DSpace/Manakin Repository

Avaliação do potencial gerador de hidrocarbonetos e do paleoambiente deposicional da Formação Pirara, Bacia do Tacutu, Brasil.

Mostrar registro simples

dc.creator Pereira, Ismael Ramos
dc.date.accessioned 2025-09-09T10:54:30Z
dc.date.available 2025-09-09T10:54:30Z
dc.date.issued 2022-07-25
dc.identifier.citation PEREIRA, Ismael Ramos. Avaliação do potencial gerador de hidrocarbonetos e do paleoambiente deposicional da Formação Pirara, Bacia do Tacutu, Brasil. 2022. 104 f. Dissertação (Mestrado em Geoquímica) - Instituto de Geociências, Universidade Federal da Bahia, Salvador (Bahia), 2022. pt_BR
dc.identifier.uri https://repositorio.ufba.br/handle/ri/42868
dc.description.abstract The present research focused on the geochemical study of rock samples (siltites, marls and shales) from the Pirara Formation, from the core obtained in the R-B0-SR-01 well drilled in the Tacutu Basin, Roraima State, Northern Brazil. This study is justified by the fact that, despite the volume of subsurface data (geophysical methods) and the few geochemical data (surface geochemistry) about the basin, a broader and more robust geochemical characterization of the organic matter is necessary for a better evaluation of the effective potential of the Pirara Formation for the generation of oil. Following this proposal, the research had as main objective: to geochemically characterize the rocks of the Pirara Formation regarding the potential for the generation of hydrocarbons and to estimate the thermal evolution and the conditions of the paleoenvironment of deposition. The studies involved analyzes of Total Organic Carbon (TOC); Pyrolysis-Rock-Eval (S1, S2, S3, Tmax, HI and OI); gas chromatography of Total Organic Extract (whole oil); saturated biomarkers and stable carbon isotopes. This research showed that: the levels of TOC, in the analyzed samples, are between 0 and 7.78%. The insoluble residue (RI) values ranged between 23.32% and 94.34%. The Rock-Eval pyrolysis data provided distinct characteristics among the analyzed samples, which, in general, showed an oil potential that varied from poor to very good, but only five samples had good oil potential, despite being considered residual values. due to high maturation. The values of IH and IO, despite being also residual, indicate the existence of types I, II and III kerogens. The gas chromatography analyzes of the organic extracts showed results with chromatogram patterns that represent light oil, partially biodegraded petroleum, and biodegraded petroleum. The percentages of the oil fractions (saturated, aromatics and NSO compounds) suggest that the organic matter of the samples from the Pirara Formation has a tendency of high thermal maturity (high percentage of the saturated fraction) and high degree of biodegradation (high percentage of the fraction NSO) for some samples. The results of the analysis of saturated biomarkers in all samples show features that suggest very high thermal maturity. The diagnostic reasons of the saturated biomarkers suggest that the organic matter that gave rise to the organic extracts is mostly from marine planktonic organisms (algae and bacteria) and lesser contribution from terrestrial organic matter. The depositional paleoenvironment is characterized as a transitional-marine environment with variable and variable salinity and suboxic/anoxic condition. The sedimentation was of the mixed type (siliciclastic and carbonate) and the kerogen has thermal maturity referring to the late window of oil generation. All samples present biomarkers indicative of biodegradation, but with evidence of mixing with oil generated by the same source rock at different times. pt_BR
dc.description.sponsorship Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES pt_BR
dc.description.sponsorship Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pt_BR
dc.language por pt_BR
dc.publisher Universidade Federal da Bahia pt_BR
dc.rights Acesso Aberto pt_BR
dc.subject Bacia do Tacutu pt_BR
dc.subject Formação Pirara pt_BR
dc.subject Geoquímica orgânica pt_BR
dc.subject Potencial gerador pt_BR
dc.subject Paleoambiente deposicional pt_BR
dc.subject Maturidade térmica pt_BR
dc.subject.other Tacutu basin pt_BR
dc.subject.other Pirara formation pt_BR
dc.subject.other Organic geochemistry pt_BR
dc.subject.other Generating potential pt_BR
dc.subject.other Depositional paleoenvironment pt_BR
dc.subject.other Thermal maturity pt_BR
dc.title Avaliação do potencial gerador de hidrocarbonetos e do paleoambiente deposicional da Formação Pirara, Bacia do Tacutu, Brasil. pt_BR
dc.title.alternative Assessment of the hydrocarbon-generating potential and depositional paleoenvironment of the Pirara Formation, Tacutu Basin, Brazil. pt_BR
dc.type Dissertação pt_BR
dc.publisher.program Programa de Pós-Graduação em Geoquímica: Petróleo e Meio Ambiente (POSPETRO)  pt_BR
dc.publisher.initials UFBA pt_BR
dc.publisher.country Brasil pt_BR
dc.subject.cnpq CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS pt_BR
dc.contributor.advisor1 Oliveira, Olívia Maria Cordeiro de
dc.contributor.advisor1ID https://orcid.org/0000-0002-8945-3000 pt_BR
dc.contributor.advisor1Lattes http://lattes.cnpq.br/6803571168057331 pt_BR
dc.contributor.advisor-co1 Garcia, Karina dos Santos
dc.contributor.advisor-co1ID https://orcid.org/0000-0003-3575-311X pt_BR
dc.contributor.advisor-co1Lattes http://lattes.cnpq.br/5195190698719857 pt_BR
dc.contributor.referee1 Oliveira, Olívia Maria Cordeiro de
dc.contributor.referee1ID https://orcid.org/0000-0002-8945-3000 pt_BR
dc.contributor.referee1Lattes http://lattes.cnpq.br/6803571168057331 pt_BR
dc.contributor.referee2 Garcia, Karina dos Santos
dc.contributor.referee2ID https://orcid.org/0000-0003-3575-311X pt_BR
dc.contributor.referee2Lattes http://lattes.cnpq.br/5195190698719857 pt_BR
dc.contributor.referee3 Queiroz, Antônio Fernando de Souza
dc.contributor.referee3ID https://orcid.org/0000-0002-3473-4462 pt_BR
dc.contributor.referee3Lattes http://lattes.cnpq.br/8307874123800948 pt_BR
dc.contributor.referee4 Dino, Rodolfo
dc.contributor.referee4ID https://orcid.org/0000-0002-5310-4685 pt_BR
dc.contributor.referee4Lattes http://lattes.cnpq.br/2263822390559538 pt_BR
dc.contributor.referee5 Cerqueira, José Roberto
dc.contributor.referee5ID https://orcid.org/0009-0005-8004-9940 pt_BR
dc.contributor.referee5Lattes http://lattes.cnpq.br/1071496358592369 pt_BR
dc.creator.ID https://orcid.org/0000-0001-5711-8112 pt_BR
dc.creator.Lattes http://lattes.cnpq.br/5658479625690785 pt_BR
dc.description.resumo A presente pesquisa teve como foco o estudo geoquímico de amostras de rocha (siltitos, margas e folhelhos) da Formação Pirara, do testemunho obtido no poço R-B0-SR-01 perfurado na Bacia do Tacutu, Estado de Roraima, região Norte do Brasil. Este estudo se justifica pelo fato de, apesar do volume de dados de subsuperfície (métodos geofísicos) e dos poucos dados geoquímicos (geoquímica de superfície) acerca da bacia, ser necessária uma caracterização geoquímica mais ampla e robusta da matéria orgânica para uma melhor avaliação da potencialidade efetiva da Formação Pirara para a geração de petróleo. Seguindo tal proposta, a pesquisa teve como objetivo precípuo: caracterizar geoquimicamente as rochas da Formação Pirara quanto a potencialidade para a geração de hidrocarbonetos e estimar a evolução térmica e as condições do paleoambiente de deposição. Os estudos envolveram as análises de Carbono Orgânico Total (COT); Pirólise-Rock-Eval (S1, S2, S3, Tmáx, IH e IO); cromatografia gasosa do Extrato Orgânico Total (whole oil); biomarcadores saturados e; isótopos estáveis de carbono. Esta pesquisa demonstrou que: os teores do COT, nas amostras analisadas, encontram-se entre 0 e 7,78%. Os valores de resíduo insolúvel (RI) variaram entre 23,32% e 94,34%. Os dados da pirólise Rock-Eval forneceram características distintas entre as amostras analisadas, e que, de maneira geral, demostraram um potencial petrolífero que variou desde pobre a muito bom, porém apenas cinco amostras tiveram potencial petrolífero considerado bom, apesar de serem considerados valores residuais devido à alta maturação. Os valores dos IH e IO, apesar de serem também residuais, apontam a existência de querogênio dos tipos I, II e III. As análises por cromatografia gasosa dos extratos orgânicos mostraram resultados com padrões de cromatogramas que representam: petróleo leve; petróleo parcialmente biodegradado e petróleo biodegradado. Os percentuais das frações do petróleo (saturados, aromáticos e compostos NSO) sugerem que, a matéria orgânica das amostras da Formação Pirara, possuem uma tendência de alta maturidade termal (percentual elevado da fração saturada) e alto grau de biodegradação (percentual elevado da fração NSO) para algumas amostras. Os resultados das análises de biomarcadores saturados, em todas as amostras mostram feições que sugerem altíssima maturidade térmica. As razões diagnósticas dos biomarcadores saturados sugerem que a matéria orgânica que deu origem aos extratos orgânicos é na sua maioria proveniente de organismos planctônicos marinhos (algas e bactérias) e menor contribuição de matéria orgânica terrestre. O paleoambiente deposicional se caracteriza em um ambiente transicional-marinho com salinidade variável e variável e condição subóxica/anóxica. A sedimentação foi do tipo mista (siliciclástica e carbonática) e o querogênio possui maturidade termal referente à janela tardia de geração de óleo. Todas as amostras apresentam biomarcadores indicativos de biodegradação, mas com evidência de mistura com óleo gerado pela mesma rocha geradora em diferentes momentos. pt_BR
dc.publisher.department Instituto de Geociências pt_BR
dc.relation.references ABAY, T. B.; KARLSEN, D. A.; PEDERSEN, J. H. Source Rocks at Svalbard: An Overview of Jurassic and Triassic Formations and Comparison with Offshore Barents Sea Time Equivalent Source Rock Formations. In: AAPG INTERNATIONAL CONFERENCE & EXHIBITION, Istambul, Turquia, 2014. AL-AREEQ, N. M.; AL-BADANI, M. A.; SALMAN, A. H.; ALBAROOT, M. A. Petroleum source rocks characterization and hydrocarbon generation of the Upper Jurassic succession in Jabal Ayban field, Sabatayn Basin, Yemen. Egyptian Journal of Petroleum, v. 27, p. 835–851, 2028. ALBERDI, M.; MOLDOWAN, J.M.; PETERS, K.E.; DAHL, J.E. Stereoselective biodegradation of tricyclic terpanes in heavy oils from the Bolivar Coastal Fields, Venezuela. Organic Geochemistry, v. 32, p. 181-191, 2001. AL-HAJERI, M.M.; BOWDEN, S.A. Origin of oil geochemical compositional heterogeneity in the Radhuma and Tayarat formations heavy oil carbonate reservoirs of Burgan Field, south Kuwait. Arabian Journal of Geosciences, v. 11, p. 1-15, 2018. AMARAL, D. N.; CERQUEIRA, J. R.; ANDRADE, C. L. N.; RIBEIRO, H. J. PORTUGAL S.; GARCIA, K. S.; MIRANDA, F. L. C.; OLIVEIRA, O., M.; QUEIROZ, A. F.; SANTOS, L. C. L. Paleoenvironmental characterization of a Lower Cretaceous section of the Recôncavo Basin, Bahia, Brazil. Brazilian Journal of Geology, v. 50, 11 p., 2020. ARIEL, A. ANP autoriza UFRR a estudar potencial da bacia do Rio Tacutu. Folha BV (Folha Web), [S.l.], 2020. Disponível em:<https://folhabv.com.br/noticia/CIDADES/Capital/ANP-autoriza-UFRR-a-estudarpotencial-da-bacia-do-Rio-Tacutu--/63590> Acesso em: 13 mar. 2021. ARMSTRONG, H.A., BRASIER, M.D. Microfossil, stable isotopes and ocean-atmosphere history. In: MICROFOSSILS. Blackwell Publishing – Malden-USA. 2 ed., v.4, p.25-34, 2005. BAYONA, J. M.; DOMÍNGUEZ, C.; ALBAIGÉS, J. Analytical developments for oil spill fingerprinting. Trends in Environmental Analytical Chemistry, v. 5, p. 26-34, 2015. BENNETT, B.; FUSTIC, M.; FARRIMOND, P.; HUANG, H.; LARTER, S. R. 25-Norhopanes: Formation during biodegradation of petroleum in the subsurface. Organic Geochemistry, v.37(7), p. 787–797, 2006. BERNER, R.A. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, v. 48, p. 605-615, 1984. BERRANGÉ, J. P.; DEARNLEY, R. The Apoteri volcanic Formation – tholeiitic flows in the North Savannas Gráben of Guyana and Brazil. Geologische Rundschau, Sttutgart, v. 64, n. 1, p. 883-899, 1975. BERTHOD, A.; WANG, X.; GAHM, K. H.; ARMSTRONG, D. W. Determinação quantitativa e estereoisomérica de biomarcadores leves em amostras de petróleo e carvão. Geochimica et Cosmochimica Acta, v. 62, p. 1619-1630, 1998. BISSADA, A.; TAN, J.; SZYMCZYK, E.; DARNELL, M.; MEI, M. Group-type characterization of crude oil and bitumen. Part I: enhanced separation and quantification of saturates, aromatics, resins and asphaltenes (SARA). Organic Geochemistry, v. 95, p. 21-28, 2016. BLANC, P.; CONNAN, J. Origin and occurrence of 25-norhopanes: a statistical study. Organic Geochemistry, v.18, p. 813-828, 1992. CAMPOS, P.G.; GRIMALT, J.O.; BERDIE, L.; LOPEZ-QUINTERO, J.O.; NAVARRETE-REYES, L.E. Organic geochemistry of Cuban oils - I. The northern geological province. Organic Geochemistry, v. 25, p. 475-488, 1996. CASTRO, R.; GIORGIONI, M.; SOUZA, V.; RAMOS, M.; FEITOZA, L. M.; DINO, R.; ANTONIOLI, L. Facies analysis, petrography, and palynology of the Pirara Formation (Upper Jurassic-Lower Cretaceous) - Tacutu Basin (Roraima, Brazil). Journal of South American Earth Sciences, v. 112, 2021. CHOSSON, P.; CONNAN, J.; DESSORT, D.; LANAU, C. In vitro biodegradation of steranes and terpanes: a clue to understanding geological situations. In: Moldowan, J.M., Albrecht, P., Philp, R.P. (Eds.), Biological Markers in Sediments and Petroleum. Prentice Hall, p. 320–349, 1992. CIOCCARI, G. M.; MIZUSAKI, A. M. P. Sistemas petrolíferos atípicos nas bacias paleozoicas brasileiras – uma revisão. Geociências, UNESP, São Paulo, v.38, n. 2, p. 367- 390, 2019. COELHO, A. C. M. Q. Avaliação do potencial gerador de petróleo da seção Aptiana-Albiana da Bacia de Sergipe, integrando análises palinofaciológicas e dados de geoquímica orgânica. 65 f. Dissertação (Mestrado em Geologia) –Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2014. CONNAN, J. Biodegradation of crude oils in reservoirs. London: Academic Press, 1984. CORDANI, U. G.; NEVES, B. B. DE B.; FUCK, R. A.; PORTO, R.; THOMAZ FILHO, A.; CUNHA, F. M. B. Estudo preliminar de integração do pré-cambriano com os eventos tectônicos das bacias sedimentares brasileiras. Rio de Janeiro: PETROBRAS. Cenpes, 70 p., (Ciência Técnica Petróleo. Seção Exploração de Petróleo, n. 15), 1984. CRAWFORD, F. D.; SZELEWSKI, C. E.; ALVEY, G. D. Geology and exploration in the Takutu Gráben of Guyana. Journal Petroleum Geology, Beaconsfield, v. 8, n. 1, p. 5-36, 1984. CURIALE, J.A. Origin of solid bitumens, with emphasis on biological marker results. In: LEYTHAEUSER, D.; RULLKOTTER, J. (eds). Advances in Organic Geochemistry, v. 10, ed. 1-3, p. 59-580, 1986. DELGADO, T. V. O. Maturação Artificial de Rochas Geradoras de Petróleo: Caracterização Geoquímica e Petrográfica de Folhelhos da Formação Ipubi do Grupo Santana, Bacia do Araripe, PE/CE. 2012. 79 p. Trabalho de conclusão de curso (Graduação em Geologia) -Universidade Federal do Rio Grande do Sul, Rio Grande do Sul, 2012. DOMINGUEZ, Z.; GUZZO, J. V. P.; AZEVEDO, D. A. Caracterización y clasificación geoquímica de asfaltitas cubanas. Quim. Nova, Vol. 31, n. 6, p.1330-1335, 2008. DUAN, Y.; WANG, C.Y.; ZHENG, C.Y.; WU, B.X.; ZHENG, G.D. Geochemical study of crude oils from the Xifeng oilfield of the Ordos basin, China. Journal of Asian Earth Sciences, v. 31, p. 341-356, 2008. DURAND, B. A History of Organic Geochemistry. Oil & Gas Science and Technology, v. 58(2), p. 203–231, 2003. EGLINTON, G.; PARKES, R.J.; ZHAO, M. Lipid biomarkers in biogeochemistry: Future roles? Marine Geology, Amsterdam, Extended Abstract, v. 113, p. 141-145, 1993. EIRAS, J. F.; KINOSHITA, E. M. Evidências de movimentos transcorrentes na Bacia do Tacutu. In: SEMINÁRIO SOBRE RIFTES INTRACONTINENTAIS, v.1, Rio de Janeiro. Anais [...]. Rio de Janeiro: PETROBRAS/DEPLEX, 1987. EIRAS, J. F.; KINOSHITA, E. M. Geologia e Perspectivas Petrolíferas da Bacia do Tacutu. In: GABAGLIA, G.P.R.; MILANI, E.J. (coords.), ORIGEM E EVOLUÇÃO DAS BACIAS SEDIMENTARES. Rio de Janeiro: PETROBRAS, CENSUD, p. 197-220, 1990. EIRAS, J.F., KINOSHITA, E.M. Evidências de movimentos transcorrentes na Bacia de Tacutu. Boletim de Geociências da Petrobras, v. 2, p.193-208, 1988. EIRAS, J.F.; KINOSHITA, E.M.; FEIJÓ, F.J. Estratigrafia das bacias sedimentares do Brasil. In: BOLETIM DE GEOCIÊNCIAS DA PETROBRAS, v.8, p.17-45, 1994. EL DIASTY, W.SH.; MOLDOWAN, J.M. Application of biological markers in the recognition of the geochemical characteristics of some crude oils from Abu Gharadig Basin, northwestern Desert - Egypt. Marine and Petroleum Geology, v. 35, p. 28 - 40, 2012. ELORDUI-ZAPATARIETXE, S.; ROSELL–MELÉ, A.; MORALEDA, N.; TOLOSA, I.; ALBAIGÉS, J. Phase distribution of hydrocarbons in the water column after a pelagic deep ocean oil spill. Marine Pollution Bulletin, v. 60, p. 1667-1673, 2010. ESPITALIÉ, J.; DEROO, G.; MARQUIS, F. La pyrolise Rock-Eval et ses applications. Revue de l’Institute Français du Pétrole,v. 40, p. 563-579, 1986. ESPITALIÉ, J.; LAPORTE, J. L.; MADEC, M.; MARQUIS, F.; LEPLAT, P.; PAULET, J.; BOUTEFEU, A. Methode rapide de caracterisation des roches meres de leur potentiell petrolier e de leur degre d'Evolution. Revue de Institut Francais du Petrole, v. 32, p. 23-42, 1977. FARRIMOND, P.; TAYLOR, A.; TELNÆS, N. Biomarker maturity parameters: the role of generation and thermal degradation. Organic Geochemistry, v. 29(5-7), p. 1181-1197, 1998. FATAH, S.S.; MOHIALDEEN, I.M.J. Hydrocarbon generation potential and thermal maturity of Middle Jurassic Sargelu Formation in Miran Field, Sulaimani Area, Kurdistan Region, NE Iraq. Journal of Zankoi Sulaimani, Part A, 16 p., 2015. GEORGE, S.C.; BOREHAM, C.J.; MINIFIE, S.A.; TEERMAN, S.C. The effect of minor to moderate biodegradation on C-5 to C-9 hydrocarbons in crude oils. Organic Geochemistry, v. 33, p. 1293-1317, 2002. GOULART, J. P. de M. Caracterização de chaminés de gás nas bacias do Parnaíba, Paraná e Tacutu: uma nova ferramenta exploratória. 102 p. Dissertação (Mestrado em Geofísica) - Universidade Federal do Rio Grande do Norte, Centro de Ciências Exatas e da Terra, Programa de Pós-Graduação em Geodinâmica e Geofísica. Natal, RN, 2019. GRAYSON, M. A. A History of Gas Chromatography Mass Spectrometry (GC/MS). In: NIER, K. A.; YERGEY, A. L.; GALE, P. J. The encyclopedia of mass spectrometry. Reino Unido: Elsevier, v. 9, p. 152–158, 2016. GRIMALT, J.O.; CAMPOS, P.G.; BERDIE, L.; LOPEZ-QUINTERO, J.O.; NAVARRETE-REYES, L.E. Organic geochemistry of the oils from the southern geological province of Cuba. Applied Geochemistry, v. 17, p. 1-10, 2002. HAMMEN, T. V. D.; BURGER, D. Pollen flora and age of the Takutu Formation, (Guyana). Leidse Geologische Mededelingen, Leiden, v. 38, p. 173-180, 1966. HANSON, A.D.; ZHANG, S.C.; MOLDOWAN, J.M.; LIANG, D.G.; ZHANG, B.M. Molecular organic geochemistry of the Tarim basin, Northwest China. AAPG Bulletin, v. 84, p.1109-1128, 2000. HAVEN, H. L.T.; RULLKÖTTER, J. The diagenetic fate of taraxer-14-ene and oleanene isomers. Geochimica et Cosmochimica Acta, v. 52, p.2543-2548, 1988. HOEFS J. Stable Isotope Geochemistry. Springer- Verlag. Germany. 9 ed. 528 p., 2021. HOLANDA, W.; BERGAMASCHI, S.; SANTOS, A. C.; RODRIGUES, R.; BERTOLINO, L. C. Characterization of the Assistência Member, Irati Formation, Paraná Basin, Brazil: organic matter and mineralogy. Journal of Sedimentary Environments, v. 3, p. 36 - 45, 2018. HOLBA, A.G.; DZOU, L.I.; WOOD, G.D.; ELLIS, L.; ADAM, P.; SCHAEFFER, P.; HUGHES, W.B. Application of tetracyclic polyprenoids as indicators of input from fresh-brackish water environments. Organic Geochemistry, v. 34(3), p. 441-469, 2003. HUANG, H.; ZHANG, S.; SU, J. Geochemistry of Tri- and Tetracyclic Terpanes in the Palaeozoic Oils from the Tarim Basin, Northwest China. Energy Fuels, v. 29, p. 7014-7025, 2015. HUANG, W-Y.; MEINSCHEIN, W. G. Sterols as ecological indicators. Geochimica et Cosmochimica Acta, v. 43, n. 5, p. 739-745, 1979. HUGHES, W. B. Use of Thiophenic organosulfur compounds in characterizing crude oils derived from carbonate versus siliciclastic sources. In: PETROLEUM GEOCHEMISTRY AND SOURCE ROCK POTENTIAL OF CARBONATE ROCKS (J. G. Palacas, ed.), American Association of Petroleum Geologists, Tulsa, OK, p. 181–196, 1984. HUNT, J. M. Petroleum Geochemistry and Geology. Ed. Freeman, Second Edition, 743 p., 1995. JARVIE, D. M. Total Organic Carbon (TOC) analysis. In: SOURCE AND MIGRATION PROCESSES AND EVALUATION TECHNIQUES, TREATISE OF PETROLEUM GEOLOGY. American Association of Petroleum Geologists, p. 113-118,1991. KAUFMAN, R.L., AHMED, A.S., ELSINGER, R.J. Gas Chromatography as a development and production tool for fingerprinting oils from individual reservoirs: applications in the Gulf of Mexico. In: Schumaker, D., Perkins, B.F. (Eds.), Proceedings of the 9th Annual Research Conference of the Society of Economic Paleontologists and Mineralogists, p. 263–282, 1990. KILLOPS, S.; KILLOPS, V. Introduction to Organic Geochemistry. Blackwell Publishing, Second Edition, 393 p., 2005. KLEMME, H. D. Petroleum basins: Classification and Characteristics. J. Petr. Geol., v. 3, n. 2, p. 187-207, 1980. LEWAN, M. D.; BJORØY, M.; DOLCATER, D. L. Effects of thermal maturation on steroid hydrocarbons as determined by hydrous pyrolysis of Phosphoria Retort Shale. Geochimica et Cosmochimica Acta, v. 50, p. 1977-1987, 1986. MAGOON, L. B.; BEAUMONT, E. A. Petroleum Systems. In: BEAUMONT, E. A.; FOSTER, N, H. Exploring for oil and gas traps. The American Association of Petroleum Geologists Tulsa, Oklahoma, U.S.A, p. 96-130, 1999. MAGOON, L. B.; DOW, W. G. The Petroleum System - from source to trap. AAPG Memoir 60, v.75, n.3, 620 p., The American Association of Petroleum Geologists, Oklahoma, United States,1994. MAGOON, L. B.; DOW, W.G. Mapping the petroleum system – an investigative technique the hydrocarbon fluid system. In: PETROLEUM SYSTEMS OF SOUTH ATLANTIC MARGINS: AAPG MEMOIR 73, p. 53-69, 2000. MELLO, M. R.; GAGLIANONE, P. C.; BRASSEL, S. C.; MAXWELL, J. R. Geochemical and biological marker assessment of depositional environments using Brazilian offshore oils. Marine and petroleum Geology, v. 5, n. 3, p. 205-223, 1988. MENDIGUREN, J. A.; RICHTER, F. M. On the origin of compressional intraplate stresses in South America. Revista Brasileira de Geociências, São Paulo, v. 8, n. 2, p. 90-102, 1978. MENDONÇA FILHO J.G.; MENEZES T.R.; MENDONÇA J.O.; OLIVEIRA A.D., CARVALHO M.A.; SANT’ANNA, A.J. Palinofáceis. In: PALEONTOLOGIA, v. 3, Rio de Janeiro: Interciência, p. 379-413, 2010. MENEZES LEAL, A.B.; GIRARDI, V.A.V.; BASTOS LEAL, L.R. Petrologia e Geoquímica do Magmatismo Básico Mesozóico da Suíte Básica Apoteri, Estado de Roraima, Brasil. Geochimica Brasiliensis, v.14, n.2, p.155- 174, 2000. MOLDOWAN J. M.; SEIFERT W. K.; GALLEGOS E. J. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG bulletin, v. 69, p.1255-1268, 1985. MOLDOWAN, J. M., SUNDARARAMAN, P., SCHOELL, M. Sensitivity of biomarker properties to depositional environment and/or source input in the lower Toarcian of SW Germany. Organic Geochemistry, v. 10, p. 915-926, 1986. MOLDOWAN, J.M.; FAGO, F.J.; CARLSON, R.M.K.; YOUNG, D.C.; VAN DUYNE, G.; CLARDY, J.; SCHOELL, M.; PILLINGER, C.T.; WATT, D.S. Rearranged hopanes in sediments and petroleum. Geochimica et Cosmochimica Acta, v. 55, p. 3333-3353, 1991. MOLDOWAN, J.M.; MCCAFFREY, M.A. A novel microbial hydrocarbon degradation pathway revealed by hopane demethylation in a petroleum reservoir. Geochimica et Cosmochimica Acta, v. 59, p. 1891–1894, 1995. MONTALVÃO, R. M. G.; MUNIZ, M. B.; ISSLER, R. S.; DALL’AGNOL, R.; LIMA, M. I. C.; FERNANDES, P. E. C. A.; SILVA, G. G. Geologia. In: PROJETO RADAMBRASIL. Folha NA.20 Boa Vista e parte das Folhas NA.21 Tumucumaque, NB.20 Roraima e NB.21. Rio de Janeiro: Departamento Nacional de Produção Mineral, (Levantamento de Recursos Naturais, 8), p. 13-136, 1975. MUKHOPADHYAY, P.K.; WADE, J.A.; KRUGE, M.A. Organic Facies and Maturation of Jurassic/Cretaceous Rocks, and Possible Oil-Source Correlation Based on Pyrolysis of Asphaltenes, Scotian Basin, Canada. Org. Geochem., V. 22, p. 85-104, 1995. NABBEFELD, B.; GRICE, K.; SCHIMMELMANN, A.; SUMMONS, R. E.; TROITZSCH, U.; TWITCHETT, R. J. A comparison of thermal maturity parameters between freely extracted hydrocarbons (Bitumen I) and a second extract (Bitumen II) from within the kerogen matrix of Permian and Triassic sedimentary rocks. Organic Geochemistry, v. 41, p.78–87, 2010. NELSON, R. K.; AEPPLI, C.; AREY, J. S.; CHEN, H.; OLIVEIRA, A. H. B.; EISERBECK, C.; FRYSINGER, G. S.; GAINES, R. B.; GRICE, K.; GROS, J.; HALL, G. J.; KOOLEN, H. H. F.; LEMKAU, K. L.; MCKENNA, A. M; REDDY, C. M.; RODGERS, R. P.; SWARTHOUT, R. F.; VALENTINE, D. L.; WHITE, H. K. Applications of comprehensive two-dimensional gas chromatography (GC × GC) in studying the source, transport, and fate of petroleum hydrocarbons in the environment. In: STOUT, S.; WANG, Z. Standard handbook oil spill environmental forensics. 2ª Edição. Reino Unido: Academic Press Elsevier Inc, p. 399-448, 2016. NOBLE, R.; ALEXANDER, R.; KAGI, R.I. The occurrence of bisnorhopane, trisnorhopane and 25-norhopanes as free hydrocarbons in some Australian shales. Organic Geochemistry, v. 8, p. 171-176, 1985b. NOBLE, R.A.; ALEXANDER, R.; KAGI, R.I.; KNOX, J. Tetracyclic diterpenoid hydrocarbons in some Australian coals, sediments, and crude oils. Geochimica et Cosmochimica Acta, v. 49, p. 2141-2147, 1985a. OLIVA, P.; EDUARDO, F. Modelagem Geológica 3D na Bacia do Tacutu. In: SIMPÓSIO DE GEOLOGIA DA AMAZÔNIA, v. 13, Belém/PA. Anais, [...]. SBG, 2013. OLIVEIRA, R.C. Análise de fácies, petrografia e palinologia da Formação Pirara, Bacia do Tacutu-Roraima. 2019. N. 444. 59 p. Dissertação (Mestrado) Programa de Pós-graduação em Geologia, Universidade de Brasília, Brasília/DF, 2019. OURISSON, G.; ALBRECHT, P.; ROHMER, M. The hopanoides, Paleochemistry and biochemistry of a group of natural products. Pure Appl. Chem., v.51, p. 709-729, 1979. PALACAS, J. G. Carbonate rocks as sources of petroleum: geological and chemical characteristics and oil-source correlations. In: PROCEEDINGS OF THE ELEVENTH WORLD PETROLEUM CONGRESS 1983, vol. 2, John Wiley & Sons, Chichester, UK, p. 31–43, 1984. PALACAS, J.G.; MONOPOLIS, D.; NICOLAU, C.A.; ANDERS, D.E. Geochemical correlation of surface and subsurface oils, western Greece. Organic Geochemistry, v. 10, p. 417-423, 1986. PAN, C.C.; YANG, J.Q.; FU, J.M.; SHENG, G. Molecular correlation of free oil and inclusion oil of reservoir rocks in the Junggar Basin, China. Organic Geochemistry, v. 34, p. 357-374, 2003. PARNELL, J.; BOWDEN, S.; MUIRHEAD, D. Subsurface biodegradation of crude oil in a fractured basement reservoir, Shropshire, UK. Journal of the Geological Society, v. 174, p. 655-666, 2017. PETERS, K. E.; MOLDOWAN, J. M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice-Hall, Inc, Englewood Cliffs, New Jersey, 363 p., 1993. PETERS, K. E.; MOLDOWAN, J. M.; SUNDARARAMAN, P. Effects of hydrous pyrolysis on biomarker thermal maturity parameters: Monterey phosphatic and siliceous members. Organic Geochemistry, v. 15, p. 249-265, 1990. PETERS, K.E.; CASSA, M.R. Applied source rock geochemistry. In: THE PETROLEUM SYSTEM—FROM SOURCE TO TRAP: TULSA, OKLA. USA: American Association of Petroleum Geologists Memoir, v. 60, p. 93-117, 1994. PETERS, K.E.; MOLDOWAN, J.M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Organic Geochemistry, v. 17, p. 47–61, 1991. PETERS, K.E.; WALTERS, C.C.; MOLDOWAN, J.M. The biomarker guide: biomarkers and isotopes in the petroleum exploration and Earth history. 2nd Edition. UK: Cambridge University Press, 1155 p., 2005. PETROLEUM INVESTIMENTS OPPORTUNITIES. Staatsolie, 2013. Disponível em: <http://www.staatsolie.com/> Acesso em: 30 de março de 2021. PHILP, R. P.; LI, J.; LEWIS, C. A. An organic geochemical investigation of crude oils from Shanganning, Jianghan, Chaidamu and Zhungeer basins, People’s Republic of China. Organic Geochemistry, v. 14, p. 447–60, 1989. PHILP, R. P.; OUNG, J. Biomarkers: ocurrence, utility, and detection. Analytical chemistry, v. 60, n. 15, p. 887-896, 1988. PHILP, R.P.; GILBERT, T.D. Biomarker distributions in Australian oils predominantly derived from terrigenous source material. Organic Geochemistry, v. 10, p. 73-84, 1986. PLANO PLURIANUAL DE GEOLOGIA E GEOFÍSICA, 2007-2014. Bacia do Tacutu. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP), 2014. Disponível em: <http://www.anp.gov.br/exploracao-e-producao-de-oleo-egas/ estudos-geologicos-e-geofisicos/plano-plurianual-de-estudos-de-geologia-egeofisica/ ppa-2007-2014/resultados-por-bacia>. Acesso em: 25 de maio de 2021. PRESTON, J.C., EDWARDS, D.S. The petroleum geochemistry of oils and source rocks from the northern Bonaparte Basin, offshore Northern Australia. The APPEA Journal, v. 40, p. 257 - 282, 2000. PRINCE, R.C., CLARK, J.R. Bioremediation of marine oil spills. In: Vazquez-Duhalt R., Quintero-Ramirez R., editors. Studies in Surface Science and Catalysis. V. 151. Elsevier; Amsterdam, The Netherlands, p. 495–512, 2004. RAMOS, J. R. A. Reconhecimento geológico no Território do Rio Branco. Relatório Anual da Diretoria de Divisão Geológica Mineral. Rio de Janeiro: Departamento Nacional de Produção Mineral, p. 58-62, 1956. REGATO, S. R. Caracterização geoquímica de óleos selecionados da bacia Sergipe - alagoas. 2008. 116 f. Dissertação (Mestrado em Ciências em Engenharia Civil) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2008. REIS, N. J.; FARIA M. S. G.; MAIA, M. A. M. O quadro cenozóico da porção norte-oriental do Estado de Roraima. In: KLEIN, E. L.; VASQUEZ, M. L.; ROSACOSTA, L. T. (Ed.). Contribuição à geologia da Amazônia, Belém: Sociedade Brasileira de Geologia, v. 3, p. 259-272, 2001. REIS, N. J.; SZATMARI, P.; WANDELEY FILHO, J. R.; YORK, D.; EVENSEN, N. M.; SMITH, P. E. Dois eventos de magmatismo máfico mesozóico na fronteira Brasil-Guiana, Escudo das Guianas: enfoque à região do Rifte Tacutu – North Savannas. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 43., 2006, Aracaju. Anais. Bahia: Sociedade Brasileira de Geologia, p. 244, 2006. REIS, N.J.; FARIA, M.S.G.; MAIA, M.A.M. O quadro Cenozoico da porção norte-oriental do Estado de Roraima. In: CONTRIBUIÇÕES À GEOLOGIA DA AMAZÔNIA, p.259-272. Sociedade Brasileira de Geologia – Núcleo Norte, Belém, 2002. REQUEJO, A.G.; HALPERN, H.I. An unusual hopane biodegradation sequence in tar sands from the Pt. Arena (Monterey) formation. Nature, v. 342, p. 670-673, 1989. RODRIGUES, G. B.; FAUTH, G. Isótopos estáveis de carbono e oxigênio em ostracodes do Cretáceo: metodologias, aplicações e desafios. Terra e didática, v.9, p.34-49, 2013. RULLKÖTTER, J.; MARZI, R. Natural and artificial maturation of biological markers in a Toarcian shale from northern Germany. Organic Geochemistry, v. 13, p. 639-45, 1988. RULLKÖTTER, J.; WENDISCH, D. Microbial alteration of 17α(H)-hopane in Madagascar asphalts: removal of C-10 methyl group and ring opening. Geochimica et Cosmochimica Acta, v. 46, p. 1543-1553, 1982. SANTOS, J. O. S. A Parte setentrional do Cráton Amazônico (Escudo das Guianas) e a Bacia Amazônica. In: SCHOBBENHAUS, C.; CAMPOS, D. A.; DERZE, G. R.; ASMUS, E. A. (Coord.). Geologia do Brasil: texto explicativo do mapa geológico do Brasil e da área oceânica adjacente incluindo depósitos minerais: escala 1:2 500 000. Brasília: DNPM/ Min. das Minas e Energia, p. 57-91, 1984. SARDIÑAS, Z.D. Caracterização Geoquímica de Asfaltitas Cubanas. 2008. 273 f. Tese (Doutorado) - COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2008. SEFEIN, K.J., NGUYEN, T.X., PAUL PHILP, R., Organic Geochemical and Paleoenvironmental Characterization of the Brown Shale Formation, Kiliran Sub-Basin, Central Sumatra Basin, Indonesia. Organic Geochemistry, v, 112, p. 137-157, 2017. SEIFERT, W. K.; MOLDOWAN, J. M. Applications of steranes, terpanes and monoaromatics to the maturation, migration, and source of crude oils. Geochimica et Cosmochimica Acta, v. 42, p. 77-95, 1978. SEIFERT, W. K.; MOLDOWAN, J. M. Use of Biological Markers in Petroleum Exploration. In: BIOLOGICAL MARKERS IN THE SEDIMENTARY RECORD (Edited by Johns R. B.), Elsevier, v. 24, p.261-290, 1986. SEIFERT, W.K., MOLDOWAN, J.M. The effect of biodegradation on steranes and terpanes in crude oils. Geochimica et Cosmochimica Acta, v.43, p. 111–126, 1979. SEIFERT, W.K.; MOLDOWAN, J.M. The effect of thermal stress on source rock quality as measured by hopane stereochemistry. Physics and Chemistry of the Earth, v.12, p. 229-237, 1980. SELLEY, R. C.; SONNENBER, S.C. Elements of petroleum geology. Elsevier, third edition, 2014. SHANMUGAM, G. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. AAPG Bulletin, v. 69, n. 8, p. 1241-1254, 1985. SILVA, M. G.; PORSANI, M. J. Aplicação de balanceamento espectral e DMO no processamento sísmico da Bacia do Tacutu. Brazilian Journal of Geophysics, v. 24, n.2, p.273-290, 2006. SIMONEIT, B. R.T. A review of current applications of mass spectrometry for biomarker/molecular tracer elucidations. Mass Spectrometry Reviews, v. 24, p. 719- 765, 2005. STAATSOLIE. 2013. Petroleum Investiments Opportunities. Disponível em: <http://www.staatsolie.com/> Acesso em: 09 de maio de 2021. SUÁREZ-RUIZ, I.; FLORES, D.; FILHO, J. G. M.; HACKLEY, P. C. Review and update of the applications of organic petrology: Part 2, geological and multidisciplinary applications. Elsevier - International Journal of Coal Geology, v. 98, p. 73–94, 2012. TASSINARI, C. C. G.; MACAMBIRA M. J. B. An evolução tectônica do Cráton amazônico. In: MONTESSO-NETO, V.; BARTORELLI, A.; CARNEIRO, C. D. R.; NEVES, B. B. B. (Ed.). Geologia do continente sul-americano: evolução da obra de Fernando Flávio Marques de Almeida. São Paulo: Beca, p. 471-485, 2004. THERMO FISHER SCIENTIFIC INC. Dionex ASE 350 Accelerated Solvent Extractor Operator's Manual, v. 4, 268 p., 2011. THOMAS, J. E. (Org.). Fundamentos de engenharia de petróleo. 2. ed. Rio de Janeiro: Editora Interciência, 2001. TISSOT, B.P.; WELTE, D.H. Petroleum formation and occurrence: a new approach to oil and gas exploration. 2nd Edition. Berlin: Springer Verlag, 1984. TOCCO, R.; ALBERDI, M. Organic geochemistry of heavy/ extra heavy oils from sidewall cores, Lower Lagunillas Member, Tia Juana Field, Maracaibo Basin, Venezuela. Fuel, v. 81, p. 1971-1976, 2002. VAN KREVELEN, D.W. Coal: Typology - Physics - Chemistry - Constitution. 3rd Edition. Elsevier Science. November 1993. VAZ P. T.; WANDERLEY FILHO, J. R.; BUENO, G. V. Bacia do Tacutu. In: BOLETIM DE GEOCIÊNCIAS PETROBRAS, Rio de Janeiro, v.15, n.2, p.289-297, 2007. VOLK, H.; GEORGE, S.C. MIDDLETON, H. SCHOFIELD, S. Geochemical comparison of fluid inclusion and present-day oil accumulations in the Papuan Foreland—evidence for previously unrecognized petroleum source rocks. Org. Geochem., v. 36, p. 29-51, 2005. VOLKMAN, J.K. Biological marker compounds as indicators of the depositional environments of petroleum source rocks. Geological Society, special publication, v. 40, n. 1, p.103-122, 1988. VOLKMAN, J.K.; ALEXANDER, R.; KAGI, R.I.; WOODHOUSE, G.W. Demethylated hopanes in crude oils and their applications in petroleum geochemistry. Geochimica et Cosmochimica Acta, v. 47, p.785–794, 1983. WAPLES, D.; W. MACHIHARA, T. Application of sterane and triterpane biomarkers in petroleum exploration. Bulletin of Canadian Petroleum Geology, v. 38, n. 3, p. 357-380, 1990. WAPLES, D.W.; MACHIHARA, T. Biomarkers for geologists: a practical guide to the application of steranes and triterpanes in petroleum geology. American Association of Petroleum Geologists Methods in Exploration Series, v.9, p. 1-76. 1991. WEBSTER, R. E. Takutu Basin. Geologic Setting – AAPG Data pages/Search and Discovery, 2004. Disponível em: <www.searchanddiscovery.com/pdfz/documents/2004/webster02/images/poster03.pdf.html> Acesso em: 30 de março de 2021. WEI, H.; JIANG, X. Early Cretaceous ferruginous and its control on the lacustrine organic matter accumulation: Constrained by multiple proxies from the Bayingebi Formation in the Bayingebi Basin, inner Mongolia, NW China. Journal of Petroleum Science and Engineering, v. 178, p. 162-179, 2019. ZAMBRANO, E. R. N.; DE OLIVEIRA, O. M. C., RIBEIRO, H. J. P. S. Caracterização geoquímica com indícios paleoambientais de folhelhos da Formação Pimenteiras, estado do Tocantins, Bacia do Parnaíba, Brasil. Geol. USP, Sér. cient., São Paulo, v. 17, n. 3, p. 6-78, 2017. ZHANG, D.; HUANG, D.; LI, J. Biodegraded sequence of Karamay oils and semi-quantitative estimation of their biodegraded degrees in Junggar Basin, China. Organic Geochemistry, v. 13, p. 295-302, 1988. ZHONGHONG, C.; MING, Z.; QIANG, J.; YONGJUN, R. Distribution of sterane maturity parameters in a lacustrine basin and their control factors: A case study from the Dongying Sag, East China. Petroleum Science, v. 8, p. 290-301, 2011. ZONEAMENTO NACIONAL DE RECURSOS DE ÓLEO E GÁS. Ciclo 2017-2019. Empresa de Pesquisa Energética (EPE). Brasília: MME/EPE, 604 p., 2019. pt_BR
dc.type.degree Mestrado Acadêmico pt_BR


Arquivos deste item

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples