Mostrar el registro sencillo del ítem
| dc.creator | MARTINS, DIANA VIEGAS | |
| dc.date.accessioned | 2025-08-01T14:02:29Z | |
| dc.date.available | 2025-08-01T14:02:29Z | |
| dc.date.issued | 2025-02-17 | |
| dc.identifier.citation | Martins, Diana Viegas Ancestralidade como fator de risco para hipotireoidismo: estudo da coorte ELSA-BRASIL / [Manuscrito]. Diana Viegas Martins. Salvador, 2024. 63 f.: il. | pt_BR |
| dc.identifier.uri | https://repositorio.ufba.br/handle/ri/42653 | |
| dc.description.abstract | Introduction– Genomic ancestry refers to the genetic relationship between an individual and their ancestors, from whom they biologically descend. The self-reported ancestry of the Brazilian population is subject to important genomic divergence and there are sensitive markers capable of stratifying the three main Brazilian ancestral roots. The prevalence of hypothyroidism in Brazil is approximately 7.4% and has been highlighted as possibly one of the highest in the world. The ELSA-Brazil-thyroid study showed that women self-reported as white have a higher frequency of hypothyroidism than brown and black women. Objective – To determine genomic ancestry as a risk factor for hypothyroidism. Material and methods – 9372 participants (53.8% women; average age 51 years) from the ELSA-Brazil study cohort were included. Purified DNA was obtained from participants' peripheral blood using the QIAamp DNA Mini-kit1. Samples were genotyped using a panel of 192 ancestry-informative markers. Genomic ancestry analysis was conducted using the ADMIXTURE program. Results – The prevalence of subclinical hypothyroidism (SCH) and clinical hypothyroidism (CH) was found to be 9% and 7.1%, respectively; Female sex increased the risk of CH by 4.43 and 4.68, respectively, in univariate and multivariate logistic regression analyses. Regarding predominant genomic ancestry, genotyping divided individuals into 69.9% with European predominance (EUR), 13% African (AFR), 4.6% native and 12.5% with multiancestry genotype. The EUR subgroup had the highest prevalence of CH (7.9%), demonstrating that EUR ancestry is associated with a higher risk of CH while African genomic ancestry (AFR) and multiancestry played a protective role. On the other hand, the predominant AFR genomic ancestry had the highest percentage of hyperthyroidism (1.7%). Obesity increased the risk of CH and the percentage of hypertension, diabetes mellitus and obesity were significantly higher in the predominant AFR genomic ancestry subgroup. TSH demonstrated a directly proportional relationship with EUR ancestry (p < 0.01) and inversely proportional relationship with AFR (p < 0.01), as well as with free T4 (p < 0.01). Conclusion – Our results demonstrate the important influence of ancestry on thyroid diseases and associated diseases. | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal da Bahia | pt_BR |
| dc.rights | Acesso Aberto | pt_BR |
| dc.subject | Glândula Tireoide | pt_BR |
| dc.subject | Hipotireoidismo | pt_BR |
| dc.subject | Hyperthyroidism | pt_BR |
| dc.subject | Ancestralidade | pt_BR |
| dc.subject | Estudo ELSA-Brasil | pt_BR |
| dc.subject.other | Thyroid Gland | pt_BR |
| dc.subject.other | Hypothyroidism | pt_BR |
| dc.subject.other | hyperthyroidism | pt_BR |
| dc.subject.other | ancestry | pt_BR |
| dc.subject.other | Elsa-Brazil study | pt_BR |
| dc.title | Ancestralidade como fator de risco para hipotireoidismo: estudo da coorte ELSA-BRASIL | pt_BR |
| dc.title.alternative | Genomic ancestry as a risk factor for hypothyroidism: ELSA-Brazil cohort study | pt_BR |
| dc.type | Dissertação | pt_BR |
| dc.publisher.program | Programa de Pós-Graduação em Processos Interativos dos Órgãos e Sistemas (PPGORGSISTEM) | pt_BR |
| dc.publisher.initials | UFBA | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.subject.cnpq | CNPQ::CIENCIAS DA SAUDE | pt_BR |
| dc.contributor.advisor1 | Ramos, Helton Estrela | |
| dc.contributor.advisor1ID | https://orcid.org/0000-0002-2900-2099 | pt_BR |
| dc.contributor.advisor1Lattes | http://lattes.cnpq.br/5624505454133902 | pt_BR |
| dc.contributor.advisor-co1 | Beltrão, Fabyan Esberard de Lima | |
| dc.contributor.advisor-co1ID | https://orcid.org/0000-0001-9713-2584 | pt_BR |
| dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/5497252471759346 | pt_BR |
| dc.contributor.referee1 | Toralles, Maria Betânia Pereira Toralles | |
| dc.contributor.referee1ID | https://orcid.org/0000-0001-7970-7102 | pt_BR |
| dc.contributor.referee1Lattes | http://lattes.cnpq.br/7880272950478674 | pt_BR |
| dc.contributor.referee2 | Ward, Laura Sterian | |
| dc.contributor.referee2ID | https://orcid.org/0000-0003-1601-3220 | pt_BR |
| dc.contributor.referee2Lattes | http://lattes.cnpq.br/5673229011742456 | pt_BR |
| dc.contributor.referee3 | Ramos, Helton Estrela | |
| dc.contributor.referee3ID | https://orcid.org/0000-0002-2900-2099 | pt_BR |
| dc.contributor.referee3Lattes | http://lattes.cnpq.br/5624505454133902 | pt_BR |
| dc.creator.ID | 0000-0002-2111-2664 | pt_BR |
| dc.creator.Lattes | http://lattes.cnpq.br/9777958938529880 | pt_BR |
| dc.identifier.doi | 1. RODRIGUES-SOARES, F.; KEHDY, F.S.G.; GOUVEIA, M. H. Editorial: Genomic Ancestry and Biological Traits. Front. Genet., Lausanne, v.12, p. 754725, 2021. DOI: 10.3389/fgene.2021.754725. 2. BASTOS, J. et al. Does the way I see you affect the way I see myself? Associations between interviewers’ and interviewees’ “color/race” in southern Brazil. Cad. Saúde Publica, Rio de Janeiro, v.25, n.10, p. 2111-2224, 2009. DOI: https://doi.org/10.1590/S0102311X200900100000. 3. FRY, P. Politics, nationality, and the meanings of “race” in Brazil. Daedalus, [s.l.], v.129, p.83-118, 2000. 4. GUIMARÃES, A.S.A. Colour and race in Brazil: From whitening to the search for AfroDescent. Proc. Br. Acad., Oxford, v.179, p.17-34, 2012. DOI: 10.5871/bacad/9780197265246.003.0002. 5. KENT, M.; SANTOS, R.V.; WADE, P. Negotiating Imagined Genetic Communities: Unity and Diversity in Brazilian Science and Society. Am. Anthropol., United States, v.116, n.4, p. 736-748, 2014. DOI: https://doi.org/10.1111/aman.12142. 6. PENA, S. D. J. et al. The Genomic Ancestry of Individuals from Different Geographical Regions of Brazil Is More Uniform Than Expected. PLoS One, Estados Unidos, v. 6, n.2, p. e17063, 2011. DOI: https://doi.org/10.1371/journal. pone.0017063. 7. LOVEMAN, M. National Colors: Racial Classification and the State in Latin America. New York: Oxford University Press, 2014. Available from: http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199337354.001.0001 / acprof-9780199337354. Cited 12 Jan 2024. 8. PEREIRA, R. et al. Straightforward Inference of Ancestry and Admixture Proportions through Ancestry Informative Insertion Deletion Multiplexing. PLoS One, Estados Unidos, v.7, n.1, p.e29684, 2012. DOI:10.1371/journal.pone.0029684. 9. WEBER, J. L. et al. Human diallelic insertion/deletion polymorphisms. Am. J. Hum. Genet., Baltimore, v.71, n.4, p. 854-862, 2002. DOI: 10.1086/342727. 10. PIZARRO, M.H. et al. Influence of genomic ancestry and self-reported color-race in CKD in a nationwide admixed sample of Brazilian patients with type 1 diabetes. Diabetes, Metab Syndr. Obes., v.12, p. 1831–1840, 2019. DOI: 10.2147/DMSO.S210585. 11. BENSENOR, I. Thyroid disorders in Brazil: the contribution of the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) Braz. J Med. Biol. Res., São Paulo, v.52, n.2, p. e8417, 2019. DOI: http://dx.doi.org/10.1590/1414-431X20198417 57 12. CAMARGO, R.Y.A. et al. Prevalence of chronic autoimmune thyroiditis in the urban area neighboring a petrochemical complex and a control area in São Paulo, Brazil. Clinics, [s.l.], v.61, n.4, p.307-312, 2006. DOI: https://doi.org/10.1590/S1807-59322006000400006. 13. VANDERPUMP, M. P. The epidemiology of thyroid disease. Br. Med. Bull, London, v.99, p. 39–51, 2011. 14. SICHIERI, R. et al. Low prevalence of hypothyroidism among black and Mulatto people in a population-based study of Brazilian women. Clin. Endocrinol., Estados Unidos, v. 66, p. 803-807, 2007. DOI: 10.1111/j.1365-2265.2007.02816.x. 15. WILLIAMS, A.T. et al. Genome-wide association study of thyroid-stimulating hormone highlights new genes, pathways and associations with thyroid disease. Nat Commun., London, v.14, n.6713, 2023. DOI: https://doi.org/10.1038/s41467-023-42284-5. 16. ALVES-SILVA, J. et al. The Ancestry of Brazilian mtDNA Lineages. Am. J. Hum. Genet., Baltimore, v. 67, n.2, p.444–461, 2000. DOI: 10.1086/303004. 17. TELLES, E. E. Race in Another America:The Significance of Skin Color in Brazil. Princeton University Press, 2014. Available from: https://www.degruyter.com/doi/book/10.23943/9781400837434. Cited 15 Jan 2024. 18. TRAVASSOS, C.; WILLIAMS, D. R. The concept and measurement of race and their relationship to public health: a review focused on Brazil and the United States. Cad. Saúde Pública, Rio de Janeiro, v.20, n.3, p.660-678, 2004. DOI: https://doi.org/10.1590/S0102311X2004000300003. 19. SALZANO, F.M.; FREIRE-MAIA, N. Populações brasileiras, aspectos demográficos, genéticos e antropológicos. São Paulo: Companhia Editora Nacional, 1967. 20. BETHELL, L. Nota sobre as populações americanas às vésperas das invasões europeias. América Latina colonial. São Paulo: Editora da Universidade de São Paulo, 1997. p.129131. 21. MÖRNER, M. Race mixture in the history of Latin America. Boston: Little, Brown, 1967. 22. MONTEIRO, J. M. Negros da terra, índios e bandeirantes nas origens de São Paulo. São Paulo: Companhia da Letras, 1994. 23. RIBEIRO, D. O povo brasileiro: a formação e o sentido do Brasil. São Paulo: Companhia da Letras, 1995. 24. CURTIN, P. D. The Atlantic slave trade: a census. Madison: University of Wisconsin Press, 1969. 25. CALLEGARI-JACQUES, S.M.; SIDIA, M.; SALZANO, F. M. Brazilian Indian/non-Indian interactions and their effects. Ciênc. Cult., São Paulo, v.51, n. 3-4, p.166-174, 1999. 58 26. GOODMAN, A.; MOSES, Y.; JONES, J. Race: Are We So Different? 2nd ed. Malden: Wiley-Blackwell, 2012. 27. INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Desigualdades Sociais por Cor ou Raça no Brasil. Tabela 1.1 - Distribuição da população, por cor ou raça, segundo Grandes Regiões e Unidades da Federação - Brasil – 2021. Disponível em: www.ibge.gov.br/estatisticas/sociais/populacao/25844-desigualdades-sociais-por-cor-ouraca.html?=&t= resultados. Citado 12 jan 2024. 28. CARDENA, M.M.S.G. et al. Assessment of the Relationship between Self-Declared. Ethnicity, Mitochondrial Haplogroups and Genomic Ancestry in Brazilian Individuals. PLoS One, Estados Unidos, v. 8, n. 4, p. e62005, Apr 2013. DOI: 10.1371/journal.pone.0062005. 29. LEITE, T. K.M. et al. Genomic Ancestry, Self-Reported “Color” and Quantitative Measures of Skin Pigmentation in Brazilian Admixed Siblings. Gaunt TR, editor. PLoS One, Estados Unidos, v.6, n.11, p. e27162, Nov 2011. DOI: https://doi.org/10.1371/journal.pone.0027162. 30. PARRA, F.C. et al. Colour and genomic ancestry in Brazilians. Proc. Natl. Acad. Sci., Estados Unidos, v.100, n.1, p. 177-182, Jan 2003. DOI: https://doi.org/10.1073/pnas.0126614100. 31. LINS, T.C. et al. Genetic Heterogeneity of Self-Reported Ancestry Groups in an Admixed Brazilian Population. J. Epidemiol,, London v.21, n.4, p.240-245, 2011. DOI:102188/jeaJE20100164. 32. SANTOS, R.V. et al. Color, Race, and Genomic Ancestry in Brazil: Dialogues between Anthropology and Genetics. Curr Anthropol., Chicago, v.50, n.6, p.787–819, Dec 2009. DOI: 10.1086/644532. 33. PIMENTA, J. R. et al. Color and genomic ancestry in Brazilians: a study with forensic microsatellites. Hum Hered., [s.l.], v.62, n.4, p.190-195, 2006. DOI: 10.1159/000096872. 34. SUAREZ-KURTZ, G. et al. Self-reported skin color, genomic ancestry and the distribution of GST polymorphisms. Pharmacogenet Genomics, Estados Unidos, v.17, n.9, p.765-771, 2007. DOI: 10.1097/FPC.0b013e3281c10e52. 35. ALMEIDA-FILHO, N. et al. Social inequality and depressive disorders in Bahia, Brazil: interactions of gender, ethnicity, and social class. Soc. Sci. Med., New York, v. 59, n.7, p.1339-1153, 2004. DOI: 10.1016/j.socscimed.2003.11.037 36. PENA, S. D. J. Razões para banir o conceito de etnia da medicina brasileira. História, Ciência, Saúde- Manguinhos, São Paulo, v.12, n.2, p.321–346, 2005. DOI: https://doi.org/10.1590/S0104-59702005000200006 59 37. BARROS, B.S.V. et al. Genomic ancestry and metabolic syndrome in individuals with type 1 diabetes from an admixed population: a multicentre, cross-sectional study in Brazil. Diabet Med., Oxford, v.38, n.2, p.e14400, 2020. DOI: https://doi.org/10.1111/dme.14400. 38. PENA, S.D.J.; SANTOS, F.R.; TARAZONA-SANTOS, E. Genetic admixture in Brazil. Am. J. Med. Genet. C. Semin. Med. Genet., Estados Unidos, v.184, n.4, p. 928-938, Dec 2020. DOI: 10.1002/ajmg.c.31853. 39. CHOR, D. et al. Context-dependence of race self-classification: Results from a highly mixed and unequal middle income country. PLoS One, Estados Unidos, v.14, n.5, p. e0216653. DOI: https://doi.org/10.1371/journal.pone.0216653. 40. GOMES, M. B. et al. Self-reported colour race and genomic ancestry in an admixed population: A contribution of a nationwide survey in patients with type 1 diabetes in Brazil. Diabetes Res. Clin. Pract., Amsterdam, v.140, p. 245-252, Jun 2018. DOI: https://doi.org/10.1016/j. diabres.2018.03.021. 41. LIMA-COSTA, M.F. et al. Genomic ancestry and ethnoracial self-classification based on 5,871 community-dwelling Brazilians (The Epigen Initiative). Sci. Rep., London, v.5, n.1, Sep 2015. DOI: 10.1038/srep09812. 42. QUEIROZ, E.M. et al. Genetic composition of a Brazilian population: the footprint of the Gold Cycle. Genet. Mol. Res., Ribeirão Preto, v.12, n.4, p. 124-133, 2013. DOI: https://doi.org/10.4238/2013.October.29.6. 43. RUIZ-LINARES, A. et al. Admixture in Latin America: Geographic Structure, Phenotypic Diversity and Self-Perception of Ancestry Based on 7,342 Individuals. PLoS Genet., Estados Unidos, v.10, n.9, p. e1004572 2014. DOI: https://doi.org/10. 1371/journal.pgen.1004572. 44. MAGALHÃES DA SILVA, T. et al. The correlation between ancestry and color in two cities of Northeast Brazil with contrasting ethnic compositions. Eur. J. Hum Genet., Amsterdam, v.23, n.7, p. 984-989, 2015. DOI: https://doi.org/10.1038/ejhg.2014.215. 45. PENA, S.D. et al. DNA tests probe the genomic ancestry of Brazilians. Braz J. Med. Biol. Res., São Paulo, v.42, n.10, p.870-876, 2009. DOI: https://doi.org/ 10.1590/s0100879x2009005000026. 46. DOS SANTOS, S.E.B. et al. Differential contribution of indigenous men and women to the formation of an urban population in the Am azon region as revealed by mtDNA and Y- DNA. Am. J. Phys Anthropol., Estados Unidos, v.109, n.2, p. 175-180, 1999. DOI: 10.1002/(SICI)1096-8644(199906)109:2<175::AID-AJPA3>3.0.CO;2-#. 47. SANTOS, S.E.B. et al. The Amazonian microcosm. Ciênc. Cult., São Paulo, v.51, p.181190,1999. 48. CARVALHO-SILVA, D. R. et al. The phy logeography of Brazilian Y-chromosome lineages. Am. J. Hum. Genet., Estados Unidos, v.68, n.1, p. 281-286, 2001. DOI: https://doi.org/10.1086/316931. 60 49. CHAKRABORTY, R. et al. Caucasian genes in American blacks: new data. Am. J. Hum. Genet., Estados Unidos, v.50, p. 145-155, 1992. 50. SHRIVER, M. D. et al. Ethnic affliliation estimation by use of population-specific DNA markers. Am. J. Hum Genet., Estados Unidos, v.60, n.4, p. 957-964, 1997. 51. PARRA, E. J. et al. Estimating African American admixture propor tions by use of population-specific alleles. Am. J. Hum. Genet., Estados Unidos, v.63, n.6, p.1839-1851, 1998. DOI: https://doi.org/10.1086/302148. 52. Parra FC. et al. Color and genomic ancestry in Brazilians. Proc. Nat. Acad. Sci U S A, Washington, v.100, n.1, p. 177-182, 2003. DOI: https://doi.org/10.1073/pnas.0126614100. 53. WEBER, J. L. Human diallelic insertion/deletion polymorphisms. Am. J. Hum. Genet. v.71, n.4, p.854-862, 2002. DOI: https://doi.org/10.1086/342727. 54. CANN, H. M. et al. A human genome diversity cell line panel. Science, [s.l.], v.296, n.5566, p.261-262, 2002. DOI: https://doi.org/10.1126/science.296. 5566.261b. 55. BASTOS-RODRIGUES, L.; PIMENTA, J. R.; PENA, S. D. J. The genetic structure of human populations studied through short insertion deletion polymorphisms. Ann. Hum. Genet., Oxford, v.70, n.5, p. 658-665, 2006. DOI: https://doi.org/10.1111/j.14691809.2006.00287.x. 56. KRUSKAL, J. B.; WISH, M. Multidimensional scaling. New York: SAGE Publications, 1978. 57. PRITCHARD, J. K.; STEPHENS, M.; DONNELLY, P. Inference of population structure using multilocus genotype data. Genetics, [s.l.], v.155, n.2, p.945-959, 2000. 58. DIAZ-OLMOS, R. et al. Frequency of subclinical thyroid dysfunction and risk factors for cardiovascular disease among women at a workplace. Sao Paulo Med. J., São Paulo, v.128, p.18-23, 2010. DOI: 10.1590/S1516-31802010000100005. 59. BENSEÑOR, I. M. et al. Prevalence of thyroid disorders among older people: results from the São Paulo Ageing & Health Study. Cad. Saúde Publica, Rio de Janeiro, v. 27, p. 155161, 2011. DOI: 10.1590/S0102- 311X2011000100016. 60. OLMOS, R. D. et al. Gender, race and socioeconomic influence on diagnosis and treatment of thyroid disorders in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). J Med. Biol. Res., São Paulo, v.48, n.8, p.751-758, 2015. DOI: http://dx.doi.org/10.1590/1414-431X2015444. 61. TAYLOR P. A. et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat. Rev. Endocrinol., London, v.14, p. 301-316, 2018. DOI: https://doi.org/10.1038/nrendo.2018.18. 61 62. LOTUFO, P. A. The Brazilian Longitudinal Study of Adult Health (ELSA Brasil): the best science is providing health for all. Sao Paulo Med. J., São Paulo, v.136, n. 6, p. 499-500, 2018. DOI: https://doi.org/10.1590/1516-3180.2018.1366191118. 63. AQUINO, E. M. L. et al. Brazilian Longitudinal Study of Adult Health (ELSA-Brasil): objectives and design. Am. J. Epidemiol., Baltimore, v.175, n.4, p. 315-324, 2012. DOI: https://doi.org/10.1093/aje/kwr294. 64. HOLLOWELL, J. G. et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol Metab., Estados Unidos, v.87, p. 489-499, 2002. DOI: 10.1210/jcem.87.2.8182. 65. SURKS, M. I. et al. Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. JAMA, Chicago, v.291, p. 228-238, 2004. DOI: 10.1001/jama.291.2.228. 66. CHEN, D.W.; YEH, M.W. Disparities in Thyroid Care. Endocrinol. Metab. Clin. North Am., Estados Unidos, v.51, n.2, p. 229-241, 2022. DOI: 10.1016/j.ecl.2021.11.017. 67. MAMMEN, J.S. et al. Thyroid Hormone Therapy and Risk of Thyrotoxicosis in Community-Resident Older Adults: Findings from the Baltimore Longitudinal Study of Aging. Thyroid, [s.l.], v.25, n.9, p. 979-986, 2015. DOI: 10.1089/thy.2015.0180. 68. SOMWARU, L.L.; ARNOLD, A.M.; CAPPOLA, A. R. Predictors of thyroid hormone initiation in older adults: results from the cardiovascular health study. J. Gerontol. A Biol. Sci. Med. Sci. Washington, v.66, n.7, p.809–814, 2011. DOI: 10.1093/gerona/glr063. 69. ETTLESON, M. D.; BIANCO, A.C.; ZHU, M. Laiteerapong N. Sociodemographic Disparities in the Treatment of Hypothyroidism: NHANES 2007–2012. J. Endocr. Soc., Estados Unidos, v. 5, n.7, p. bvab041, 2021. 70. WEBER, E. M. Epidemiologia dos transtornos da tireoide no estado de Santa Catarina no período de 2008 a 2015. Unoesc & Ciência - ACBS, Santa Catarina, v.8, n.1, p. 43–50, 2017. 71. ELSA Brasil. Princípios éticos da investigação. Disponível em: http://elsabrasil.org/sobre/ Citado 12 jan 2024. 72. ALEXANDER, D.H.; NOVEMBRE, J.; LANGE, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res., [s.l.], v.19, n.9, p.1655-1664, 2009. DOI: 10.1101/gr.094052.109. 73. SANTOS, H.C. et al. A minimum set of ancestry informative markers for determining admixture proportions in a mixed American population: the Brazilian set. Eur. J. Hum Genet., Amsterdam, v.24, n.5, p.725-731, May 2016. DOI: https://doi.org/10.1038/ ejhg.2015.187 74. LESSA, I. et al. Hipertensão arterial na população adulta de Salvador (BA) – Brasil. 62 Arq. Bras. Cardiol., São Paulo, v.87, n.6, 2006. DOI: https://doi.org/10.1590/S0066782X2006001900011 75. QIU Y, et al. Causal association between obesity and hypothyroidism: A two-sample bidirectional Mendelian randomization study. Front. Endocrinol, Lausanne, v.14, p.1287463, 2023. DOI: https://doi.org/10.3389/fendo.2023.1287463 | pt_BR |
| dc.description.resumo | Introdução – A expressão ancestralidade genômica se refere à relação genética entre um indivíduo e seus ancestrais, dos quais descende biologicamente. A ancestralidade autorreferida da população brasileira está sujeita a importante divergência da ancestralidade genômica, e existem marcadores sensíveis e capazes de estratificar as três principais raízes ancestrais brasileiras. A prevalência de hipotireoidismo no Brasil é de aproximadamente 7,4% e ela tem sido destacada como possivelmente umas das maiores do mundo. O estudo Elsa Brasil tireoide evidenciou que mulheres autorreferidas como brancas apresentam uma frequência maior de hipotireoidismo do que pardas e negras. Objetivo – Determinar a ancestralidade genômica como fator de risco para hipotireoidismo. Material e métodos – Foram incluídos 9.372 participantes, 53,8% do sexo feminino, com idade média de 51 anos, da coorte do estudo Elsa-Brasil. O DNA purificado foi obtido do sangue periférico dos participantes, usando-se o QIAamp DNA Mini-kit1. As amostras foram genotipadas usando se um painel 192 marcadores informativos de ancestralidade. A análise da ancestralidade genômica foi conduzida com o uso do programa Admixture. Resultados – A prevalência de hipotireoidismo subclínico (HSC) e hipotireoidismo clínico (HC) encontrada foi de 9% e 7,1%, respectivamente; ser do sexo feminino aumentou o risco de HC em 4,43 e 4,68, respectivamente, nas análises de regressão logística univariada e multivariada. Sobre a ancestralidade genômica predominante, a genotipagem classificou os indivíduos em: 69,9% com predominância europeia (EUR); 13% africana (AFR); 4,6% nativa; e 12,5% com genótipo de multiancestralidade. O subgrupo EUR teve a maior prevalência de HC (7,9%), demonstrando que a ancestralidade EUR está associada a um maior risco de HC, enquanto as ancestralidades genômicas africana (AFR) e a multiancestralidade tiveram papel protetor. Por outro lado, a ancestralidade genômica predominantemente AFR teve o maior percentual de hipertireoidismo (1,7%). A obesidade aumentou o risco de HC, e o percentual de hipertensão arterial, diabetes mellitus e obesidade foi significativamente mais elevado no subgrupo de ancestralidade genômica predominantemente AFR. O TSH demonstrou relação diretamente proporcional com a ancestralidade EUR (p < 0,01) e inversamente proporcional com a AFR (p < 0,01), assim como com o T4 livre (p < 0,01). Conclusão – Nossos resultados demonstram a importante influência da ancestralidade nas doenças tireoidianas e doenças associadas. | pt_BR |
| dc.publisher.department | Instituto de Ciências da Saúde - ICS | pt_BR |
| dc.type.degree | Mestrado Acadêmico | pt_BR |