| dc.relation.references |
AL-ALLAQ, A.; KASHAN, J. S. A review: In vivo studies of bioceramics as bone substitute
materials. Nano Select, [s.l.], v. 4, n. 2, p. 123-144, 2023. DOI: 10.1002/nano.202200222.
ALIZADEH-OSGOUEI, M.; LI, Y.; WEN, C. A comprehensive review of biodegradable
synthetic polymer-ceramic composites and their manufacture for biomedical applications.
Bioactive Materials, Netherlands, v. 4, p. 22–36, dez. 2019. DOI:
10.1016/j.bioactmat.2018.11.003.
ALMEIDA, R. D. S. et al. Avaliação da fase inicial do reparo ósseo após implantação de
biomateriais. Revista de Ciências Médicas e Biológicas, Salvador, v. 13, n. 3, p. 331, 2014.
DOI: 10.9771/cmbio.v13i3.12940.
ALMEIDA, R. S. et al. Regeneração de defeito ósseo crítico após implantação de fosfato de
cálcio bifásico (β-fosfato tricálcico/pirofosfato de cálcio) e vidro bioativo fosfatado.
Cerâmica, [s.l], v. 66, n. 378, p. 119–125, jun. 2020. DOI: 10.1590/0366-
69132020663782707
ALMEIDA, K. V. Scaffolds multifuncionais para regeneração óssea. 2017. 140 f. Tese
(Doutorado) - Universidade Federal de Campina Grande, Paraíba, 2017.
ANDERSON, J. M.; RODRIGUEZ, A.; CHANG, D. T. Foreign body reaction to
biomaterials. Semin. Immunol., [s.l], v.20, n.2, p.86-100, 2008. DOI:
10.1016/j.smim.2007.11.004.
ASHRAF, H.; RAHMATI, A.; AMINI, N. Vital Pulp Therapy with Calcium-Silicate
Cements: Report of Two Cases. Iranian Endodontic Journal, [s.l], v. 12, n. 1, p. 112–115, 1
jan. 2017. DOI: 10.22037/iej.2017.23
BARBOSA, W. T. et al. Synthesis and in vivo evaluation of a scaffold containing
wollastonite/β‐TCP for bone repair in a rabbit tibial defect model. Journal of Biomedical
Materials Research Part B: Applied Biomaterials, United States, v. 108, n. 3, p. 1107–
1116, 8 ago. 2019. DOI: 10.1002/jbm.b.34462.
BEHONICK, D. J. et al. Role of Matrix Metalloproteinase 13 in Both Endochondral and
Intramembranous Ossification during Skeletal Regeneration. PLoS ONE, [s.l], v. 2, n. 11, p.
e1150, 7 nov. 2007.
BOHNER, M.; SANTONI, B. L. G.; DÖBELIN, N. β-tricalcium phosphate for bone
substitution: Synthesis and properties. Acta Biomaterialia, Oxford,
v. 113, p. 23–41, set. 2020. DOI: 10.1016/j.actbio.2020.06.022.
BOUATROUS, M. et al. A modified wet chemical synthesis of Wollastonite ceramic
nanopowders and their characterizations. Ceramics International, United Kingdom, v. 46, n.
8, p. 12618-12625, 2020.
CAO, Y. et al. 3D printed β-TCP scaffold with sphingosine 1-phosphate coating promotes
osteogenesis and inhibits inflammation. Biochemical and Biophysical Research
Communications, v. 512, n. 4, p. 889–895, 28 mar. 2019. DOI: 10.1016/j.bbrc.2019.03.132
58
CARDOSO, A. K. M. V. et al. Histomorphometric Analysis of Tissue Responses to Bioactive
Glass Implants in Critical Defects in Rat Calvaria. Cells Tissues Organs, Netherlands, v.
184, n. 3-4, p. 128–137, 1 jan. 2006. DOI: 10.1159/000099619
CARRODEGUAS, R. G. et al. Preparation and In Vitro Characterization of Wollastonite
Doped Tricalcium Phosphate Bioceramics. Key engineering materials, [s.l], v. 361-363, p.
237–240, 1 nov. 2007. DOI: 10.4028/www.scientific.net/KEM.361-363.237.
CHEN, X. et al. Osteoblast–osteoclast interactions. Connective Tissue Research, United
Kingdom, v. 59, n. 2, p. 99–107, 21 mar. 2017. DOI: 10.1080/03008207.2017.1290085.
CHEN, X. et al. Bioactive glass 1393 promotes angiogenesis and accelerates wound healing
through ROS/P53/MMP9 signaling pathway. Regenerative Therapy, Japan, v. 26, p. 132–
144, 2024. DOI: 10.1016/j.reth.2024.05.016
COATHUP, M. J. et al. Effect of increased strut porosity of calcium phosphate bone graft
substitute biomaterials on osteoinduction. Journal of Biomedical Materials Research Part
A, United States, v. 100A, n. 6, p. 1550–1555, 15 mar. 2012. DOI: 10.1002/jbm.a.34094.
CUI, J. et al. Osteocytes in bone aging: Advances, challenges, and future perspectives.
Ageing Research Reviews, Ireland, v. 77, p. 101608, maio 2022. DOI:
10.1016/j.arr.2022.101608
DALTRO, A. F. C.; BARRETO, I. C.; ROSA, F. P. Análise do efeito da plataforma vibratória
na regeneração de defeito ósseo. Revista de Ciências Médicas e Biológicas, Salvador, v. 15,
n. 3, p. 323, 15 dez. 2016. doi: 10.9771/cmbio.v15i3.18182
DENG, Y. et al. 3D printed scaffolds of calcium silicate-doped β-TCP synergize with cocultured endothelial and stromal cells to promote vascularization and bone formation.
Scientific Reports, London, v. 7, n. 1, 17 jul. 2017.
DEVELIOGLU, H. et al. Evaluation of the Long-Term Results of Rat Cranial Bone Repair
Using a Particular Xenograft. Journal of Oral Implantology, United States, v. 36, n. 3, p.
167–173, 1 jun. 2010. DOI: 10.1563/AAID-JOI-D-09-00064
DING, P. et al. Osteocytes regulate senescence of bone and bone marrow. eLife, [s.l], v. 11,
28 out. 2022. DOI: 10.7554/eLife.81480
DOMINGUES, J. A. et al. Addition of Wollastonite Fibers to Calcium Phosphate Cement
Increases Cell Viability and Stimulates Differentiation of Osteoblast-Like Cells. Scientific
World Journal, United States, v. 2017, p. 1–6, 1 jan. 2017. DOI: 10.1155/2017/5260106
EL-FIQI, A.; KIM, J.-H.; KIM, H.-W. Highly bioactive bone cement microspheres based on
α-tricalcium phosphate microparticles/mesoporous bioactive glass nanoparticles: Formulation,
physico-chemical characterization and in vivo bone regeneration. Colloids and Surfaces B:
Biointerfaces, Netherlands, v. 217, p. 112650, 20 jun. 2022. DOI:
10.1016/j.colsurfb.2022.112650.
59
FABRIS, A. L. DA S. et al. Bone repair access of BoneCeramicTM in 5-mm defects: study
on rat calvaria. Journal of Applied Oral Science, São Paulo, v. 26, n. 0, 15 jan. 2018. DOI:
10.1590/1678-7757-2016-0531.
FANG, L. et al. Advances in the Development of Gradient Scaffolds Made of NanoMicromaterials for Musculoskeletal Tissue Regeneration. Nano-Micro Letters, [s.l], v. 17, n.
1, 27 nov. 2024. DOI: 10.1007/s40820-024-01581-4.
FENG, J. et al. Beta-TCP scaffolds with rationally designed macro-micro hierarchical
structure improved angio/osteo-genesis capability for bone regeneration. Journal of
Materials Science Materials in Medicine, United States, v. 34, n. 7, 24 jul. 2023. DOI:
10.1007/s10856-023-06733-3.
FERNANDEZ DE GRADO, G. et al. Bone substitutes: a review of their characteristics,
clinical use, and perspectives for large bone defects management. Journal of Tissue
Engineering, Chichester, v. 9, 4 jun. 2018. DOI: 10.1177/2041731418776819.
FU, Y. C. et al. Combination of calcium sulfate and simvastatin-controlled release
microspheres enhances bone repair in critical-sized rat calvarial bone defects. International
Journal of Nanomedicine, New Zealand, p. 7231–7231, 1 dez. 2015. DOI:
10.2147/IJN.S88134.
GAO, C. et al. Bone biomaterials and interactions with stem cells. Bone Research, New
York, v. 5, n. 1, dez. 2017. DOI: 10.1038/boneres.2017.59
GITIRANA, L. B. Histologia dos tecidos. Rio de Janeiro: PUBLIT Soluções Editoriais,
2013. v. 1. (Coleção Conhecendo).
GLASER, D. E. et al. Organ-on-a-chip model of vascularized human bone marrow niches.
Biomaterials, Netherlands, v. 280, p. 121245, 1 jan. 2022. DOI:
10.1016/j.biomaterials.2021.121245.
GÓMEZ-CEREZO, M. N. et al. Multiscale porosity in mesoporous bioglass 3D-printed
scaffolds for bone regeneration. Materials Science and Engineering C, [s.l], v. 120, p.
111706–111706, 6 nov. 2020. DOI: 10.48550/arXiv.2104.01458.
HART, N. H. et al. Biological basis of bone strength: anatomy, physiology and
measurement. Journal of Musculoskeletal & Neuronal Interactions, Greece, v. 20, n. 3, p.
347, 2020.
HERNANDEZ, J. L.; WOODROW, K. A. Medical Applications of Porous Biomaterials:
Features of Porosity and Tissue‐Specific Implications for Biocompatibility. Advanced
Healthcare Materials, Germany, v. 11, n. 9, p. 2102087, 19 fev. 2022. DOI:
10.1002/adhm.202102087.
HOERTH, R. M. et al. Mechanical and structural properties of bone in non-critical and
critical healing in rat. Acta biomaterialia, Kidlington, v. 10, n. 9, p. 4009–4019, 1 set. 2014.
DOI: 10.1016/j.actbio.2014.06.003.
HOSSAIN, S. S. et al. A comparative study of physico-mechanical, bioactivity and hemolysis
properties of pseudo-wollastonite and wollastonite glass-ceramic synthesized from solid
60
wastes. Ceramics International, United Kingdom, v. 46, n. 1, p. 833–843, jan. 2020. DOI:
10.1016/j.ceramint.2019.09.039.
JODATI, H.; YILMAZ, B.; EVIS, Z. A review of bioceramic porous scaffolds for hard tissue
applications: Effects of structural features. Ceramics International, United Kingdom, v. 46,
n. 10, p. 15725–15739, jul. 2020. DOI: 10.1016/j.ceramint.2020.03.192.
KAČAREVIĆ, Ž. P. et al. An introduction to bone tissue engineering. The International
Journal of Artificial Organs, Italy, v. 43, n. 2, p. 69–86, 23 set. 2019. DOI:
10.1177/0391398819876286.
KANEKO, K. et al. Cellular signatures in human blood track bone mineral density in
postmenopausal women. JCI Insight, United States, v. 9, n. 22, 21 nov. 2024. DOI:
10.1172/jci.insight.178977.
KIM, M. H. et al. High-throughput bioprinting of spheroids for scalable tissue fabrication.
Nature Communications, London, v. 15, n. 1, 21 nov. 2024. DOI: 10.1038/s41467-024-
54504-7.
KITASE, Y.; PRIDEAUX, M. Targeting osteocytes vs osteoblasts. Bone, [s.l], v. 170, p.
116724, maio 2023. DOI: 10.1016/j.bone.2023.116724.
LEE, W.-B. et al. Whitlockite Granules on Bone Regeneration in Defect of Rat Calvaria.
ACS Applied Bio Materials, United States, v. 3, n. 11, p. 7762–7768, 4 nov. 2020. DOI:
10.1021/acsabm.0c00960.
LEGEROS, R. Z. Calcium Phosphate Materials in Restorative Dentistry: a Review. Advances
in Dental Research, United States, v. 2, n. 1, p. 164–180, ago. 1988.
LEKHAVADHANI, S.; SHANMUGAVADIVU, A.; SELVAMURUGAN, N. Role and
architectural significance of porous chitosan-based scaffolds in bone tissue engineering.
International Journal of Biological Macromolecules, Netherlands, v. 251, p. 126238, 9
ago. 2023.
LIMA, M. J. S. et al. Development of Functionalized Poly(ε-caprolactone)/ Hydroxyapatite
Scaffolds via Electrospinning 3D for Enhanced Bone Regeneration. ACS Omega, [s.l], v. 9,
n. 45, p. 45035–45046, 30 out. 2024. DOI: 10.1021/acsomega.4c05264.
LIU, Y. et al. ZIF-8-Modified Multifunctional Bone-Adhesive Hydrogels Promoting
Angiogenesis and Osteogenesis for Bone Regeneration. ACS Applied Materials &
Interfaces, United States, v. 12, n. 33, p. 36978–36995, 29 jul. 2020. DOI:
10.1021/acsami.0c12090.
LIU, Z. et al. Advances in the use of calcium silicate-based materials in bone tissue
engineering. Ceramics International, United Kingdom, mar. 2023. DOI:
10.1016/j.ceramint.2023.03.063.
MACIEL, G. B. M.; MACIEL, R. M.; DANESI, C. C. Bone cells and their role in
physiological remodeling. Molecular Biology Reports, [s.l], v. 50, n. 3, p. 2857-2863, 2023.
61
MARUYAMA, M. et al. Modulation of the Inflammatory Response and Bone Healing.
Frontiers in Endocrinology, Switzerland, v. 11, 11 jun. 2020. DOI:
10.3389/fendo.2020.00386.
MATIC, I. et al. Quiescent Bone Lining Cells Are a Major Source of Osteoblasts During
Adulthood. Stem Cells, [s.l], v. 34, n. 12, p. 2930–2942, 29 ago. 2016. DOI:
10.1002/stem.2474.
MAXIM, L. et al. Product Stewardship in Wollastonite Production. Inhalation Toxicology,
[s.l], v. 20, n. 14, p. 1199–1214, jan. 2008. DOI: 10.1080/08958370802136749.
MIGUEL, F. B. et al. Morphological assessment of the behavior of three‐dimensional anionic
collagen matrices in bone regeneration in rats. Journal of Biomedical Materials Research
Part B: Applied Biomaterials, United States, v. 78B, n. 2, p. 334–339, 7 fev. 2006. DOI:
10.1002/jbm.b.30492.
MIGUEL, F. B. et al. Regeneration of critical bone defects with anionic collagen matrix as
scaffolds. Journal of Materials Science Materials in Medicine, United States, v. 24, n. 11,
p. 2567–2575, 19 jun. 2013. DOI: 10.1007/s10856-013-4980-8.
MIN, K. H. et al. Biomimetic Scaffolds of Calcium-Based Materials for Bone Regeneration.
Biomimetics, [s.l], v. 9, n. 9, p. 511–511, 24 ago. 2024. DOI:
https://doi.org/10.3390/biomimetics9090511
MONÇÃO, M. M. Biomateriais e regeneração óssea: conceitos e perspectivas. Revista de
Ciências Médicas e Biológicas, Salvador, v. 21, n. 1, p. 3-4, 2022. DOI:
10.9771/cmbio.v21i1.49880.
MORSY, R.; ABUELKHAIR, R.; ELNIMR, T. Synthesis of microcrystalline wollastonite
bioceramics and evolution of bioactivity. Silicon, [s.l], v. 9, p. 489-493, 2017.
NANDA, R. et al. Molecular differences in collagen organization and in organic-inorganic
interfacial structure of bones with and without osteocytes. Acta Biomaterialia, United States,
v. 144, p. 195–209, maio 2022. DOI: 10.1016/j.actbio.2022.03.032.
NUR, N. et al. A review of bioceramics scaffolds for bone defects in different types of animal
models: HA and β -TCP. Biomedical Physics & Engineering Express, [s.l], v. 8, n. 5, p.
052002–052002, 3 ago. 2022. DOI: 10.1088/2057-1976/ac867f.
OLIVEIRA JUNIOR., J. M. et al. Physical characterization of biphasic bioceramic materials
with different granulation sizes and their influence on bone repair and inflammation in rat
calvaria. Scientific Reports, United States, v. 11, n. 1, 24 fev. 2021. DOI: 10.1038/s41598-
021-84033-y.
PALAKURTHY, S. et al. In vitro bioactivity and degradation behaviour of β-wollastonite
derived from natural waste. Materials Science and Engineering: C, Netherlands, v. 98, p.
109-117, 2019.
PAPYNOV, E. K. et al. Synthetic CaSiO3 sol-gel powder and SPS ceramic derivatives: “In
vivo” toxicity assessment. Progress in Natural Science: Materials International, Romania,
v. 29, n. 5, p. 569–575, 3 out. 2019. DOI: 10.1016/j.pnsc.2019.07.004.
62
PONZETTI, M.; RUCCI, N. Osteoblast Differentiation and Signaling: Established Concepts
and Emerging Topics. International Journal of Molecular Sciences, United States, v. 22, n.
13, p. 6651, 22 jun. 2021. DOI: 10.3390/ijms22136651.
QABBANI, A. A. et al. Evaluation of the osteogenic potential of demineralized and
decellularized bovine bone granules following implantation in rat calvaria critical-size defect
model. PLoS ONE, [s.l], v. 18, n. 12, p. e0294291–e0294291, 21 dez. 2023. DOI:
10.1371/journal.pone.0294291
QU, D. et al. Enhancing bone repair efficiency through synergistic modification of
recombinant human collagen onto PLLA membranes. International Journal of Biological
Macromolecules, Netherlands, p. 137631, 16 nov. 2024. DOI:
10.1016/j.ijbiomac.2024.137631.
RAMOS, L. V.; BARRETO, I. C.; MIGUEL, F. B. Morbimortalidade por acidentes de
trânsito terrestres na Bahia entre os anos de 2011 e 2021. Revista de Ciências Médicas e
Biológicas, Salvador, v. 21, n. 3, p. 593–604, 29 dez. 2022. DOI:
10.9771/cmbio.v21i3.51978.
RIBEIRO, I. I. A. et al. Biocerâmicas e polímero para a regeneração de defeitos ósseos
críticos. Revista de Ciências Médicas e Biológicas, Salvador, v. 13, n. 3, p. 298, 2014. DOI:
10.9771/cmbio.v13i3.12934.
RIBEIRO, I. I. A. et al. Biological evaluation of critical bone defect regeneration using
hydroxyapatite/ alginate composite granules. Acta Cirúrgica Brasileira, São Paulo, v. 39, 1
jan. 2024. DOI: 10.1590/acb392824.
SANTOS, A. C. et al. A new hydroxyapatite-alginate-gelatin biocomposite favor bone
regeneration in a critical-sized calvarial defect model. Brazilian Dental Journal, São Paulo,
v. 35, 1 jan. 2024. DOI: 10.1590/0103-6440202405461.
SANTOS C. F. et al. Preliminary study of bone repair in a non-critical defect after the
implantation of wollastonite and tricalcium phosphate granules. Revista de Ciências
Médicas e Biológicas, Salvador, v. 22, n. 3, p. 472–479, 4 dez. 2023. DOI:
10.9771/cmbio.v22i3.57625.
SANTOS, G. G. et al. Bone regeneration using Wollastonite/β-TCP scaffolds implants in
critical bone defect in rat calvaria. Biomedical Physics & Engineering Express, United
Kingdom, v. 7, n. 5, p. 055015–055015, 28 jul. 2021. DOI: 10.1088/2057-1976/ac1878.
SANTOS, G. G. et al. Influence of the geometry of nanostructured hydroxyapatite and
alginate composites in the initial phase of bone repair. Acta Cirúrgica Brasileira, São Paulo,
v. 34, n. 2, 1 jan. 2019. DOI: 10.1590/s0102-8650201900203.
SANTOS, G. G. et al. Wollastonite and tricalcium phosphate composites for bone
regeneration. Research Society and Development, Itabira, v. 11, n. 9, p. e12011931662-
e12011931662, 4 jul. 2022. DOI: 10.33448/rsd-v11i9.31662.
63
SANTOS, G. G.; MEIRELES, E. C. A.; MIGUEL, F. B. Wollastonite/TCP composites for
bone regeneration: systematic review and meta-analysis. Cerâmica, [s.l], v. 66, n. 379, p.
277–283, 20 jul. 2020. DOI: 10.1590/S0102-09352006000200005.
SCHICKLE, K. et al. Synthesis of novel tricalcium phosphate-bioactive glass composite and
functionalization with rhBMP-2. Journal of Materials Science: Materials in Medicine,
United States, v. 22, n. 4, p. 763–771, 10 fev. 2011.
SELVARAJ, V. et al. Type 1 collagen: synthesis, structure and key functions in bone
mineralization. Differentiation, [s.l], v. 136, p. 100757, mar./abr. 2024. DOI:
10.1016/j.diff.2024.100757.
SHAIKH, S. et al. Strontium-Substituted Nanohydroxyapatite Containing Biodegradable 3D
Printed Composite Scaffolds for Bone Regeneration. ACS Applied Materials & Interfaces,
United States, 18 nov. 2024. DOI: 10.1021/acsami.4c16195.
SIDDIQUI, J. A.; PARTRIDGE, N. C. Physiological Bone Remodeling: Systemic Regulation
and Growth Factor Involvement. Physiology, [s.l], v. 31, n. 3, p. 233–245, maio 2016. DOI:
10.1152/physiol.00061.2014.
SILVA, J. A. et al. Histomorphometric Study of Non-critical Bone Defect Repair after
Implantation of Magnesium-substituted Hydroxyapatite Microspheres. Rev Bras Ortop., Sao
Paulo, v. 59, n. 04, p. e519–e525, 1 aug. 2024. DOI: 10.1055/s-0044-1787768.
SILVA, L. et al. Assessment of bone repair in critical-size defect in the calvarium of rats after
the implantation of tricalcium phosphate beta (β-TCP). Acta Histochemica, Germany, v. 119,
n. 6, p. 624–631, 18 jul. 2017. DOI: 10.1016/j.acthis.2017.07.003.
SILVA, S. A. et al. Citotoxicidade in vitro de nanopartículas de fosfato tricálcico-β
sintetizado via reação em estado sólido. Matéria, Rio de Janeiro, v. 23, 13 jun. 2019. DOI:
10.1590/S1517-707620180004.0605.
SIQUEIRA, L.et al. Evaluation of the sintering temperature on the mechanical behavior of βtricalcium phosphate/calcium silicate scaffolds obtained by gelcasting method. Journal of the
mechanical behavior of biomedical materials, [s.l], v. 90, p. 635–643, 17 2019. DOI:
10.1016/j.jmbbm.2018.11.014.
SIRIPHANNON, P. et al. Influence of preparation conditions on the microstructure and
bioactivity of ?-CaSiO3 ceramics: Formation of hydroxyapatite in simulated body fluid.
Journal of Biomedical Materials Research, United States, v. 52, n. 1, p. 30–39, 1 jan. 2000.
DOI: 10.1002/1097-4636(200010)52:1<30::AID-JBM5>3.0.CO;2-Z.
SRINATH, P.; ABDUL AZEEM, P.; VENUGOPAL REDDY, K. Review on calcium
silicate‐based bioceramics in bone tissue engineering. International Journal of Applied
Ceramic Technology, [s.l], v. 17, n. 5, p. 2450–2464, jul. 2020. DOI: 10.1111/ijac.13577.
TAKITO, J.; NONAKA, N. Osteoclasts at Bone Remodeling: Order from Order. Results and
problems in cell differentiation, [s.l], p. 227–256, 23 nov. 2023. DOI: 10.1007/978-3-031-
37936-9_12.
64
TIEDE-LEWIS, L. M.; DALLAS, S. L. Changes in the osteocyte lacunocanalicular network
with aging. Bone, [s.l], v. 122, p. 101-113, 2019.
TRONCO, M. C.; CASSEL, J. B.; SANTOS, L. A. α-TCP-based calcium phosphate cements:
A critical review. Acta Biomaterialia, United States, v. 151, p. 70–87, 1 out. 2022. DOI:
10.1016/j.actbio.2022.08.040.
TSAI, J. et al. Origin of Osteoclasts: Osteoclast Precursor Cells. Journal of Bone
Metabolism, South Korea, v. 30, n. 2, p. 127–140, 31 maio 2023. DOI:
10.11005/jbm.2023.30.2.127.
VAJGEL, A. et al. A systematic review on the critical size defect model. Clinical Oral
Implants Research, Denmark, v. 25, n. 8, p. 879–893, 7 jun. 2013. DOI: 10.1111/clr.12194
VASCONCELOS, L. Q. Análise físico-química e histomorfométrica do compósito
wollastonita/fosfato tricálcico em diferentes concentrações após implantação in vivo
para regeneração óssea. 2019. 98f. Tese (Doutorado) -Universidade Federal da Bahia,
Salvador, 2019.
VASCONCELOS, L. Q. et al. Histomorphological and histomorphometric analysis of
wollastonite and tricalcium phosphate composite at different concentrations after in vivo
implantation. Brazilian Journal of Development, [s.l], v. 9, n. 1, p. 5324–5338, 26 jan.
2023. DOI: 10.34117/bjdv9n1-363
WA, Q. et al. Mesoporous bioactive glass-enhanced MSC-derived exosomes promote bone
regeneration and immunomodulation in vitro and in vivo. Journal of Orthopaedic
Translation, Singapore, v. 49, p. 264–282, 30 out. 2024. DOI: 10.1016/j.jot.2024.09.009.
WANG, C. et al. Osteogenesis and angiogenesis induced by porous β-CaSiO3/PDLGA
composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Biomaterials,
Netherlands, v. 34, n. 1, p. 64–77, jan. 2013. DOI: 10.1016/j.biomaterials.2012.09.021.
WANG, C. et al. The stimulation of osteogenic differentiation of mesenchymal stem cells and
vascular endothelial growth factor secretion of endothelial cells by β-CaSiO3/βCa3(PO4)2scaffolds. Journal of Biomedical Materials Research Part A, United States, v.
102, n. 7, p. 2096–2104, 2 ago. 2014. DOI: 10.1002/jbm.a.34880.
WANG, J. et al. Biomaterials for bone defect repair: Types, mechanisms and effects. The
international journal of artificial organs, Italy, 2 jan. 2024. DOI:
10.1177/03913988231218884.
WEI, S. et al. Biodegradable materials for bone defect repair. Military Medical Research,
London, v. 7, n. 1, 10 nov. 2020. DOI: 10.1186/s40779-020-00280-6
YONG, E.; LOGAN, S. Menopausal osteoporosis: screening, prevention and treatment.
Singapore Medical Journal, Singapore, v. 62, n. 4, p. 159–166, abr. 2021. DOI:
10.11622/smedj.2021036.
YOUNESS, R. A.; TAG EL-DEEN, D. M.; TAHA, M. A. A Review on Calcium Silicate
Ceramics: Properties, Limitations, and Solutions for Their Use in Biomedical Applications.
Silicon, [s.l], v.15, p. 2493-2503, 10 nov. 2022. DOI: 10.1007/s12633-022-02207-3.
65
ZHAO, Z. et al. Biodegradation of HA and β-TCP Ceramics Regulated by T-Cells.
Pharmaceutics, [s.l], v. 14, n. 9, p. 1962, 16 set. 2022. DOI:
10.3390/pharmaceutics14091962.
ZENEBE, C. G. A Review on the Role of Wollastonite Biomaterial in Bone Tissue
Engineering. BioMed Research International, United States, v. 2022, p. 1–15, 13 dez. 2022.
DOI: 10.1155/2022/4996530. |
pt_BR |