DSpace/Manakin Repository

Estudo do reparo de defeito ósseo não crítico após a implantação de grânulos de wollastonita e fosfato tricálcico

Mostrar registro simples

dc.creator Silva, Felipe Chaimsohn Gonçalves da Silva
dc.date.accessioned 2025-08-19T15:36:22Z
dc.date.available 2025-08-19T15:36:22Z
dc.date.issued 2025-12-20
dc.identifier.citation SILVA, Felipe Chaimsohn Gonçalves. Estudo do reparo de defeito ósseo não crítico após a implantação de grânulos de wollastonita e fosfato tricálcico. Orientador: Fúlvio Borges Miguel; Coorientadoras: Ana Maria Guerreiro Braga e Isabela Cerqueira Barreto 2024. 66 f. Dissertação (Mestrado em Processos Interativos dos Órgãos e Sistemas) - Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador (BA), 2024. pt_BR
dc.identifier.uri https://repositorio.ufba.br/handle/ri/42750
dc.description.abstract Introduction: In recent years, composites based on wollastonite (W) and beta-tricalcium phosphate (β-TCP) have been developed and evaluated for their potential to promote bone regeneration due to their biocompatibility, bioactivity, osteoconductivity, and biodegradability. Objective: To evaluate, in vivo, the osteogenic potential of W/β-TCP composite granules in two proportions, in a non-critical bone defect. Materials and Methods: Thirty male Wistar rats weighing between 300 and 350 grams were assigned to three experimental groups to produce a 5-mm-diameter bone defect in the center of each animal’s calvaria: 60W/40T – non-critical bone defect filled with W/β-TCP granules at proportions of 60% and 40%, respectively; 80W/20T – non-critical bone defect filled with W/β-TCP granules at proportions of 80% and 20%, respectively; and CG (control group) – non-critical bone defect without biomaterial implantation. Biological endpoints were established at 45 and 120 days. Histological sections stained with hematoxylin and eosin (HE) and picrosirius red (PSR) underwent a histomorphological evaluation for the following parameters: bone neoformation, biomaterial characteristics (appearance, arrangement, and presentation of the granules), inflammatory response, angiogenesis, and connective tissue (CT) formation. Osteogenic potential was determined histomorphometrically based on the rate of bone neoformation. Results: At 45 days, the histomorphological analysis revealed discrete centripetal bone neoformation in the 60W/40T and 80W/20T groups, whereas in the CG, the findings were more pronounced, although with reduced thickness compared to the height of the bone margins. At 120 days, bone formation was similar to the previous biological endpoint but more evident in the 80W/20T and CG groups. At both time points, the biomaterial granules were distributed throughout the defect area, surrounded by CT rich in blood vessels. This tissue exhibited a marked chronic granulomatous inflammatory infiltrate containing multinucleated giant cells (MGCs), particularly adjacent to the granules. In the CG, the residual area was filled with fibrous CT without inflammatory cells. The histomorphometric analysis at 45 days showed slight bone neoformation in the 80W/20T (6%) and 60W/40T (4%) groups, and a more marked response in the CG (22%). At 120 days, bone neoformation was more evident in the 80W/20T group (46%) compared to the 60W/40T group (22%). In the CG, the bone neoformation rate reached 49% at this biological endpoint, but the new bone was thinner than the margin. Conclusion: Granules containing 80% W and 20% β-TCP demonstrated higher osteogenic potential than those with 60% W and 40% β-TCP. Moreover, the biomaterials were biocompatible, bioactive, and osteoconductive. pt_BR
dc.language por pt_BR
dc.publisher Universidade Federal da Bahia pt_BR
dc.rights Acesso Aberto pt_BR
dc.subject Beta-fosfato tricálcico pt_BR
dc.subject Biomateriais pt_BR
dc.subject Regeneração óssea pt_BR
dc.subject Silicato de cálcio pt_BR
dc.subject.other Beta-tricalcium phosphate pt_BR
dc.subject.other Biomaterials pt_BR
dc.subject.other Bone regeneration pt_BR
dc.subject.other Calcium silicate pt_BR
dc.title Estudo do reparo de defeito ósseo não crítico após a implantação de grânulos de wollastonita e fosfato tricálcico pt_BR
dc.title.alternative Analysis of non-critical bone defect repair after implanting wollastonite and tricalcium phosphate granules pt_BR
dc.type Dissertação pt_BR
dc.publisher.program Programa de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas (PPGORGSISTEM)  pt_BR
dc.publisher.initials UFBA pt_BR
dc.publisher.country Brasil pt_BR
dc.subject.cnpq CNPQ::CIENCIAS DA SAUDE pt_BR
dc.contributor.advisor1 Miguel, Fúlvio Borges
dc.contributor.advisor1ID https://orcid.org/0000-0002-0607-0208 pt_BR
dc.contributor.advisor1Lattes http://lattes.cnpq.br/3521504019966856 pt_BR
dc.contributor.advisor-co1 Silva, Ana Maria Guerreiro Braga
dc.contributor.advisor-co1ID https://orcid.org/0000-0003-0581-1438 pt_BR
dc.contributor.advisor-co1Lattes http://lattes.cnpq.br/3799041527109928 pt_BR
dc.contributor.advisor-co2 Barreto, Isabela Cerqueira
dc.contributor.advisor-co2Lattes http://lattes.cnpq.br/1067168197252885 pt_BR
dc.contributor.referee1 Miguel, Fúlvio Borges
dc.contributor.referee1ID https://orcid.org/0000-0002-0607-0208 pt_BR
dc.contributor.referee1Lattes http://lattes.cnpq.br/3521504019966856 pt_BR
dc.contributor.referee2 Ribeiro, Iorrana Índira dos Anjos
dc.contributor.referee2ID https://orcid.org/0000-0002-9602-1708 pt_BR
dc.contributor.referee2Lattes http://lattes.cnpq.br/1900636248526682 pt_BR
dc.contributor.referee3 Santos, George Gonçalves
dc.contributor.referee3ID https://orcid.org/0000-0001-8601-5825 pt_BR
dc.contributor.referee3Lattes http://lattes.cnpq.br/6573968618863475 pt_BR
dc.creator.ID https://orcid.org/0000-0001-9530-9489 pt_BR
dc.creator.Lattes http://lattes.cnpq.br/7830629761688641 pt_BR
dc.description.resumo Introdução – Nos últimos anos, compósitos à base de wollastonita (W) e beta fosfato tricálcico (β-TCP) têm sido desenvolvidos e avaliados com o intuito de promover a regeneração óssea, em função de serem materiais biocompatíveis, bioativos, osteocondutores e biodegradáveis. Objetivo – Avaliar, in vivo, o potencial osteogênico de grânulos de compósito de W/-TCP, em duas proporções distintas, em defeito ósseo não crítico. Materiais e métodos – 30 ratos Wistar machos, com 300 a 350 gramas, foram divididos em três grupos experimentais, para a confecção do defeito ósseo com 5 mm de diâmetro na região central da calvária: 60W/40T – defeito ósseo não crítico preenchido com grânulos de W/β-TCP na proporção de 60% e 40%, respectivamente; 80W/20T – defeito ósseo não crítico, preenchido com grânulos de W/β-TCP na proporção de 80% e 20%, respectivamente; e GC, grupo de controle – defeito ósseo não crítico sem implantação de biomaterial. Foram avaliados nos pontos biológicos de 45 e 120 dias. Os cortes histológicos, corados com hematoxilina e eosina (HE) e picrosirus red (PSR), foram avaliados histomorfologicamente quanto aos seguintes parâmetros: neoformação óssea, características dos biomateriais (aspecto, disposição e apresentação dos grânulos), resposta inflamatória, angiogênese e formação de tecido conjuntivo (TC). O potencial osteogênico foi verificado histomorfometricamente, de acordo com o percentual de neoformação óssea. Resultados – Aos 45 dias, na análise histomorfológica, os grupos 60W/40T e 80W/20T apresentaram neoformação óssea discreta em direção centrípeta, enquanto, no GC, esse achado foi mais evidente, porém com a espessura reduzida em relação à altura das bordas ósseas. Aos 120 dias, a neoformação óssea ocorreu de forma semelhante à do ponto biológico anterior, todavia foi mais evidente no 80W/20T e no GC. Nos dois períodos de análise, os grânulos dos biomateriais se mostraram distribuídos por toda a extensão do defeito, circundados por TC rico em vasos sanguíneos. Esse tecido se mostrou permeado por intenso infiltrado inflamatório crônico granulomatoso, com células gigantes multinucleadas (CGMN), principalmente, de modo circunvizinho aos grânulos. No GC, na área residual, notou-se a formação de TC fibroso, com ausência de células inflamatórias. Histomorfometricamente, aos 45 dias, houve discreta neoformação óssea nos grupos 80W/20T (6%) e 60W/40T (4%), e de forma mais notória no GC (22%). Aos120 dias, nos grupos em que houve implantação de biomaterial, a neoformação óssea foi mais evidente no 80W/20T (46%), quando comparado com o 60W/40T (22%). No GC, o percentual de neoformação óssea, nesse ponto biológico, foi de 49%, com espessura reduzida em relação à borda. Conclusão – Os grânulos, na proporção de 80% de W e 20% de β-TCP, evidenciaram maior potencial osteogênico quando comparados aos de proporção de 60% de W e 40% de β-TCP. Outrossim, os biomateriais se mostraram biocompatíveis, bioativos e osteocondutores. pt_BR
dc.publisher.department Instituto de Ciências da Saúde - ICS pt_BR
dc.relation.references AL-ALLAQ, A.; KASHAN, J. S. A review: In vivo studies of bioceramics as bone substitute materials. Nano Select, [s.l.], v. 4, n. 2, p. 123-144, 2023. DOI: 10.1002/nano.202200222. ALIZADEH-OSGOUEI, M.; LI, Y.; WEN, C. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioactive Materials, Netherlands, v. 4, p. 22–36, dez. 2019. DOI: 10.1016/j.bioactmat.2018.11.003. ALMEIDA, R. D. S. et al. Avaliação da fase inicial do reparo ósseo após implantação de biomateriais. Revista de Ciências Médicas e Biológicas, Salvador, v. 13, n. 3, p. 331, 2014. DOI: 10.9771/cmbio.v13i3.12940. ALMEIDA, R. S. et al. Regeneração de defeito ósseo crítico após implantação de fosfato de cálcio bifásico (β-fosfato tricálcico/pirofosfato de cálcio) e vidro bioativo fosfatado. Cerâmica, [s.l], v. 66, n. 378, p. 119–125, jun. 2020. DOI: 10.1590/0366- 69132020663782707 ALMEIDA, K. V. Scaffolds multifuncionais para regeneração óssea. 2017. 140 f. Tese (Doutorado) - Universidade Federal de Campina Grande, Paraíba, 2017. ANDERSON, J. M.; RODRIGUEZ, A.; CHANG, D. T. Foreign body reaction to biomaterials. Semin. Immunol., [s.l], v.20, n.2, p.86-100, 2008. DOI: 10.1016/j.smim.2007.11.004. ASHRAF, H.; RAHMATI, A.; AMINI, N. Vital Pulp Therapy with Calcium-Silicate Cements: Report of Two Cases. Iranian Endodontic Journal, [s.l], v. 12, n. 1, p. 112–115, 1 jan. 2017. DOI: 10.22037/iej.2017.23 BARBOSA, W. T. et al. Synthesis and in vivo evaluation of a scaffold containing wollastonite/β‐TCP for bone repair in a rabbit tibial defect model. Journal of Biomedical Materials Research Part B: Applied Biomaterials, United States, v. 108, n. 3, p. 1107– 1116, 8 ago. 2019. DOI: 10.1002/jbm.b.34462. BEHONICK, D. J. et al. Role of Matrix Metalloproteinase 13 in Both Endochondral and Intramembranous Ossification during Skeletal Regeneration. PLoS ONE, [s.l], v. 2, n. 11, p. e1150, 7 nov. 2007. BOHNER, M.; SANTONI, B. L. G.; DÖBELIN, N. β-tricalcium phosphate for bone substitution: Synthesis and properties. Acta Biomaterialia, Oxford, v. 113, p. 23–41, set. 2020. DOI: 10.1016/j.actbio.2020.06.022. BOUATROUS, M. et al. A modified wet chemical synthesis of Wollastonite ceramic nanopowders and their characterizations. Ceramics International, United Kingdom, v. 46, n. 8, p. 12618-12625, 2020. CAO, Y. et al. 3D printed β-TCP scaffold with sphingosine 1-phosphate coating promotes osteogenesis and inhibits inflammation. Biochemical and Biophysical Research Communications, v. 512, n. 4, p. 889–895, 28 mar. 2019. DOI: 10.1016/j.bbrc.2019.03.132 58 CARDOSO, A. K. M. V. et al. Histomorphometric Analysis of Tissue Responses to Bioactive Glass Implants in Critical Defects in Rat Calvaria. Cells Tissues Organs, Netherlands, v. 184, n. 3-4, p. 128–137, 1 jan. 2006. DOI: 10.1159/000099619 CARRODEGUAS, R. G. et al. Preparation and In Vitro Characterization of Wollastonite Doped Tricalcium Phosphate Bioceramics. Key engineering materials, [s.l], v. 361-363, p. 237–240, 1 nov. 2007. DOI: 10.4028/www.scientific.net/KEM.361-363.237. CHEN, X. et al. Osteoblast–osteoclast interactions. Connective Tissue Research, United Kingdom, v. 59, n. 2, p. 99–107, 21 mar. 2017. DOI: 10.1080/03008207.2017.1290085. CHEN, X. et al. Bioactive glass 1393 promotes angiogenesis and accelerates wound healing through ROS/P53/MMP9 signaling pathway. Regenerative Therapy, Japan, v. 26, p. 132– 144, 2024. DOI: 10.1016/j.reth.2024.05.016 COATHUP, M. J. et al. Effect of increased strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction. Journal of Biomedical Materials Research Part A, United States, v. 100A, n. 6, p. 1550–1555, 15 mar. 2012. DOI: 10.1002/jbm.a.34094. CUI, J. et al. Osteocytes in bone aging: Advances, challenges, and future perspectives. Ageing Research Reviews, Ireland, v. 77, p. 101608, maio 2022. DOI: 10.1016/j.arr.2022.101608 DALTRO, A. F. C.; BARRETO, I. C.; ROSA, F. P. Análise do efeito da plataforma vibratória na regeneração de defeito ósseo. Revista de Ciências Médicas e Biológicas, Salvador, v. 15, n. 3, p. 323, 15 dez. 2016. doi: 10.9771/cmbio.v15i3.18182 DENG, Y. et al. 3D printed scaffolds of calcium silicate-doped β-TCP synergize with cocultured endothelial and stromal cells to promote vascularization and bone formation. Scientific Reports, London, v. 7, n. 1, 17 jul. 2017. DEVELIOGLU, H. et al. Evaluation of the Long-Term Results of Rat Cranial Bone Repair Using a Particular Xenograft. Journal of Oral Implantology, United States, v. 36, n. 3, p. 167–173, 1 jun. 2010. DOI: 10.1563/AAID-JOI-D-09-00064 DING, P. et al. Osteocytes regulate senescence of bone and bone marrow. eLife, [s.l], v. 11, 28 out. 2022. DOI: 10.7554/eLife.81480 DOMINGUES, J. A. et al. Addition of Wollastonite Fibers to Calcium Phosphate Cement Increases Cell Viability and Stimulates Differentiation of Osteoblast-Like Cells. Scientific World Journal, United States, v. 2017, p. 1–6, 1 jan. 2017. DOI: 10.1155/2017/5260106 EL-FIQI, A.; KIM, J.-H.; KIM, H.-W. Highly bioactive bone cement microspheres based on α-tricalcium phosphate microparticles/mesoporous bioactive glass nanoparticles: Formulation, physico-chemical characterization and in vivo bone regeneration. Colloids and Surfaces B: Biointerfaces, Netherlands, v. 217, p. 112650, 20 jun. 2022. DOI: 10.1016/j.colsurfb.2022.112650. 59 FABRIS, A. L. DA S. et al. Bone repair access of BoneCeramicTM in 5-mm defects: study on rat calvaria. Journal of Applied Oral Science, São Paulo, v. 26, n. 0, 15 jan. 2018. DOI: 10.1590/1678-7757-2016-0531. FANG, L. et al. Advances in the Development of Gradient Scaffolds Made of NanoMicromaterials for Musculoskeletal Tissue Regeneration. Nano-Micro Letters, [s.l], v. 17, n. 1, 27 nov. 2024. DOI: 10.1007/s40820-024-01581-4. FENG, J. et al. Beta-TCP scaffolds with rationally designed macro-micro hierarchical structure improved angio/osteo-genesis capability for bone regeneration. Journal of Materials Science Materials in Medicine, United States, v. 34, n. 7, 24 jul. 2023. DOI: 10.1007/s10856-023-06733-3. FERNANDEZ DE GRADO, G. et al. Bone substitutes: a review of their characteristics, clinical use, and perspectives for large bone defects management. Journal of Tissue Engineering, Chichester, v. 9, 4 jun. 2018. DOI: 10.1177/2041731418776819. FU, Y. C. et al. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects. International Journal of Nanomedicine, New Zealand, p. 7231–7231, 1 dez. 2015. DOI: 10.2147/IJN.S88134. GAO, C. et al. Bone biomaterials and interactions with stem cells. Bone Research, New York, v. 5, n. 1, dez. 2017. DOI: 10.1038/boneres.2017.59 GITIRANA, L. B. Histologia dos tecidos. Rio de Janeiro: PUBLIT Soluções Editoriais, 2013. v. 1. (Coleção Conhecendo). GLASER, D. E. et al. Organ-on-a-chip model of vascularized human bone marrow niches. Biomaterials, Netherlands, v. 280, p. 121245, 1 jan. 2022. DOI: 10.1016/j.biomaterials.2021.121245. GÓMEZ-CEREZO, M. N. et al. Multiscale porosity in mesoporous bioglass 3D-printed scaffolds for bone regeneration. Materials Science and Engineering C, [s.l], v. 120, p. 111706–111706, 6 nov. 2020. DOI: 10.48550/arXiv.2104.01458. HART, N. H. et al. Biological basis of bone strength: anatomy, physiology and measurement. Journal of Musculoskeletal & Neuronal Interactions, Greece, v. 20, n. 3, p. 347, 2020. HERNANDEZ, J. L.; WOODROW, K. A. Medical Applications of Porous Biomaterials: Features of Porosity and Tissue‐Specific Implications for Biocompatibility. Advanced Healthcare Materials, Germany, v. 11, n. 9, p. 2102087, 19 fev. 2022. DOI: 10.1002/adhm.202102087. HOERTH, R. M. et al. Mechanical and structural properties of bone in non-critical and critical healing in rat. Acta biomaterialia, Kidlington, v. 10, n. 9, p. 4009–4019, 1 set. 2014. DOI: 10.1016/j.actbio.2014.06.003. HOSSAIN, S. S. et al. A comparative study of physico-mechanical, bioactivity and hemolysis properties of pseudo-wollastonite and wollastonite glass-ceramic synthesized from solid 60 wastes. Ceramics International, United Kingdom, v. 46, n. 1, p. 833–843, jan. 2020. DOI: 10.1016/j.ceramint.2019.09.039. JODATI, H.; YILMAZ, B.; EVIS, Z. A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features. Ceramics International, United Kingdom, v. 46, n. 10, p. 15725–15739, jul. 2020. DOI: 10.1016/j.ceramint.2020.03.192. KAČAREVIĆ, Ž. P. et al. An introduction to bone tissue engineering. The International Journal of Artificial Organs, Italy, v. 43, n. 2, p. 69–86, 23 set. 2019. DOI: 10.1177/0391398819876286. KANEKO, K. et al. Cellular signatures in human blood track bone mineral density in postmenopausal women. JCI Insight, United States, v. 9, n. 22, 21 nov. 2024. DOI: 10.1172/jci.insight.178977. KIM, M. H. et al. High-throughput bioprinting of spheroids for scalable tissue fabrication. Nature Communications, London, v. 15, n. 1, 21 nov. 2024. DOI: 10.1038/s41467-024- 54504-7. KITASE, Y.; PRIDEAUX, M. Targeting osteocytes vs osteoblasts. Bone, [s.l], v. 170, p. 116724, maio 2023. DOI: 10.1016/j.bone.2023.116724. LEE, W.-B. et al. Whitlockite Granules on Bone Regeneration in Defect of Rat Calvaria. ACS Applied Bio Materials, United States, v. 3, n. 11, p. 7762–7768, 4 nov. 2020. DOI: 10.1021/acsabm.0c00960. LEGEROS, R. Z. Calcium Phosphate Materials in Restorative Dentistry: a Review. Advances in Dental Research, United States, v. 2, n. 1, p. 164–180, ago. 1988. LEKHAVADHANI, S.; SHANMUGAVADIVU, A.; SELVAMURUGAN, N. Role and architectural significance of porous chitosan-based scaffolds in bone tissue engineering. International Journal of Biological Macromolecules, Netherlands, v. 251, p. 126238, 9 ago. 2023. LIMA, M. J. S. et al. Development of Functionalized Poly(ε-caprolactone)/ Hydroxyapatite Scaffolds via Electrospinning 3D for Enhanced Bone Regeneration. ACS Omega, [s.l], v. 9, n. 45, p. 45035–45046, 30 out. 2024. DOI: 10.1021/acsomega.4c05264. LIU, Y. et al. ZIF-8-Modified Multifunctional Bone-Adhesive Hydrogels Promoting Angiogenesis and Osteogenesis for Bone Regeneration. ACS Applied Materials & Interfaces, United States, v. 12, n. 33, p. 36978–36995, 29 jul. 2020. DOI: 10.1021/acsami.0c12090. LIU, Z. et al. Advances in the use of calcium silicate-based materials in bone tissue engineering. Ceramics International, United Kingdom, mar. 2023. DOI: 10.1016/j.ceramint.2023.03.063. MACIEL, G. B. M.; MACIEL, R. M.; DANESI, C. C. Bone cells and their role in physiological remodeling. Molecular Biology Reports, [s.l], v. 50, n. 3, p. 2857-2863, 2023. 61 MARUYAMA, M. et al. Modulation of the Inflammatory Response and Bone Healing. Frontiers in Endocrinology, Switzerland, v. 11, 11 jun. 2020. DOI: 10.3389/fendo.2020.00386. MATIC, I. et al. Quiescent Bone Lining Cells Are a Major Source of Osteoblasts During Adulthood. Stem Cells, [s.l], v. 34, n. 12, p. 2930–2942, 29 ago. 2016. DOI: 10.1002/stem.2474. MAXIM, L. et al. Product Stewardship in Wollastonite Production. Inhalation Toxicology, [s.l], v. 20, n. 14, p. 1199–1214, jan. 2008. DOI: 10.1080/08958370802136749. MIGUEL, F. B. et al. Morphological assessment of the behavior of three‐dimensional anionic collagen matrices in bone regeneration in rats. Journal of Biomedical Materials Research Part B: Applied Biomaterials, United States, v. 78B, n. 2, p. 334–339, 7 fev. 2006. DOI: 10.1002/jbm.b.30492. MIGUEL, F. B. et al. Regeneration of critical bone defects with anionic collagen matrix as scaffolds. Journal of Materials Science Materials in Medicine, United States, v. 24, n. 11, p. 2567–2575, 19 jun. 2013. DOI: 10.1007/s10856-013-4980-8. MIN, K. H. et al. Biomimetic Scaffolds of Calcium-Based Materials for Bone Regeneration. Biomimetics, [s.l], v. 9, n. 9, p. 511–511, 24 ago. 2024. DOI: https://doi.org/10.3390/biomimetics9090511 MONÇÃO, M. M. Biomateriais e regeneração óssea: conceitos e perspectivas. Revista de Ciências Médicas e Biológicas, Salvador, v. 21, n. 1, p. 3-4, 2022. DOI: 10.9771/cmbio.v21i1.49880. MORSY, R.; ABUELKHAIR, R.; ELNIMR, T. Synthesis of microcrystalline wollastonite bioceramics and evolution of bioactivity. Silicon, [s.l], v. 9, p. 489-493, 2017. NANDA, R. et al. Molecular differences in collagen organization and in organic-inorganic interfacial structure of bones with and without osteocytes. Acta Biomaterialia, United States, v. 144, p. 195–209, maio 2022. DOI: 10.1016/j.actbio.2022.03.032. NUR, N. et al. A review of bioceramics scaffolds for bone defects in different types of animal models: HA and β -TCP. Biomedical Physics & Engineering Express, [s.l], v. 8, n. 5, p. 052002–052002, 3 ago. 2022. DOI: 10.1088/2057-1976/ac867f. OLIVEIRA JUNIOR., J. M. et al. Physical characterization of biphasic bioceramic materials with different granulation sizes and their influence on bone repair and inflammation in rat calvaria. Scientific Reports, United States, v. 11, n. 1, 24 fev. 2021. DOI: 10.1038/s41598- 021-84033-y. PALAKURTHY, S. et al. In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Materials Science and Engineering: C, Netherlands, v. 98, p. 109-117, 2019. PAPYNOV, E. K. et al. Synthetic CaSiO3 sol-gel powder and SPS ceramic derivatives: “In vivo” toxicity assessment. Progress in Natural Science: Materials International, Romania, v. 29, n. 5, p. 569–575, 3 out. 2019. DOI: 10.1016/j.pnsc.2019.07.004. 62 PONZETTI, M.; RUCCI, N. Osteoblast Differentiation and Signaling: Established Concepts and Emerging Topics. International Journal of Molecular Sciences, United States, v. 22, n. 13, p. 6651, 22 jun. 2021. DOI: 10.3390/ijms22136651. QABBANI, A. A. et al. Evaluation of the osteogenic potential of demineralized and decellularized bovine bone granules following implantation in rat calvaria critical-size defect model. PLoS ONE, [s.l], v. 18, n. 12, p. e0294291–e0294291, 21 dez. 2023. DOI: 10.1371/journal.pone.0294291 QU, D. et al. Enhancing bone repair efficiency through synergistic modification of recombinant human collagen onto PLLA membranes. International Journal of Biological Macromolecules, Netherlands, p. 137631, 16 nov. 2024. DOI: 10.1016/j.ijbiomac.2024.137631. RAMOS, L. V.; BARRETO, I. C.; MIGUEL, F. B. Morbimortalidade por acidentes de trânsito terrestres na Bahia entre os anos de 2011 e 2021. Revista de Ciências Médicas e Biológicas, Salvador, v. 21, n. 3, p. 593–604, 29 dez. 2022. DOI: 10.9771/cmbio.v21i3.51978. RIBEIRO, I. I. A. et al. Biocerâmicas e polímero para a regeneração de defeitos ósseos críticos. Revista de Ciências Médicas e Biológicas, Salvador, v. 13, n. 3, p. 298, 2014. DOI: 10.9771/cmbio.v13i3.12934. RIBEIRO, I. I. A. et al. Biological evaluation of critical bone defect regeneration using hydroxyapatite/ alginate composite granules. Acta Cirúrgica Brasileira, São Paulo, v. 39, 1 jan. 2024. DOI: 10.1590/acb392824. SANTOS, A. C. et al. A new hydroxyapatite-alginate-gelatin biocomposite favor bone regeneration in a critical-sized calvarial defect model. Brazilian Dental Journal, São Paulo, v. 35, 1 jan. 2024. DOI: 10.1590/0103-6440202405461. SANTOS C. F. et al. Preliminary study of bone repair in a non-critical defect after the implantation of wollastonite and tricalcium phosphate granules. Revista de Ciências Médicas e Biológicas, Salvador, v. 22, n. 3, p. 472–479, 4 dez. 2023. DOI: 10.9771/cmbio.v22i3.57625. SANTOS, G. G. et al. Bone regeneration using Wollastonite/β-TCP scaffolds implants in critical bone defect in rat calvaria. Biomedical Physics & Engineering Express, United Kingdom, v. 7, n. 5, p. 055015–055015, 28 jul. 2021. DOI: 10.1088/2057-1976/ac1878. SANTOS, G. G. et al. Influence of the geometry of nanostructured hydroxyapatite and alginate composites in the initial phase of bone repair. Acta Cirúrgica Brasileira, São Paulo, v. 34, n. 2, 1 jan. 2019. DOI: 10.1590/s0102-8650201900203. SANTOS, G. G. et al. Wollastonite and tricalcium phosphate composites for bone regeneration. Research Society and Development, Itabira, v. 11, n. 9, p. e12011931662- e12011931662, 4 jul. 2022. DOI: 10.33448/rsd-v11i9.31662. 63 SANTOS, G. G.; MEIRELES, E. C. A.; MIGUEL, F. B. Wollastonite/TCP composites for bone regeneration: systematic review and meta-analysis. Cerâmica, [s.l], v. 66, n. 379, p. 277–283, 20 jul. 2020. DOI: 10.1590/S0102-09352006000200005. SCHICKLE, K. et al. Synthesis of novel tricalcium phosphate-bioactive glass composite and functionalization with rhBMP-2. Journal of Materials Science: Materials in Medicine, United States, v. 22, n. 4, p. 763–771, 10 fev. 2011. SELVARAJ, V. et al. Type 1 collagen: synthesis, structure and key functions in bone mineralization. Differentiation, [s.l], v. 136, p. 100757, mar./abr. 2024. DOI: 10.1016/j.diff.2024.100757. SHAIKH, S. et al. Strontium-Substituted Nanohydroxyapatite Containing Biodegradable 3D Printed Composite Scaffolds for Bone Regeneration. ACS Applied Materials & Interfaces, United States, 18 nov. 2024. DOI: 10.1021/acsami.4c16195. SIDDIQUI, J. A.; PARTRIDGE, N. C. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology, [s.l], v. 31, n. 3, p. 233–245, maio 2016. DOI: 10.1152/physiol.00061.2014. SILVA, J. A. et al. Histomorphometric Study of Non-critical Bone Defect Repair after Implantation of Magnesium-substituted Hydroxyapatite Microspheres. Rev Bras Ortop., Sao Paulo, v. 59, n. 04, p. e519–e525, 1 aug. 2024. DOI: 10.1055/s-0044-1787768. SILVA, L. et al. Assessment of bone repair in critical-size defect in the calvarium of rats after the implantation of tricalcium phosphate beta (β-TCP). Acta Histochemica, Germany, v. 119, n. 6, p. 624–631, 18 jul. 2017. DOI: 10.1016/j.acthis.2017.07.003. SILVA, S. A. et al. Citotoxicidade in vitro de nanopartículas de fosfato tricálcico-β sintetizado via reação em estado sólido. Matéria, Rio de Janeiro, v. 23, 13 jun. 2019. DOI: 10.1590/S1517-707620180004.0605. SIQUEIRA, L.et al. Evaluation of the sintering temperature on the mechanical behavior of βtricalcium phosphate/calcium silicate scaffolds obtained by gelcasting method. Journal of the mechanical behavior of biomedical materials, [s.l], v. 90, p. 635–643, 17 2019. DOI: 10.1016/j.jmbbm.2018.11.014. SIRIPHANNON, P. et al. Influence of preparation conditions on the microstructure and bioactivity of ?-CaSiO3 ceramics: Formation of hydroxyapatite in simulated body fluid. Journal of Biomedical Materials Research, United States, v. 52, n. 1, p. 30–39, 1 jan. 2000. DOI: 10.1002/1097-4636(200010)52:1<30::AID-JBM5>3.0.CO;2-Z. SRINATH, P.; ABDUL AZEEM, P.; VENUGOPAL REDDY, K. Review on calcium silicate‐based bioceramics in bone tissue engineering. International Journal of Applied Ceramic Technology, [s.l], v. 17, n. 5, p. 2450–2464, jul. 2020. DOI: 10.1111/ijac.13577. TAKITO, J.; NONAKA, N. Osteoclasts at Bone Remodeling: Order from Order. Results and problems in cell differentiation, [s.l], p. 227–256, 23 nov. 2023. DOI: 10.1007/978-3-031- 37936-9_12. 64 TIEDE-LEWIS, L. M.; DALLAS, S. L. Changes in the osteocyte lacunocanalicular network with aging. Bone, [s.l], v. 122, p. 101-113, 2019. TRONCO, M. C.; CASSEL, J. B.; SANTOS, L. A. α-TCP-based calcium phosphate cements: A critical review. Acta Biomaterialia, United States, v. 151, p. 70–87, 1 out. 2022. DOI: 10.1016/j.actbio.2022.08.040. TSAI, J. et al. Origin of Osteoclasts: Osteoclast Precursor Cells. Journal of Bone Metabolism, South Korea, v. 30, n. 2, p. 127–140, 31 maio 2023. DOI: 10.11005/jbm.2023.30.2.127. VAJGEL, A. et al. A systematic review on the critical size defect model. Clinical Oral Implants Research, Denmark, v. 25, n. 8, p. 879–893, 7 jun. 2013. DOI: 10.1111/clr.12194 VASCONCELOS, L. Q. Análise físico-química e histomorfométrica do compósito wollastonita/fosfato tricálcico em diferentes concentrações após implantação in vivo para regeneração óssea. 2019. 98f. Tese (Doutorado) -Universidade Federal da Bahia, Salvador, 2019. VASCONCELOS, L. Q. et al. Histomorphological and histomorphometric analysis of wollastonite and tricalcium phosphate composite at different concentrations after in vivo implantation. Brazilian Journal of Development, [s.l], v. 9, n. 1, p. 5324–5338, 26 jan. 2023. DOI: 10.34117/bjdv9n1-363 WA, Q. et al. Mesoporous bioactive glass-enhanced MSC-derived exosomes promote bone regeneration and immunomodulation in vitro and in vivo. Journal of Orthopaedic Translation, Singapore, v. 49, p. 264–282, 30 out. 2024. DOI: 10.1016/j.jot.2024.09.009. WANG, C. et al. Osteogenesis and angiogenesis induced by porous β-CaSiO3/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Biomaterials, Netherlands, v. 34, n. 1, p. 64–77, jan. 2013. DOI: 10.1016/j.biomaterials.2012.09.021. WANG, C. et al. The stimulation of osteogenic differentiation of mesenchymal stem cells and vascular endothelial growth factor secretion of endothelial cells by β-CaSiO3/βCa3(PO4)2scaffolds. Journal of Biomedical Materials Research Part A, United States, v. 102, n. 7, p. 2096–2104, 2 ago. 2014. DOI: 10.1002/jbm.a.34880. WANG, J. et al. Biomaterials for bone defect repair: Types, mechanisms and effects. The international journal of artificial organs, Italy, 2 jan. 2024. DOI: 10.1177/03913988231218884. WEI, S. et al. Biodegradable materials for bone defect repair. Military Medical Research, London, v. 7, n. 1, 10 nov. 2020. DOI: 10.1186/s40779-020-00280-6 YONG, E.; LOGAN, S. Menopausal osteoporosis: screening, prevention and treatment. Singapore Medical Journal, Singapore, v. 62, n. 4, p. 159–166, abr. 2021. DOI: 10.11622/smedj.2021036. YOUNESS, R. A.; TAG EL-DEEN, D. M.; TAHA, M. A. A Review on Calcium Silicate Ceramics: Properties, Limitations, and Solutions for Their Use in Biomedical Applications. Silicon, [s.l], v.15, p. 2493-2503, 10 nov. 2022. DOI: 10.1007/s12633-022-02207-3. 65 ZHAO, Z. et al. Biodegradation of HA and β-TCP Ceramics Regulated by T-Cells. Pharmaceutics, [s.l], v. 14, n. 9, p. 1962, 16 set. 2022. DOI: 10.3390/pharmaceutics14091962. ZENEBE, C. G. A Review on the Role of Wollastonite Biomaterial in Bone Tissue Engineering. BioMed Research International, United States, v. 2022, p. 1–15, 13 dez. 2022. DOI: 10.1155/2022/4996530. pt_BR
dc.type.degree Mestrado Acadêmico pt_BR


Arquivos deste item

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples