DSpace/Manakin Repository

Da predição à precisão: aprendizado de máquina e mapeamento dosimétrico para mucosite oral em câncer de cabeça e pescoço

Mostrar registro simples

dc.creator Fontes, Elisa Kauark
dc.date.accessioned 2025-06-30T19:21:33Z
dc.date.available 2025-08-01
dc.date.available 2025-06-30T19:21:33Z
dc.date.issued 2025-05-09
dc.identifier.uri https://repositorio.ufba.br/handle/ri/42392
dc.description.abstract Oral mucositis (OM) is a common side effect of head and neck radiotherapy (RT), resulting from a complex interplay of multiple risk factors. Strong evidence identifies RT dose as a key contributor to OM development. A detailed dose-response analysis of individual organs at risk (OARs) may help establish dose constraints to improve patient outcomes. Additionally, machine learning (ML) offers a promising approach by integrating both dosimetric and non-dosimetric factors for a more comprehensive risk assessment. This study aimed to assess OM risk prediction using ML and investigate the impact of dose distribution on OM development, identifying potential OARs related to OM. In the first study, an ML performance was tested to predict MO risk using a cross-validation strategy based on two dataset versions: one with all features and another with feature selection. Comparative analysis showed no relevant results with the full dataset, while feature selection improved performance, with the K-Nearest Neighbors algorithm achieving 64% accuracy, 58% sensitivity, and 68% specificity. The second study involved a dosimetric analysis of 57 head and neck cancer patients. Potential OARs for OM were identified, and dose-volume histograms were generated for OM onset and the final RT session, comparing Dmean and Dmax with OM incidence and distribution. Significant dosimetric differences were observed across all OARs except the upper lip. A Dmean cutoff of 48.4 Gy for the oral tongue was identified (92% accuracy, 96% specificity, 78% sensitivity). Additionally, each incremental 1 Gy increase in dose to the OARs was associated with a 1% higher risk of OM. These findings highlight the need for standardized OAR delineation to optimize RT planning and reduce OM incidence. pt_BR
dc.description.sponsorship CNPq pt_BR
dc.description.sponsorship FAPESB pt_BR
dc.language por pt_BR
dc.publisher Universidade Federal da Bahia pt_BR
dc.rights Acesso Aberto pt_BR
dc.subject Mucosite pt_BR
dc.subject Radioterapia pt_BR
dc.subject Neoplasias de Cabeça e Pescoço pt_BR
dc.subject Inteligência artificial pt_BR
dc.subject Dosimetria pt_BR
dc.subject.other Mucositis pt_BR
dc.subject.other Radiotherapy pt_BR
dc.subject.other Head and Neck Neoplasm pt_BR
dc.subject.other Artificial Intelligence pt_BR
dc.subject.other Dosimetry pt_BR
dc.title Da predição à precisão: aprendizado de máquina e mapeamento dosimétrico para mucosite oral em câncer de cabeça e pescoço pt_BR
dc.title.alternative From prediction to precision: machine learning and dosimetric insights into oral mucositis in head and neck cancer pt_BR
dc.type Tese pt_BR
dc.publisher.program Programa de Pós-Graduação em Odontologia e Saúde  pt_BR
dc.publisher.initials UFBA pt_BR
dc.publisher.country Brasil pt_BR
dc.subject.cnpq CNPQ::CIENCIAS DA SAUDE::ODONTOLOGIA::CLINICA ODONTOLOGICA pt_BR
dc.subject.cnpq CNPQ::CIENCIAS DA SAUDE::MEDICINA::ANATOMIA PATOLOGICA E PATOLOGIA CLINICA pt_BR
dc.contributor.advisor1 Ramalho, Luciana Maria Pedreira
dc.contributor.advisor1ID 0000-0002-8249-4977 pt_BR
dc.contributor.advisor1Lattes http://lattes.cnpq.br/2224561056978177 pt_BR
dc.contributor.referee1 Ramalho, Luciana Maria Pedreira
dc.contributor.referee1ID 0000-0002-8249-4977 pt_BR
dc.contributor.referee1Lattes http://lattes.cnpq.br/2224561056978177 pt_BR
dc.contributor.referee2 Neves, Frederico Sampaio
dc.contributor.referee2ID 0000-0001-9178-707X pt_BR
dc.contributor.referee2Lattes http://lattes.cnpq.br/7921627838416594 pt_BR
dc.contributor.referee3 Araújo, Anna Luiza Damaceno
dc.contributor.referee3ID 0000-0002-3725-8051 pt_BR
dc.contributor.referee3Lattes http://lattes.cnpq.br/0633932030080115 pt_BR
dc.contributor.referee4 Bruno, Julia Stephanie
dc.contributor.referee4ID 0000-0002-3152-3432 pt_BR
dc.contributor.referee4Lattes http://lattes.cnpq.br/2604304477352810 pt_BR
dc.contributor.referee5 Viana, Patrícia Alcântara
dc.contributor.referee5ID https://orcid.org/0000-0003-2147-3176 pt_BR
dc.contributor.referee5Lattes http://lattes.cnpq.br/0345615073561862 pt_BR
dc.creator.ID 0000-0001-7375-379X pt_BR
dc.creator.Lattes http://lattes.cnpq.br/7843394158094803 pt_BR
dc.description.resumo A mucosite oral (MO) é uma toxicidade frequente da radioterapia (RT) para câncer de cabeça e pescoço, resultante da interação complexa de múltiplos fatores de risco. Há forte evidência de que a dose de RT é um dos principais contribuintes para seu desenvolvimento. Uma análise detalhada da relação dose-resposta em órgãos de risco (OARs) pode auxiliar na definição de restrições de dose para reduzir toxicidades. Além disso, o aprendizado de máquina (ML) surge como uma abordagem promissora ao integrar fatores dosimétricos e não dosimétricos para uma avaliação de risco mais abrangente. Este estudo avaliou a previsão de risco de MO por ML e investigou o impacto da distribuição de dose na sua ocorrência, identificando possíveis OARs para MO. Inicialmente, a performance de ML foi testada para predizer risco de MO usando estratégia de validação cruzada com base em dois conjuntos de dados: um completo e outro com seleção de variáveis. A análise comparativa mostrou que apenas a versão com seleção de variáveis apresentou resultados relevantes, com o algoritmo K-Nearest Neighbors alcançando 64% de precisão, 58% de sensibilidade e 68% de especificidade. Na segunda etapa, foram analisados dados dosimétricos de 57 pacientes. Potenciais OARs para MO foram identificados e histogramas dose-volume gerados para comparar Dmed e Dmax com a incidência de MO. Diferenças dosimétricas significativas foram observadas em todos os OARs, exceto no lábio superior. O ponto de corte para a língua oral foi Dmed ≥48,4 Gy (92% precisão, 96% especificidade, 78% sensibilidade). Além disso, cada aumento de 1 Gy na dose aos OARs elevou o risco de MO em 1%. Esses achados reforçam a necessidade de um delineamento padronizado dos OARs para otimizar o planejamento da RT e reduzir a incidência de MO. pt_BR
dc.publisher.department Faculdade de Odontologia pt_BR
dc.relation.references 1. ABDALLA-ASLAN, R.; BONOMO, P.; KEEFE, D.; BLIJLEVENS, N.; CAO, K.; CHEUNG, Y. T.; FREGNANI, E. R.; MILLER, R.; RABER-DURLACHER, J.; EPSTEIN, J.; VAN SEBILLE, Y.; KAUARK-FONTES, E.; KANDWAL, A.; MCCURDY-FRANKS, E.; FINKELSTEIN, J.; MCCARVELL, V.; ZADIK, Y.; OTTAVIANI, G.; AMARAL MENDES, R.; SPEKSNIJDER, C. M.; WARDILL, H. R.; BOSSI, P.; MASCC Mucositis Study Group. Guidance on mucositis assessment from the MASCC Mucositis Study Group and ISOO: an international Delphi study. EClinicalMedicine. v. 73, p. 102675, 2024. DOI: 10.1016/j.eclinm.2024.102675. 2. AFFONSO, M. V. G.; SOUZA, I. G.; ROCHA, E. S.; GOLONI-BERTOLLO, E. M.; GOMES, F. C.; NASCIMENTO, L. S. D.; MELO-NETO, J. S. Association between Sociodemographic Factors, Coverage and Offer of Health Services with Mortality Due to Oral and Oropharyngeal Cancer in Brazil: A 20-Year Analysis. International Journal of Environmental Research and Public Health. 14;19(20):13208, Oct 2022. DOI: 10.3390/ijerph192013208. 3. AFSHARI, K; SOHAL, KS. Potential Alternative Therapeutic Modalities for Management Head and Neck Squamous Cell Carcinoma: A Review. Cancer Control, 30, 10732748231185003, jan 2023. DOI: 10.1177/10732748231185003. 4. AHERVO, H.; KORHONEN, J.; LIM, W. M. S.; GUAN, Y. F.; SOINI, M.; LIAN, P. L. C.; METSÄLÄ, E. Artificial intelligence-supported applications in head and neck cancer radiotherapy treatment planning and dose optimisation. Radiography (Lond), v. 29, n. 3, p. 496-502, 2023. DOI: 10.1016/j.radi.2023.02.018. 5. ALTERIO, D.; MARVASO, G.; FERRARI, A.; VOLPE, S.; ORECCHIA, R.; JERECZEK-FOSSA, B. A. Modern radiotherapy for head and neck cancer. Seminars in Oncology, v. 46, n. 3, p. 233-245, 2019. DOI: 10.1053/j.seminoncol.2019.07.002. 6. ANDERSON, G.; EBADI, M.; VO, K.; NOVAK, J.; GOVINDARAJAN, A.; AMINI, A. An updated review on head and neck cancer treatment with radiation therapy. Cancers (Basel), v. 13, n. 19, p. 4912, 2021. DOI: 10.3390/cancers13194912. 7. ARBOLEDA, L. P. A.; DE CARVALHO, G. B.; SANTOS-SILVA, A. R.; FERNANDES, G. A.; VARTANIAN, J. G.; CONWAY, D. I.; VIRANI, S.; BRENNAN, P.; KOWALSKI, L. P.; CURADO, M. P. Squamous cell carcinoma of the oral cavity, oropharynx, and larynx: a scoping review of treatment guidelines worldwide. Cancers (Basel), v. 15, n. 17, p. 4405, 2023. DOI: 10.3390/cancers15174405. 8. BARSOUK, A.; ALURU, J. S.; RAWLA, P.; SAGINALA, K.; BARSOUK, A. Epidemiology, risk factors, and prevention of head and neck squamous cell carcinoma. Medical Science (Basel), v. 11, n. 2, p. 42, 2023. DOI: 10.3390/medsci11020042. 9. BOUVARD, V.; NETHAN, S. T.; SINGH, D.; WARNAKULASURIYA, S.; MEHROTRA, R.; CHATURVEDI, A. K.; CHEN, T. H.; AYO-YUSUF, O. A.; GUPTA, P. C.; KERR, A. R.; TILAKARATNE, W. M.; ANANTHARAMAN, D.; CONWAY, D. I.; GILLENWATER, A.; JOHNSON, N. W.; KOWALSKI, L. P.; LEON, M. E.; MANDRIK, O.; NAGAO, T.; PRASAD, V. M.; RAMADAS, K.; ROITBERG, F.; SAINTIGNY, P.; SANKARANARAYANAN, R.; SANTOS-SILVA, A. R.; SINHA, D. N.; VATANASAPT, P.; ZAIN, R. B.; LAUBY-SECRETAN, B. IARC perspective on oral cancer prevention. New England Jounal of Medicine, v. 387, n. 21, p. 1999-2005, 2022. DOI: 10.1056/NEJMsr2210097. 10. BRANDÃO, T. B.; DA GRAÇA PINTO, H.; VECHIATO FILHO, A. J.; FARIA, K. M.; DE OLIVEIRA, M. C. Q.; PRADO-RIBEIRO, A. C.; DIAS, R. B.; SANTOS-SILVA, A. R.; BATISTA, V. E. S. Are intraoral stents effective in reducing oral toxicities caused by radiotherapy? A systematic review and meta-analysis. Journal of Prosthetic Dentistry, v. 128, n. 6, p. 1380-1386, 2022. DOI: 10.1016/j.prosdent.2021.03.009. 11. BRAY, F.; LAVERSANNE, M.; SUNG, H.; FERLAY, J.; SIEGEL, R. L.; SOERJOMATARAM, I.; JEMAL, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, v. 74, n. 3, p. 229-263, 2024. DOI: 10.3322/caac.21834. 12. BRENNAN, P. A.; BRADLEY, K. L.; BRANDS, M. Intensity-modulated radiotherapy in head and neck cancer - an update for oral and maxillofacial surgeons. British Journal of Oral and Maxillofacial Surgery, v. 55, n. 8, p. 770-774, 2017. DOI: 10.1016/j.bjoms.2017.07.019. 13. BROUWER, C. L.; STEENBAKKERS, R. J.; BOURHIS, J.; BUDACH, W.; GRAU, C.; GRÉGOIRE, V.; VAN HERK, M.; LEE, A.; MAINGON, P.; NUTTING, C.; O'SULLIVAN, B.; PORCEDDU, S. V.; ROSENTHAL, D. I.; SIJTSEMA, N. M.; LANGENDIJK, J. A. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG Oncology and TROG consensus guidelines. Radiotherapy and Oncology, v. 117, n. 1, p. 83-90, 2015. DOI: 10.1016/j.radonc.2015.07.041. 14. BRUNO, J. S.; MIRANDA-SILVA, W.; GUEDES, V. D. S.; PARAHYBA, C. J.; MORAES, F. Y.; FREGNANI, E. R. Digital Workflow for Producing Oral Positioning Radiotherapy Stents for Head and Neck Cancer. Journal of Prosthodontics, v. 29, n. 5, p. 448-452, 2020. DOI: 10.1111/jopr.13155. 15. BUTLER, D. J.; BARNES, M.; MCEWEN, M. R.; LERCH, M. L. F.; SHEEHY, S. L.; TAN, Y. R. E.; WILLIAMS, I. M.; YAP, J. S. L. Dosimetry for FLASH and other non-standard radiotherapy sources. Radiation Measurements, 180:107330, 2025. DOI: 10.1016/j.radmeas.2024.107330. 16. CRAMER, J. D.; BURTNESS, B.; LE, Q. T.; FERRIS, R. L. The changing therapeutic landscape of head and neck cancer. Nature Reviews Clinical Oncology, v. 16, n. 11, p. 669-683, 2019. DOI: 10.1038/s41571-019-0227-z. 17. DEAN, J. A.; WELSH, L. C.; GULLIFORD, S. L.; HARRINGTON, K. J.; NUTTING, C. M. A novel method for delineation of oral mucosa for radiotherapy dose-response studies. Radiotherapy and Oncology, v. 115, n. 1, p. 63-66, 2015. DOI: 10.1016/j.radonc.2015.02.020. 18. DEAN, J. A.; WELSH, L. C.; MCQUAID, D.; WONG, K. H.; ALEKSIC, A.; DUNNE, E.; ISLAM, M. R.; PATEL, A.; PATEL, P.; PETKAR, I.; PHILLIPS, I.; SHAM, J.; NEWBOLD, K. L.; BHIDE, S. A.; HARRINGTON, K. J.; GULLIFORD, S. L.; NUTTING, C. M. Assessment of fully-automated atlas-based segmentation of novel oral mucosal surface organ-at-risk. Radiotherapy and Oncology, v. 119, n. 1, p. 166-171, 2016. DOI: 10.1016/j.radonc.2016.02.022. 19. DE FELICE, F.; TOMBOLINI, V.; VALENTINI, V.; DE VINCENTIIS, M.; MEZI, S.; BRUGNOLETTI, O.; POLIMENI, A. Advances in the Management of HPV-Related Oropharyngeal Cancer. Journal of Oncology, v. 2019, p. 9173729, 2019. DOI: 10.1155/2019/9173729. 20. DE FELICE, F.; TOMBOLINI, V. Delineation of organs at risk in the head and neck region. Oral Oncology, v. 87, p. 197-198, 2018. DOI: 10.1016/j.oraloncology.2018.10.037. 21. DE PAULI PAGLIONI, M.; FARIA, K. M.; PALMIER, N. R.; PRADO-RIBEIRO, A. C.; DIAS, R. B.; DA GRAÇA PINTO, H.; TREISTER, N. S.; EPSTEIN, J. B.; MIGLIORATI, C. A.; SANTOS-SILVA, A. R.; BRANDÃO, T. B. Patterns of oral mucositis in advanced oral squamous cell carcinoma patients managed with prophylactic photobiomodulation therapy-insights for future protocol development. Lasers in Medical Science, v. 36, n. 2, p. 429-436, 2021. DOI: 10.1007/s10103-020-03091-2. 22. ELAD, S.; CHENG, K. K. F.; LALLA, R. V.; YAROM, N.; HONG, C.; LOGAN, R. M.; BOWEN, J.; GIBSON, R.; SAUNDERS, D. P.; ZADIK, Y.; ARIYAWARDANA, A.; CORREA, M. E.; RANNA, V.; BOSSI, P. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer, v. 126, n. 19, p. 4423-4431, 2020. DOI: 10.1002/cncr.33100. 23. FERLAY, J. L. M.; ERVIK, M.; LAM, F.; COLOMBET, M.; MERY, L.; PIÑEROS, M.; ZNAOR, A.; SOERJOMATARAM, I.; BRAY, F. Global cancer observatory: Cancer today. International Agency for Research on Cancer, 2020. Disponível em: https://gco.iarc.fr/today. Acesso em: 21 de fevereiro de 2025. 24. FRANZESE, C.; DEI, D.; LAMBRI, N.; TERIACA, M. A.; BADALAMENTI, M.; CRESPI, L.; TOMATIS, S.; LOIACONO, D.; MANCOSU, P.; SCORSETTI, M. Enhancing radiotherapy workflow for head and neck cancer with artificial intelligence: A systematic review. Journal of Personalized Medicine, v. 13, n. 6, p. 946, 2023. DOI: 10.3390/jpm13060946. 25. GOU, X.; DUAN, B.; HUASHAN, S.; LEI, Q.; XIAO, J.; CHEN, N. The relations of dosimetric parameters with long-term outcomes and late toxicities in advanced T-stage nasopharyngeal carcinoma with IMRT. Head & Neck, v. 42, n. 1, p. 85-92, 2020. DOI: 10.1002/hed.25986. 26. GUPTA, T.; KANNAN, S.; GHOSH-LASKAR, S.; AGARWAL, J. P. Systematic review and meta-analyses of intensity-modulated radiation therapy versus conventional two-dimensional and/or three-dimensional radiotherapy in curative-intent management of head and neck squamous cell carcinoma. PLoS ONE, v. 13, n. 7, p. e0200137, 2018. DOI: 10.1371/journal.pone.0200137. 27. GÜNERI, P.; EPSTEIN, J. B. Late stage diagnosis of oral cancer: Components and possible solutions. Oral Oncology, v. 50, n. 12, p. 1131-1136, 2014. DOI: 10.1016/j.oraloncology.2014.09.005. 28. HOFFBAUER, M.; FINEBERG, J.; STATTENFIELD, R.; HOLMLUND, J. Cost of radiation-induced oral mucositis in head and neck cancer patients: an administrative claims analysis. Journal of Managed Care & Specialty Pharmacy, v. 26, p. S31, 2020. 29. HONG, C. H. L.; GUEIROS, L. A.; FULTON, J. S.; CHENG, K. K. F.; KANDWAL, A.; GALITI, D.; FALL-DICKSON, J. M.; JOHANSEN, J.; AMERINGER, S.; KATAOKA, T.; WEIKEL, D.; EILERS, J.; RANNA, V.; VADDI, A.; LALLA, R. V.; BOSSI, P.; ELAD, S. Mucositis Study Group of the Multinational Association of Supportive Care in Cancer/International Society for Oral Oncology (MASCC/ISOO). Supportive Care in Cancer, v. 27, n. 10, p. 3949-3967, 2019. DOI: 10.1007/s00520-019-04848-4. 30. INSTITUTO NACIONAL DE CÂNCER (INCA). Estimativa 2023: incidência de câncer no Brasil. Instituto Nacional de Câncer José Alencar Gomes da Silva, 2022. Disponível em: https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-2023.pdf. Acesso em: 21 de fevereiro de 2025. 31. ISAKSSON, L. J.; PEPA, M.; ZAFFARONI, M.; MARVASO, G.; ALTERIO, D.; VOLPE, S.; CORRAO, G.; AUGUGLIARO, M.; STARZYŃSKA, A.; LEONARDI, M. C.; ORECCHIA, R.; JERECZEK-FOSSA, B. A. Machine learning-based models for prediction of toxicity outcomes in radiotherapy. Frontiers in Oncology, v. 10, p. 790, 2020. DOI: 10.3389/fonc.2020.00790. 32. KAUARK-FONTES, E.; MIGLIORATI, C. A.; EPSTEIN, J. B.; BENSADOUN, R. J.; GUEIROS, L. A. M.; CARROLL, J.; RAMALHO, L. M. P.; SANTOS-SILVA, A. R. Twenty-year analysis of photobiomodulation clinical studies for oral mucositis: a scoping review. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, v. 135, n. 5, p. 626-641, 2023. DOI: 10.1016/j.oooo.2022.12.010. 33. KAWAMURA, M.; YOSHIMURA, M.; ASADA, H.; NAKAMURA, M.; YUKINORI, M.; MIZOWAKI, T. A scoring system predicting acute radiation dermatitis in patients with head and neck cancer treated with intensity-modulated radiotherapy. Radiation Oncology, v. 14, n. 1, p. 121, 2019. DOI: 10.1186/s13014-019-1215-2. 34. LANG, K.; AKBABA, S.; HELD, T.; KARGUS, S.; HORN, D.; BOUGATF, N. Definitive radiotherapy vs. postoperative radiotherapy for lower gingival carcinomas of the mandible: A single-center report about outcome and toxicity. Strahlentherapie und Onkologie, v. 195, n. 9, p. 819-829, 2019. DOI: 10.1007/s00066-019-01484-z. 35. LANG, K.; MENZIN, J.; EARLE, C. C.; JACOBSON, J.; HSU, M. A. The economic cost of squamous cell cancer of the head and neck: Findings from linked SEER-Medicare data. Archives of Otolaryngology–Head & Neck Surgery, v. 130, n. 11, p. 1269-1275, 2004. DOI: 10.1001/archotol.130.11.1269. 36. LALLA, R. V.; SONIS, S. T.; PETERSON, D. E. Management of oral mucositis in patients who have cancer. Dental Clinics of North America, v. 52, n. 1, p. 61-77, 2008. DOI: 10.1016/j.cden.2007.10.002. 37. LEE, A. S.; VALERO, C.; YOO, S. K.; VOS, J. L.; CHOWELL, D.; MORRIS, L. G. T. Validation of a machine learning model to predict immunotherapy response in head and neck squamous cell carcinoma. Cancers (Basel), v. 16, n. 1, p. 175, 2023. DOI: 10.3390/cancers16010175. 38. MARTA, G. N.; SILVA, V.; DE ANDRADE CARVALHO, H.; DE ARRUDA, F. F.; HANNA, S. A.; GADIA, R.; DA SILVA, J. L.; CORREA, S. F.; VITA ABREU, C. E.; RIERA, R. Intensity-modulated radiation therapy for head and neck cancer: systematic review and meta-analysis. Radiotherapy and Oncology, v. 110, n. 1, p. 9-15, 2014. DOI: 10.1016/j.radonc.2013.11.010. 39. MARTÍNEZ-RAMÍREZ, J.; SALDIVIA-SIRACUSA, C.; GONZÁLEZ-PÉREZ, L. V.; CUADRA ZELAYA, F. J. M.; GERBER-MORA, R.; CABRERA, O. F. G.; BOLOGNA-MOLINA, R.; GILLIGAN, G.; DELGADO-AZAÑERO, W.; RAJENDRA SANTOSH, A. B.; GONZÁLEZ-ARRIAGADA, W. A.; VILLARROEL-DORREGO, M.; ROJAS, B. V.; GALLAGHER, K. P. D.; TAGER, E. M. J. R.; ARANDA-ROMO, S.; GARCÍA-HEREDIA, G. L.; GARCIA, E. C.; HURTADO, I.; TURCIOS, C. A.; ESPINAL, L. P. S.; GONZÁLEZ, R. A. M.; PRADO RIBEIRO, A. C.; RIBEIRO-ROTTA, R. F.; KOWALSKI, L. P.; CURADO, M. P.; TOPORCOV, T. N.; SOLLECITO, T. P.; CARVALHO, A. L.; LOPES, M. A.; WARNAKULASURIYA, S.; SANTOS-SILVA, A. R. Barriers to early diagnosis and management of oral cancer in Latin America and the Caribbean. Oral Diseases, v. 30, n. 7, p. 4174-4184, 2024. DOI: 10.1111/odi.14903. 40. MENEZES, F. D. S.; FERNANDES, G. A.; ANTUNES, J. L. F.; VILLA, L. L.; TOPORCOV, T. N. Global incidence trends in head and neck cancer for HPV-related and -unrelated subsites: A systematic review of population-based studies. Oral Oncology, v. 115, p. 105177, 2021. DOI: 10.1016/j.oraloncology.2020.105177. 41. ONJUKKA, E.; FIORINO, C.; CICCHETTI, A.; PALORINI, F.; IMPROTA, I.; GAGLIARDI, G. Patterns in ano-rectal dose maps and the risk of late toxicity after prostate IMRT. Acta Oncologica, v. 58, n. 12, p. 1757-1764, 2019. DOI: 10.1080/0284186X.2019.1635267. 42. OSBORN, J. Is VMAT beneficial for patients undergoing radiotherapy to the head and neck? Radiography (Lond), v. 23, n. 1, p. 73-76, 2017. DOI: 10.1016/j.radi.2016.08.008. 43. PFISTER, D. G.; SPENCER, S.; ADELSTEIN, D.; ADKINS, D.; ANZAI, Y.; BRIZEL, D. M.; BRUCE, J. Y.; BUSSE, P. M.; CAUDELL, J. J.; CMELAK, A. J.; et al. Head and Neck Cancers, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, v. 18, n. 7, p. 873-898, 2020. DOI: 10.6004/jnccn.2020.0031. 44. RIVERA-MONTALVO, T. Radiation therapy dosimetry system. Applied Radiation and Isotopes, 83(Pt C):204–209, Jan 2014. DOI: 10.1016/j.apradiso.2013.07.011. PMID: 23954528. 45. RODRIGUES-OLIVEIRA, L.; KOWALSKI, L. P.; SANTOS, M.; MARTA, G. N.; BENSADOUN, R. J.; MARTINS, M. D.; LOPES, M. A.; CASTRO, G. Jr.; WILLIAM, W. N. Jr.; CHAVES, A. L. F.; et al. Direct costs associated with the management of mucositis: A systematic review. Oral Oncology, v. 118, p. 105296, 2021. DOI: 10.1016/j.oraloncology.2021.105296. 46. SHER, D. J.; GODLEY, A.; PARK, Y.; CARPENTER, C.; NASH, M.; HESAMI, H.; ZHONG, X.; LIN, M. H. Prospective study of artificial intelligence-based decision support to improve head and neck radiotherapy plan quality. Clinical and Translational Radiation Oncology, v. 29, p. 65-70, 2021. DOI: 10.1016/j.ctro.2021.05.006. 47. SONIS, S. T. Precision medicine for risk prediction of oral complications of cancer therapy - The example of oral mucositis in patients receiving radiation therapy for cancers of the head and neck. Frontiers in Oral Health, v. 3, p. 917860, 2022. DOI: 10.3389/froh.2022.917860. 48. SPECENIER, P. M.; VERMORKEN, J. B. Current concepts for the management of head and neck cancer: chemotherapy. Oral Oncology, v. 45, n. 4-5, p. 409-415, 2009. DOI: 10.1016/j.oraloncology.2008.05.014. 49. SUN, K.; TAN, J. Y.; THOMSON, P. J.; CHOI, S. W. Influence of time between surgery and adjuvant radiotherapy on prognosis for patients with head and neck squamous cell carcinoma: A systematic review. Head & Neck, v. 45, n. 8, p. 2108-2119, 2023. DOI: 10.1002/hed.27401. 50. SUNAGA, T.; NAGATANI, A.; FUJII, N.; HASHIMOTO, T.; WATANABE, T.; SASAKI, T. The association between cumulative radiation dose and the incidence of severe oral mucositis in head and neck cancers during radiotherapy. Cancer Reports (Hoboken), v. 4, n. 2, p. e1317, 2021. DOI: 10.1002/cnr2.1317. 51. SUNG, H.; FERLAY, J.; SIEGEL, R. L.; LAVERSANNE, M.; SOERJOMATARAM, I.; JEMAL, A.; BRAY, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, v. 71, n. 3, p. 209-249, 2021. DOI: 10.3322/caac.21660. 52. VAN DEN BOSCH, L.; VAN DER SCHAAF, A.; VAN DER LAAN, H. P.; HOEBERS, F. J. P.; WIJERS, O. B.; VAN DEN HOEK, J. G. M.; MOONS, K. G. M.; REITSMA, J. B.; STEENBAKKERS, R. J. H. M.; SCHUIT, E. Comprehensive toxicity risk profiling in radiation therapy for head and neck cancer: A new concept for individually optimised treatment. Radiotherapy and Oncology, v. 157, p. 147-154, 2021. DOI: 10.1016/j.radonc.2021.01.024. 53. VILLA A.; VOLLEMANS M.; DE MORAES A.; SONIS S. Concordance of the WHO, RTOG, and CTCAE v4.0 grading scales for the evaluation of oral mucositis associated with chemoradiation therapy for the treatment of oral and oropharyngeal cancers. Support Care Cancer. Oct;29(10):6061-6068, 2021. DOI: 10.1007/s00520-021-06177-x. 54. VILLANI, D.; FARIA, K. M.; KAUARK-FONTES, E.; RIBEIRO, C. T. M.; MASCARENHAS, Y. M.; RIBEIRO, A. C. P.; VECHIATO-FILHO, A. J.; MENEGUSSI, G.; VASCONCELOS, K. G. M. C.; SANTOS-SILVA, A. R.; BRANDÃO, T. B. Protocol determination for OSL in vivo measurements of absorbed dose in the oral mucosa in oral cancer patients: A pilot study. Radiation Physics and Chemistry, 205:110729, 2023. DOI: 10.1016/j.radphyschem.2022.110729. 55. WARDILL, H. R.; SONIS, S. T.; BLIJLEVENS, N. M. A.; VAN SEBILLE, Y. Z. A.; CIORBA, M. A.; LOEFFEN, E. A. H.; et al. Prediction of mucositis risk secondary to cancer therapy: a systematic review of current evidence and call to action. Supportive Care in Cancer, v. 28, p. 5059-5073, 2020. DOI: 10.1007/s00520-020-05579-7. 56. WISSINGER, E.; GRIEBSCH, I.; LUNGERSHAUSEN, J.; FOSTER, T.; PASHOS, C. L. The economic burden of head and neck cancer: a systematic literature review. PharmacoEconomics, v. 32, n. 9, p. 865-882, 2014. DOI: 10.1007/s40273-014-0169-3. 57. YAROM, N.; HOVAN, A.; BOSSI, P.; ARIYAWARDANA, A.; JENSEN, S. B.; GOBBO, M.; et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Supportive Care in Cancer, v. 27, n. 10, p. 3997-4010, 2019. DOI: 10.1007/s00520-019-04887-x. 58. ZADIK, Y.; ARANY, P. R.; FREGNANI, E. R.; BOSSI, P.; ANTUNES, H. S.; BENSADOUN, R. J.; et al. Systematic review of photobiomodulation for the management of oral mucositis in cancer patients and clinical practice guidelines. Supportive Care in Cancer, v. 27, n. 10, p. 3969-3983, 2019. DOI: 10.1007/s00520-019-04890-2. 59. ZHANG, H. H.; D'SOUZA, W. D. A Treatment Planning Method for Better Management of Radiation-Induced Oral Mucositis in Locally Advanced Head and Neck Cancer. Journal of Medical Physics, v. 43, n. 1, p. 9-15, 2018. DOI: 10.4103/jmp.JMP_78_17. pt_BR
dc.type.degree Doutorado pt_BR


Arquivos deste item

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples