclodextrins and antioxidants. Critical Reviews in Food Science and Nutrition, [s. l.], v. 54, n. 2, p. 251–276, 2014. LOSA, G. A. Resveratrol modulates apoptosis and oxidation in human blood mononuclear cells. European Journal of Clinical Investigation, [s. l.], v. 33, n. 9, p. 818–823, 2003. LU, Z. et al. Cytotoxicity and inhibition of lipid peroxidation activity of resveratrol/cyclodextrin inclusion complexes. Journal of Inclusion Phenomena and Macrocyclic Chemistry, [s. l.], v. 73, n. 1, p. 313–320, 2012. LUCAS-ABELLÁN, C. et al. Cyclodextrins as resveratrol carrier system. Food Chemistry, [s. l.], v. 104, n. 1, p. 39–44, 2007. LUND, M. E. et al. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus. Journal of Immunological Methods, [s. l.], v. 430, p. 64–70, 2016. MA, C. et al. Anti-inflammatory effect of resveratrol through the suppression of NF-κB and JAK/STAT signaling pathways. Acta Biochimica et Biophysica Sinica, [s. l.], v. 47, n. 3, p. 207–213, 2015. MAHFOUDHI, E. et al. Red cells exchanges in sickle cells disease lead to a selective reduction of erythrocytes-derived blood microparticles. British Journal of Haematology, [s. l.], v. 156, n. 4, p. 545–547, 2012. MCGANN, P. T.; WARE, R. E. Hydroxyurea therapy for sickle cell anemia. Expert opinion on drug safety, [s. l.], v. 14, n. 11, p. 1749–1758, 2015. MENON, A. V. et al. Excess heme upregulates heme oxygenase 1 and promotes cardiac ferroptosis in mice with sickle cell disease. Blood, [s. l.], v. 139, n. 6, p. 936– 941, 2022. NAGABABU, E. et al. Heme Degradation and Oxidative Stress in Murine Models for Hemoglobinopathies: Thalassemia, Sickle Cell Disease and Hemoglobin C Disease. Blood cells, molecules & diseases, [s. l.], v. 41, n. 1, p. 60–66, 2008. NAVANEETHABALAKRISHNAN, S.; AN, X.; VINCHI, F. Heme- and iron-activated macrophages in sickle cell disease: an updated perspective. Current Opinion in Hematology, [s. l.], v. 31, n. 6, p. 275–284, 2024. NAVEENKUMAR, S. K. et al. Hemin-induced platelet activation and ferroptosis is mediated through ROS-driven proteasomal activity and inflammasome activation: Protection by Melatonin. Biochimica Et Biophysica Acta. Molecular Basis of Disease, [s. l.], v. 1865, n. 9, p. 2303–2316, 2019. NIIHARA, Y. et al. A Phase 3 Trial of l-Glutamine in Sickle Cell Disease. New England Journal of Medicine, [s. l.], v. 379, n. 3, p. 226–235, 2018. NUR, E. et al. N-acetylcysteine reduces oxidative stress in sickle cell patients. Annals of Hematology, [s. l.], v. 91, n. 7, p. 1097–1105, 2012. 72 NUR, E. et al. Oxidative stress in sickle cell disease; pathophysiology and potential implications for disease management. American Journal of Hematology, [s. l.], v. 86, n. 6, p. 484–489, 2011. OMRANINAVA, M. et al. Effect of resveratrol on inflammatory cytokines: A metaanalysis of randomized controlled trials. European Journal of Pharmacology, [s. l.], v. 908, p. 174380, 2021. OTTERBEIN, L. E. et al. Heme oxygenase-1: unleashing the protective properties of heme. Trends in Immunology, [s. l.], v. 24, n. 8, p. 449–455, 2003. PAN, W. et al. Resveratrol Protects against TNF-α-Induced Injury in Human Umbilical Endothelial Cells through Promoting Sirtuin-1-Induced Repression of NF-KB and p38 MAPK. PLOS ONE, [s. l.], v. 11, n. 1, p. e0147034, 2016. PANNU, N.; BHATNAGAR, A. Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomedicine & Pharmacotherapy, [s. l.], v. 109, p. 2237–2251, 2019. PAPADOPOULOS, N. G. et al. An improved fluorescence assay for the determination of lymphocyte-mediated cytotoxicity using flow cytometry. Journal of Immunological Methods, [s. l.], v. 177, n. 1, p. 101–111, 1994. PATIL, R. et al. Comparative analyses of anti-inflammatory effects of Resveratrol, Pterostilbene and Curcumin: in-silico and in-vitro evidences. In Silico Pharmacology, [s. l.], v. 12, n. 1, p. 38, 2024. PENG, Y. et al. Resveratrol alleviates reactive oxygen species and inflammation in diabetic retinopathy via SIRT1/HMGB1 pathway-mediated ferroptosis. Toxicology and Applied Pharmacology, [s. l.], v. 495, p. 117214, 2025. PENG, L. et al. Therapeutic potential of resveratrol through ferroptosis modulation: insights and future directions in disease therapeutics. Frontiers in Pharmacology, [s. l.], v. 15, p. 1473939, 2024. PIEL, F. B.; STEINBERG, M. H.; REES, D. C. Sickle Cell Disease. New England Journal of Medicine, [s. l.], v. 376, n. 16, p. 1561–1573, 2017. PINHO, E. et al. Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydrate Polymers, [s. l.], v. 101, p. 121–135, 2014. PINTO, V. M. et al. Sickle cell disease: a review for the internist. Internal and Emergency Medicine, [s. l.], v. 14, n. 7, p. 1051–1064, 2019. PLATT, O. S. Hydroxyurea for the treatment of sickle cell anemia. The New England Journal of Medicine, [s. l.], v. 358, n. 13, p. 1362–1369, 2008. POPE, L. E.; DIXON, S. J. Regulation of Ferroptosis by Lipid Metabolism. Trends in cell biology, [s. l.], v. 33, n. 12, p. 1077–1087, 2023. PRIETO, J.; EKLUND, A.; PATARROYO, M. Regulated Expression of Integrins and Other Adhesion Molecules during Differentiation of Monocytes into Macrophages. Cellular Immunology, [s. l.], v. 156, n. 1, p. 191–211, 1994. 73 PURI, N. et al. Heme Induced Oxidative Stress Attenuates Sirtuin1 and Enhances Adipogenesis in Mesenchymal Stem Cells and Mouse Pre-Adipocytes. Journal of Cellular Biochemistry, [s. l.], v. 113, n. 6, p. 1926–1935, 2012. QIN, Z. The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis, [s. l.], v. 221, n. 1, p. 2–11, 2012. REES, D. C.; WILLIAMS, T. N.; GLADWIN, M. T. Sickle-cell disease. Lancet (London, England), [s. l.], v. 376, n. 9757, p. 2018–2031, 2010. REITER, C. D. et al. Cell-free hemoglobin limits nitric oxide bioavailability in sicklecell disease. Nature Medicine, [s. l.], v. 8, n. 12, p. 1383–1389, 2002. REN, Z. et al. Resveratrol inhibits NF-κB signaling through suppression of p65 and I B kinase activities. Die Pharmazie - An International Journal of Pharmaceutical Sciences, [s. l.], v. 68, n. 8, p. 689–694, 2013. SAPINO, S. et al. In silico design, photostability and biological properties of the complex resveratrol/hydroxypropyl-β-cyclodextrin. Journal of Inclusion Phenomena, [s. l.], v. 63, p. 171–180, 2009. SARFRAZ, M. et al. Resveratrol-Laden Nano-Systems in the Cancer Environment: Views and Reviews. Cancers, [s. l.], v. 15, n. 18, p. 4499, 2023. SCHILDBERGER, A. et al. Monocytes, Peripheral Blood Mononuclear Cells, and THP-1 Cells Exhibit Different Cytokine Expression Patterns following Stimulation with Lipopolysaccharide. Mediators of Inflammation, [s. l.], v. 2013, p. 1–10, 2013. SCHWAGER, J. et al. Resveratrol distinctively modulates the inflammatory profiles of immune and endothelial cells. BMC Complementary and Alternative Medicine, [s. l.], v. 17, n. 1, p. 309, 2017. SCHWENDE, H. et al. Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. Journal of Leukocyte Biology, [s. l.], v. 59, n. 4, p. 555–561, 1996. SERINI, S. et al. Anti-Inflammatory Effects of Curcumin-Based Nanoparticles Containing α-Linolenic Acid in a Model of Psoriasis In Vitro. Nutrients, [s. l.], v. 17, n. 4, p. 692, 2025. SESTI-COSTA, R.; COSTA, F. F.; CONRAN, N. Role of Macrophages in Sickle Cell Disease Erythrophagocytosis and Erythropoiesis. International Journal of Molecular Sciences, [s. l.], v. 24, n. 7, p. 6333, 2023. SILVA, G. et al. Oxidized Hemoglobin Is an Endogenous Proinflammatory Agonist That Targets Vascular Endothelial Cells. The Journal of Biological Chemistry, [s. l.], v. 284, n. 43, p. 29582–29595, 2009. SILVA-PINTO, A. C. et al. Economic burden of sickle cell disease in Brazil. PLOS ONE, [s. l.], v. 17, n. 6, p. e0269703, 2022. 74 SINS, J. W. R. et al. N-Acetylcysteine in Patients with Sickle Cell Disease: A Randomized Controlled Trial. Blood, [s. l.], v. 128, n. 22, p. 123, 2016. SOARES, M. P.; BACH, F. H. Heme oxygenase-1: from biology to therapeutic potential. Trends in Molecular Medicine, [s. l.], v. 15, n. 2, p. 50–58, 2009. SOO, E. et al. Enhancing delivery and cytotoxicity of resveratrol through a dual nanoencapsulation approach. Journal of Colloid and Interface Science, [s. l.], v. 462, p. 368–374, 2016. STELLA, V. J.; HE, Q. Cyclodextrins. Toxicologic Pathology, [s. l.], v. 36, n. 1, p. 30–42, 2008. STEPANIC, V. et al. Selected attributes of polyphenols in targeting oxidative stress in cancer. Current Topics in Medicinal Chemistry, [s. l.], v. 15, n. 5, p. 496–509, 2015. SUNDD, P.; GLADWIN, M. T.; NOVELLI, E. M. Pathophysiology of Sickle Cell Disease. Annual review of pathology, [s. l.], v. 14, p. 263–292, 2019. TELEN, M. J.; MALIK, P.; VERCELLOTTI, G. M. Therapeutic strategies for sickle cell disease: towards a multi-agent approach. Nature Reviews Drug Discovery, [s. l.], v. 18, n. 2, p. 139–158, 2019. THEODOROU, A. et al. The investigation of resveratrol and analogs as potential inducers of fetal hemoglobin. Blood Cells, Molecules, and Diseases, [s. l.], v. 58, p. 6–12, 2016. THOMSON, A. M. et al. Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000–2021: a systematic analysis from the Global Burden of Disease Study 2021. The Lancet Haematology, [s. l.], v. 10, n. 8, p. e585–e599, 2023. TOZATTO‐MAIO, K. et al. Inflammatory pathways and anti‐inflammatory therapies in sickle cell disease. HemaSphere, [s. l.], v. 8, n. 12, p. e70032, 2024. TSHIVHASE, A. M.; MATSHA, T.; RAGHUBEER, S. Resveratrol attenuates high glucose-induced inflammation and improves glucose metabolism in HepG2 cells. Scientific Reports, [s. l.], v. 14, p. 1106, 2024. UEKAMA, K.; HIRAYAMA, F.; IRIE, T. Cyclodextrin Drug Carrier Systems. Chemical Reviews, [s. l.], v. 98, n. 5, p. 2045–2076, 1998. UNGVARI, Z. et al. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. American Journal of Physiology - Heart and Circulatory Physiology, [s. l.], v. 299, n. 1, p. H18–H24, 2010. VASCONCELLOS, L. R. C. et al. Intracerebral Injection of Heme Induces Lipid Peroxidation, Neuroinflammation, and Sensorimotor Deficits. Stroke, [s. l.], v. 52, n. 5, p. 1788–1797, 2021. VICHINSKY, E. et al. A Phase 3 Randomized Trial of Voxelotor in Sickle Cell Disease. New England Journal of Medicine, [s. l.], v. 381, n. 6, p. 509–519, 2019. 75 VINCHI, F. et al. Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease. Blood, [s. l.], v. 127, n. 4, p. 473–486, 2016. WALLE, T. Bioavailability of resveratrol. Annals of the New York Academy of Sciences, [s. l.], v. 1215, p. 9–15, 2011. WANG, L.-F. et al. Resveratrol prevents age-related heart impairment through inhibiting the Notch/NF-κB pathway. Food Science & Nutrition, [s. l.], v. 12, n. 2, p. 1035–1045, 2024. WANG, X. et al. Resveratrol reduces ROS-induced ferroptosis by activating SIRT3 and compensating the GSH/GPX4 pathway. Molecular Medicine, [s. l.], v. 29, n. 1, p. 137, 2023. XI, C. et al. Nrf2 sensitizes ferroptosis through l-2-hydroxyglutarate–mediated chromatin modifications in sickle cell disease. Blood, [s. l.], v. 142, n. 4, p. 382–396, 2023. XIA, S. et al. Resveratrol Alleviates Zearalenone-Induced Intestinal Dysfunction in Mice through the NF-κB/Nrf2/HO-1 Signalling Pathway. Foods, [s. l.], v. 13, n. 8, p. 1217, 2024. XU, L. et al. Inhibition of NF-κB Signaling Pathway by Resveratrol Improves Spinal Cord Injury. Frontiers in Neuroscience, [s. l.], v. 12, 2018. Disponível em: https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00690/f ull. Acesso em: 24 set. 2024. YANG, X. et al. Ferroptosis as a new tool for tumor suppression through lipid peroxidation. Communications Biology, [s. l.], v. 7, n. 1, p. 1–12, 2024. YUAN, D. et al. Resveratrol protects against diabetic retinal ganglion cell damage by activating the Nrf2 signaling pathway. Heliyon, [s. l.], v. 10, n. 9, 2024. Disponível em: https://www.cell.com/heliyon/abstract/S2405-8440(24)06817-8. Acesso em: 1 out. 2024. ZAUNER, W.; FARROW, N. A.; HAINES, A. M. R. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. Journal of Controlled Release, [s. l.], v. 71, n. 1, p. 39–51, 2001. ZEMBRUSKI, N. C. L. et al. 7-Aminoactinomycin D for apoptosis staining in flow cytometry. Analytical Biochemistry, [s. l.], v. 429, n. 1, p. 79–81, 2012. ZHANG, S.; GAO, H.; BAO, G. Physical Principles of Nanoparticle Cellular Endocytosis. ACS nano, [s. l.], v. 9, n. 9, p. 8655–8671, 2015. ZHUANG, Y. et al. Resveratrol Attenuates Oxidative Stress-Induced Intestinal Barrier Injury through PI3K/Akt-Mediated Nrf2 Signaling Pathway. Oxidative Medicine and Cellular Longevity, [s. l.], v. 2019, p. 7591840, 2019. pt_BR
dc.type.degree Mestrado Acadêmico pt_BR


Arquivos deste item

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples