| dc.creator | Brito, Marcos Lapa | |
| dc.date.accessioned | 2025-05-27T18:03:51Z | |
| dc.date.available | 2025-05-27T18:03:51Z | |
| dc.date.issued | 2024-11-08 | |
| dc.identifier.uri | https://repositorio.ufba.br/handle/ri/42146 | |
| dc.description.abstract | Brazil is a developing country that emits high amounts of CO2 per year. Therefore, controlling these emissions is essential to achieve sustainable development. In this thesis, we tested six Artificial Neural Networks (4 feedback propagation and 2 cascade feedback propagation) and of these, one feedback propagation was able to quantitatively relating CO2 emissions, energy matrix and burning in Brazilian biomes, such as the Amazon Forest. The literature still does not have studies that quantitatively demonstrate the impact that changes in the Brazilian energy matrix have on CO2 emissions in the country. In addition, there are also no studies that use fires in Brazilian biomes as input in predictive models for emissions. Our results showed that Brazilian CO2 emissions will increase in the coming years. However, partial replacement of fossil energy resources with renewables associated with the reduction of fires in Brazilian biomes could significantly reduce these emissions. In our first scenario, in which there was a partial replacement of 30% of fossil resources by renewable ones and a 70% reduction in the burning of Brazilian biomes, CO2 emissions decreased by 13.58% for the year 2030. In the second scenario analyzed, we replaced fossil fuels by 90% with renewable ones, while burning in Brazilian biomes was reduced by 90%. In this situation, we observed a 28.45% reduction in Brazilian CO2 emissions. Thus, the model developed here can help Brazil to predict and control its CO2 emissions from changes in its energetic and environmental indicators to find a balance between development and sustainability. Our model can also be used by other developing countries. For this, it is necessary that the indicators are adapted to the reality of the country studied. | pt_BR |
| dc.description.sponsorship | CNPq | pt_BR |
| dc.language | por | pt_BR |
| dc.publisher | Universidade Federal da Bahia | pt_BR |
| dc.rights | Acesso Aberto | pt_BR |
| dc.subject | emissões de CO2 | pt_BR |
| dc.subject | Rede Neural Artificial | pt_BR |
| dc.subject | Recursos Energéticos Fósseis e Renováveis | pt_BR |
| dc.subject | Queimadas Brasileiras | pt_BR |
| dc.subject.other | CO2 emissions | pt_BR |
| dc.subject.other | Artificial Neural Network | pt_BR |
| dc.subject.other | Fossil and Renewable Energy Resources | pt_BR |
| dc.subject.other | Brazilian burning | pt_BR |
| dc.title | Análise de cenários a partir de indicadores energéticos e ambientais para as emissões brasileiras de CO2 | pt_BR |
| dc.title.alternative | Analysis of scenarios based on energy and environmental indicators for brazilian CO2 emissions | pt_BR |
| dc.type | Tese | pt_BR |
| dc.contributor.referees | Carvalho, Romero Florentino de | |
| dc.publisher.program | Programa de Pós-Graduação em Engenharia Quimica (PPEQ) | pt_BR |
| dc.publisher.initials | UFBA | pt_BR |
| dc.publisher.country | Brasil | pt_BR |
| dc.subject.cnpq | CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA | pt_BR |
| dc.contributor.advisor1 | Simonelli, George | |
| dc.contributor.advisor1ID | 0000-0002-8031-1401 | pt_BR |
| dc.contributor.advisor1Lattes | https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4462773E6&tokenCaptchar=03AFcWeA5hWTaOtN_kk3-HAu5qbCM3Q6rWaick2ZITmiZ2cCsZmbU54X06yMu4GljLjdYp3wQa87LPaz3K_N2HlkfPTmaCD_R2VXjuGR1ELAbaR4bDv7j0B4qXJh-a9f8g6JSKr9YGXbdnqLuY8yMmgBEuCuPewaudPr_fdhGJGiw0lCeqc3G0GKaHt2aeYZBu4aAeBdd_GT8h-eoWliANtt8jg2kPXWqZeYVAysMsua8zlNpKis_daxiU6JJ8kxyt2fJ8AXISzQ28ApVsxEWUPm1HUEC9CarDyjCz7yBvIZ81EcRfRvI7Sn-7X3nkrKnlpKLNWoEzid6ronaSNtOyAZ3sbvnA2q90D0MC9lzMQiQRalZyhChct27FUu-iJTd12ZBqJGqHwCTuE1-4oCUid6mg4Y-JxKBQ2Ys4Gz2DTe__UQu8SIwWRLsAA-X69uQmyIeMSYxLOw1VIMUEpNdYkmO0r1DRESDXVrP3VBNMopmuGg79Hwyap0XclFFnjoKneXiCJUmEd3XaOK1C-kFs2wjwSv9vDEmv1_EBYQAAeyNNGZcEHW3c5F2PDLVmNE1yz3fWBot-NnAuVgc3IFYFhVmxOoqlsjumyKuQh2ykJckw_wQAPYAonBffDCGbTKz-q9f4LZvgHM9yl48rYclK-pdu0NY27NVevjevYBksBWp_tUGRI1M7qvvINpDeWNKLABgaJnW6J3yN7qVyEp6xyCAQwL0hNGUTzgKhZOMRKSPzizq4fn-yGycsgm96nN7KLdoVdiv1m6sF-erLrgyGy67wezR6EEeHpzCtFgruIyiKRXPUSn6bEzE9AqzqLGRMBN0n1sBc6R3iRaCVGqDvTG3hVQIjJcVw_uzPAjtZwQ4XvIoV7AFIOs5WjhSuRtRZZ6ka9XK1HKyqbnHgmL7zREpIiAELEWi4F2wRXuJDW6Lx6of0tSidJZD3V8qRCw2ID_7laqAvyaWn | pt_BR |
| dc.contributor.advisor2 | Santos, Luiz Carlos Lobato dos | |
| dc.contributor.advisor2ID | 0000-0003-3824-7802 | pt_BR |
| dc.contributor.advisor2Lattes | https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763392Y0&tokenCaptchar=03AFcWeA4BZASzBLZHZWjycP79uiEZkcdby4MiXrhW2XBTcQHv4TfDqf5ZF7mF8_mrUTK8H4WKFR6jKifMepDsZ-WlWJnGbW-mqyKw_53EMf6p9B5wTWzlK3xMEY1mOwyUwLqH3jI6JlvjrLVWAZ49KRFh_ZICmJjPCzJdQ9VMFd7Ut7rmOWfEtjfg9Xb4xVR_jF9ef_Tx01pJuZF11wCpdoWpGRnUVJ0wor6HKIhBhGzAXyzyBQ3wvMQ_u64Y9i1UL5XRwg8Qw4iWBnnSpukT6aakLQEgt_iNRmKXLZ01EqXhSguXPQ4p_zyd-Sqd8fTWMgS_7eZAlkADlV57jXe8WiDLFf_U9n40cRpkofy-3fomDaRa94IrYbSHLdihtITCZd6jn2qmDt-EJdfoA9kI5N-G_QSqQnkU_PVRypM4HKGdqWrxEQgTzxt_Nr2SCgDTPbWfahLldUQSZ_lAKfhvbhMdlpXNXwLhh6zW_GuOss6R1cRplICQB9h-VL_rTjGXK6KNzIGUHs2vfrJA7BDQ3UxejxBosQkvAMr1HrQyDTNfJ1qujuvTmXapvrgoViMvYYxu79bAUP4iFlEBNZtirhrYhE1V3B7-Bs-_5mCwZA9yXxE5wmawsokS7ElLfnqBaHyRjP8MvOusTUxb2j0idQMmBNBRUFravIPLAFIMfjWvi9KtIu-AUXpYe2KhFL5aUCsRPZ5ZZmtx8c5yh0EayGwEdalgsKFp7Jtzt1BeAH-TGqMOJchS2DHwmV9FMPsNdYxH7kDIyKQcJNhr3MRD-HJMnb1hozdcitqqdQvFWAdhjpSQHiQjyFESFEx2GctC2fYqsIpHpaabUgOQxGT9nIun1YDlmHx2YRsMw96SNcE80ndFcO0FAN9BaX9_QpiRJivwaOAKDOBMuYo6Zl2PiB3Vg6eByjIvgnDRRmKjkWPaQqeX2JFUcb7cyNx2KjmvChR_l301B3Io | pt_BR |
| dc.contributor.referee1 | Simonelli, George | |
| dc.contributor.referee1ID | 0000-0002-8031-1401 | pt_BR |
| dc.contributor.referee1Lattes | https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4462773E6&tokenCaptchar=03AFcWeA5hWTaOtN_kk3-HAu5qbCM3Q6rWaick2ZITmiZ2cCsZmbU54X06yMu4GljLjdYp3wQa87LPaz3K_N2HlkfPTmaCD_R2VXjuGR1ELAbaR4bDv7j0B4qXJh-a9f8g6JSKr9YGXbdnqLuY8yMmgBEuCuPewaudPr_fdhGJGiw0lCeqc3G0GKaHt2aeYZBu4aAeBdd_GT8h-eoWliANtt8jg2kPXWqZeYVAysMsua8zlNpKis_daxiU6JJ8kxyt2fJ8AXISzQ28ApVsxEWUPm1HUEC9CarDyjCz7yBvIZ81EcRfRvI7Sn-7X3nkrKnlpKLNWoEzid6ronaSNtOyAZ3sbvnA2q90D0MC9lzMQiQRalZyhChct27FUu-iJTd12ZBqJGqHwCTuE1-4oCUid6mg4Y-JxKBQ2Ys4Gz2DTe__UQu8SIwWRLsAA-X69uQmyIeMSYxLOw1VIMUEpNdYkmO0r1DRESDXVrP3VBNMopmuGg79Hwyap0XclFFnjoKneXiCJUmEd3XaOK1C-kFs2wjwSv9vDEmv1_EBYQAAeyNNGZcEHW3c5F2PDLVmNE1yz3fWBot-NnAuVgc3IFYFhVmxOoqlsjumyKuQh2ykJckw_wQAPYAonBffDCGbTKz-q9f4LZvgHM9yl48rYclK-pdu0NY27NVevjevYBksBWp_tUGRI1M7qvvINpDeWNKLABgaJnW6J3yN7qVyEp6xyCAQwL0hNGUTzgKhZOMRKSPzizq4fn-yGycsgm96nN7KLdoVdiv1m6sF-erLrgyGy67wezR6EEeHpzCtFgruIyiKRXPUSn6bEzE9AqzqLGRMBN0n1sBc6R3iRaCVGqDvTG3hVQIjJcVw_uzPAjtZwQ4XvIoV7AFIOs5WjhSuRtRZZ6ka9XK1HKyqbnHgmL7zREpIiAELEWi4F2wRXuJDW6Lx6of0tSidJZD3V8qRCw2ID_7laqAvyaWn | pt_BR |
| dc.contributor.referee2 | Santos, Luiz Carlos Lobato dos | |
| dc.contributor.referee2ID | 0000-0003-3824-7802 | pt_BR |
| dc.contributor.referee2Lattes | https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4763392Y0&tokenCaptchar=03AFcWeA4BZASzBLZHZWjycP79uiEZkcdby4MiXrhW2XBTcQHv4TfDqf5ZF7mF8_mrUTK8H4WKFR6jKifMepDsZ-WlWJnGbW-mqyKw_53EMf6p9B5wTWzlK3xMEY1mOwyUwLqH3jI6JlvjrLVWAZ49KRFh_ZICmJjPCzJdQ9VMFd7Ut7rmOWfEtjfg9Xb4xVR_jF9ef_Tx01pJuZF11wCpdoWpGRnUVJ0wor6HKIhBhGzAXyzyBQ3wvMQ_u64Y9i1UL5XRwg8Qw4iWBnnSpukT6aakLQEgt_iNRmKXLZ01EqXhSguXPQ4p_zyd-Sqd8fTWMgS_7eZAlkADlV57jXe8WiDLFf_U9n40cRpkofy-3fomDaRa94IrYbSHLdihtITCZd6jn2qmDt-EJdfoA9kI5N-G_QSqQnkU_PVRypM4HKGdqWrxEQgTzxt_Nr2SCgDTPbWfahLldUQSZ_lAKfhvbhMdlpXNXwLhh6zW_GuOss6R1cRplICQB9h-VL_rTjGXK6KNzIGUHs2vfrJA7BDQ3UxejxBosQkvAMr1HrQyDTNfJ1qujuvTmXapvrgoViMvYYxu79bAUP4iFlEBNZtirhrYhE1V3B7-Bs-_5mCwZA9yXxE5wmawsokS7ElLfnqBaHyRjP8MvOusTUxb2j0idQMmBNBRUFravIPLAFIMfjWvi9KtIu-AUXpYe2KhFL5aUCsRPZ5ZZmtx8c5yh0EayGwEdalgsKFp7Jtzt1BeAH-TGqMOJchS2DHwmV9FMPsNdYxH7kDIyKQcJNhr3MRD-HJMnb1hozdcitqqdQvFWAdhjpSQHiQjyFESFEx2GctC2fYqsIpHpaabUgOQxGT9nIun1YDlmHx2YRsMw96SNcE80ndFcO0FAN9BaX9_QpiRJivwaOAKDOBMuYo6Zl2PiB3Vg6eByjIvgnDRRmKjkWPaQqeX2JFUcb7cyNx2KjmvChR_l301B3Io | pt_BR |
| dc.contributor.referee3 | Góis, Luiz Mario Nelson de | |
| dc.contributor.referee4 | Santos, João Paulo Lobo dos | |
| dc.contributor.referee5 | Ferreira Júnior, José Mario | |
| dc.creator.ID | 0000-0001-5707-7437 | pt_BR |
| dc.creator.Lattes | https://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4831887U2&tokenCaptchar=03AFcWeA5JVMbgBoNvjD15S0aB6ELBHKikJj_I1INoZm_Wz6BQXwyHMUJUWa6nkwJVwL0zpRAuJDcBDxu7plPcToHlPFGwp2vDRbvW6sQ_sP2MrcL6RR29d8UhdCFxr9c-0YP7JJN2WEbCpDP72unI6coTIcl0--uo2QgrvXcZ3v2SPneaZla65rr_wWAM7VgfzW5HYgGiTahjuOHBbKH1hJ18Xul0IULXodUM_GjdL95zKbItYcrQ3XtlZ0eFS464gX3ml3p_QKwg7HDZXnc3ypstjK3pFI8oNOknEHNeXn7hhuxHKeoEdrMavyvOdzlN9vHQemH27b4s_vdI-wXpRAuS2q_tzgIrb6Dm10hVcxDTtcXIXgcjl1dm2fqrxmvS55ZVgqMN3za2nYHc-3JokZjUdU0VBp-uqtdOGPxWp4PMo-mCDBK82p0fqHgCkPMNZX6LBWN2HLjWWOJv2yo4nchuBhnjeksFLZQGWl8qMmcgvAg8GrPaELOKLngL1GjrFS-D_YYpzVrc96phY-p8JOEbYrTCHGgWjQHAPh1wnHPp1ZltZXs1K4ZDYswcexe5h2XfuL2ldLCJmHHqB2EydRj_jOQVLVqcdvUu6UMtPHvC6jDpPz1-0wRSHhU0puUvfdeI9rcSiFS02r0SJgCoeTGCmoNAPYZ04Vu-yEBqvkJ3aF3eZCFhyJMa09VU62bJ5ZK9Vy3GwDROu5lFFJY-838ExZ-RzM1XnvtzR5l9WeY11HlFOZCPizCcuRSB7AKtTkrFF3wPOks9FjjgRWTolX3gcyBvy7XKgW4JJu8Pajiardqnbhhw5GnO23bAwKrxBH0WOnjuQdGrPkLbzXBI4-7ijWbATYcWlsSW83CZ7GkI6zF7lNaVqkCLtBIPgErZHN3W1RIxRpplI69P1I8gePh9EvirVdxI5vpMmV_tNRLGnxs-3BwD5CWi-NCfbh2sNWz0LnOMyw9W | pt_BR |
| dc.description.resumo | O Brasil é um país em desenvolvimento que emite altas quantidades de CO2 por ano. Portanto, controlar essas emissões é essencial para alcançar o desenvolvimento sustentável. Nessa tese, testamos seis Redes Neurais Artificiais (4 do tipo retropropagação e 2 do tipo cascata) e dessas, uma do tipo retropropagação foi capaz de relacionar quantitativamente as emissões de CO2, matriz energética e queimadas nos biomas brasileiros, como a Floresta Amazônica. A literatura, ainda não possui trabalhos que demonstrem quantitativamente o impacto que as alterações na matriz energética brasileira possuem nas emissões de CO2 no país. Além disso, também não se encontra estudos que utilizam as queimadas nos biomas brasileiros como entrada nos modelos preditivos para as emissões. Nossos resultados mostraram que as emissões brasileiras de CO2 aumentarão nos próximos anos. No entanto, a substituição parcial de recursos energéticos fósseis por renováveis associados à redução de incêndios nos biomas brasileiros poderia reduzir significativamente essas emissões. Em nosso primeiro cenário em que houve uma substituição parcial de 30% dos recursos fósseis pelos renováveis e uma redução de 70% nas queimadas dos biomas brasileiros, as emissões de CO2 diminuíram em 13,58% para o ano de 2030. Já no segundo cenário analisado, substituímos os combustíveis fósseis em 90% pelos renováveis, enquanto as queimadas nos biomas brasileiros foram reduzidas em 90%. Nessa situação, observamos uma redução de 28,45% nas emissões brasileiras de CO2. Assim, o modelo aqui desenvolvido pode ajudar o Brasil a prever e controlar suas emissões de CO2 a partir de mudanças em seus indicadores energéticos e ambientais para encontrar o equilíbrio entre desenvolvimento e sustentabilidade. Nosso modelo também pode ser usado por outros países em desenvolvimento. Para isso, é necessário que os indicadores sejam adaptados à realidade do país estudado. | pt_BR |
| dc.publisher.department | Escola Politécnica | pt_BR |
| dc.type.degree | Doutorado | pt_BR |