| dc.relation.references |
1. MUNCHOW, E.A.; FERREIRA, A.C.A.; MACHADO, R.M.M.; RAMOS, T.S.; RODRIGUES-JUNIOR, S. A.; ZANCHI, C. H. Effect of acidic solutions on the surface degradation of a micro-hybrid composite resin. Braz Dent. J., Ribeirão Preto, v. 25, n.4, p.321-326, 2014. DOI: https://doi.org/10.1590/0103-6440201300058 2. KNEZEVIĆ, A.; TARLE, Z.; MENIGA, A.; SUTALO, J.; PICHLER, G.; RISTIĆ, M. Degree of conversion and temperature rise during polymerization of composite resin samples with blue diodes. J. Oral Rehabil., Oxford, v.28, p. 586-591, 2001. DOI: 10.1046/j.13652842.2001.00709.x. 3. SOARES, C.C.P.; PEÇANHA, M.M.; BATITUCCI, R.G.; GIANORDOLLI NETO, R.; BATITUCCI, E.; BATITUCCI, M. H. G. Eficácia da polimerização de uma resina composta fotopolimerizada por aparelhos de luz halógeno e LED da clínica integrada do curso de odontologia da UFES. UFES Rev Odontol., Espirito Santo, v. 7, n.3, p.58-65, 2005. 4. CCAHUANA-VÁSQUEZ, R.A.; TORRES, C. R.G.; ARAÚJO, M.A.M.; ANIDO, A. A. Influência do tipo de ponteira condutora de luz de aparelhos LED na microdureza das resinas compostas. Rev. Odonto UNESP, São Paulo, v.33, n.2, p.69-73, 2004. 5. SANTOS, M. J. M. C.; SOUZA JUNIOR, M. H. S.; MONDELLI, R. F. L. Novos conceitos relacionados à fotopolimerização das resinas compostas. J. Bras. Dent. Estét., São Paulo, v.1, n.1, p.14-21, 2002. 6. PRICE, R. B.T. Light curing in dentistry. Dent. Clin. North Am., Estados Unidos, v. 61, n. 4, p.751-778, Oct 2017. DOI: 10.1016/j.cden.2017.06.008. 7. YPEI GIA, N.R.; SAMPAIO, C. S.; HIGASHI, C.; SAKAMOTO, A.; HIRATA, R. The injectable resin composite restorative technique: a case report. J. Esthet. Restor. Dent., London, v. 33, n.3, p. 404–414, 2020. DOI:10.1111/jerd.12650. 8. LIMA, A. L. X.; SOUZA, P. H. AMORIM, D. M. G.; CALDAS, S. G. F. R.; GALVÃO, M. R. Avaliação do grau de conversão de resinas compostas fotoativadas em diferentes tempos e potências. RFO, Passo Fundo, v. 21, n. 2, p. 219-223, 2016. 9. MILLS, R.; JANDT, K.; ASHWORTH, S. Dental composite depth of cure with halogen and blue light emitting diode technology. Br. Dent. J., London, v.186, n.8, p. 338-391, 1999. DOI: 10.1038/sj.bdj.4800120. 10. AGUIAR, F.H.B.; ANDRADE, K.R.M.; LIMA, D.A.N.L.; AMBROSANO, G.M.B.; LOVADINO, J. R. Influence of light curing and sample thickness on microhardness of a composite resin. Clin. Cosmet. Investig. Dent., [s.l], v.1, p. 21-25, 2009. DOI:10.2147/ccide.s4863. 11. KARACOLAK, G.; BOYACIOGLU, H.; FERRACANE, J.L.; TÜRKÜN, L.S. Influence of increment thickness on radiant energy and microhardness of bulk-fill resin composites. Dent. Mater J., Japan, v. 37, n.2, p. 206-213, 2018. DOI:10.4012/dmj.2017-032. 66 12. CATELAN, A.; ARAÚJO, L.S.N. de.; SILVEIRA, B.C. M. da.; KAWANO, Y.; AMBROSANO, G.M.B.; MARCHI, G.M.; AGUIAR, F. H. B. Impact of the distance of light curing on the degree of conversion and microhardness of a composite resin. Acta Odontol. Scand., London, v. 73, n.4, p. 298-301, 2015. DOI:10.3109/00016357.2014.946965. 13. SEGRETO D. R.; NAUFEL, F. S.; BRANDT, W. C.; GUIRALDO, R. D.; CORRERSOBRINHO, L.; SINHORETI, M. A. C The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J. Biomed. Mater. Res., Estados Unidos, v. 20, n.1, p. 121-131, 1986. DOI: 10.1002/jbm.820200111. 14. SEGRETO D. R.; NAUFEL, F. S.; BRANDT, W. C.; GUIRALDO, R. D.; CORRERSOBRINHO, L.; SINHORETI, M. A. C. Influence of photoinitiator and light-curing source on bond strength of experimental resin cements to dentin. Braz. Dent J., São Paulo, v. 27, n.1, p. 83-89, 2016. DOI: https://doi.org/10.1590/0103-6440201600387. 15. ARAVAMUDHAN, K.; RAKOWSKI, D.; FAN, P. L. Variation of depth of cure and intensity with distance using LED curing lights. Dent. Mater., Japan, v .22, n.11, p.988-994, 2006. DOI: 10.1016/j.dental. 2005.11.031. 16. AGUIAR, F. H.B.; LAZZARI, C.R.; LIMA, D.A.N.L.; AMBROSANO, G.M.V. B. LOVADINO, J. R. Effect of light curing tip distance and resin shade on microhardness of a hybrid resin composite. Braz. Oral Res., São Paulo, v. 19, n. 4, p. 302-306, 2005. DOI: 10.1590/s1806-83242005000400012. 17. NASCIMENTO, A.B.B.; NASCIMENTO, J.V.M.; GOMES, F.A.P.; FERNANDES, S.K.S.; SOUZA, A.M.B.; SIMÕES, A.A.M.A. Avaliação de matrizes em silicone transparente utilizadas na injeção de restaurações em resinas composta. Braz. J. Health Rev., Curitiba, v.6, n.3, p. 8569-8880, 2023. 18. TERRY, D.A.; POWERS, J. M. A predictable resin composite injection technique, Part I. Dent. Today, Estados Unidos, v. 33, n.4, p. 98-101, 2014. 19. GONULOL, N.; OZER, S.; TUNC, E. S. Effect of a third-generation LED LCU on microhardness of tooth-colored restorative materials. Int. J. Paediatr. Dent., United Kingdom, v. 26, n.5, p. 376-382, 2015. DOI: 10.1111/ipd.12213. 20. PRICE, R.B.; FERRACANE, J. L.; SHORTALL, A. C. Light-curing units: a review of what we need to know. J. Dent. Res., São José dos Campos, v. 94, n.9, p. 1179-1186, 2015. DOI: 10.1177/0022034515594786. 21. ILIE, N.; HICKEL, R. Resin composite restorative materials. Aust. Dent. J., Australia, v. 56, p. 59-66, 2011. DOI:10.1111/j.1834-7819.2010.01296.x. 22. ZIMMERLI, B.; STRUB, M.; JEGER, F.; STADLER, O.; LUSSI A. Composite materials: composition, properties and clinical applications a literature review. Schweiz Monatsschr Zahnmed, Switzerland, v.120, n.11, p.972-986, 2010. 23. TERRY, D. A. Restoring with Flowables. Chicago: Quintessence, 2015. 67 24. FERRACANE, J. L. Resin composite – State of the art. Dent. Mater, Estados Unidos, v.27, n.1, p.29-38, 2011. DOI: 10.1016/j.dental.2010.10.020. 25. HERVÁS-GARCÍA, A.; MARTÍNEZ-LOZANO, M.A.; CABANES-VILA, J.; BARJAUESCRIBANO, A.; FOS-GALVE, P. Composite resins. A review of the materials and clinical indications. Med. Oral Patol. Oral Cir. Bucal, Spain, v. 11, n. 2, p.E215-220, mar. 2006. 26. SHAALAN, O.O.; ABOU-AUF, E.; EL ZOGHBY, A.F. Clinical evaluation of flowable resin composite versus conventional resin composite in carious and noncarious lesions: Systematic review and meta-analysis. J. Conserv. Dent., India, v.20, n.6, p.380-385, 2017. 27. BADR, C.; SPAGNUOLO, G.; AMENTA, F.; KHAIRALLAH, C.; MAHDI, S. S. DAHER, E.; BATTINENI, G.; BABA, N.Z.; ZOGHEIB, T.; QASIM, S.S.B.; DAHER, T.; CHINTALAPUDI, N.; ZOGHEIB, C. M. A Two-Year Comparative Evaluation of Clinical Performance of a Nanohybrid Composite Resin to a Flowable Composite Resin. J. Funct. Biomater., Basel, v.12, n.3, p. 51, 2021. DOI: 10.3390/jfb12030051. 28. SCHNEIDER, A.C.; MENDONÇA, M.J.; RODRIGUES, R.B.; BUSATO, P. do M.R.; CAMILOTTI, V. Influência de três modos de fotopolimerização sobre a microdureza de três resinas composta. Polímeros, São Paulo, v.26, p. 37-46, 2016. DOI: https://doi.org/10.1590/0104-1428.1855 29. STANSBURY, J. W. Curing dental resins and composites by photopolymerization. J. Esthet. Dent., London, v.12, n.6, p. 300-308, 2000. DOI: 10.1111/j.17088240.2000.tb00239.x. 30. SHIMOKAWA, C.; SULLIVAN, B.; TURBINO, M.L.; SOARES, C.J.; PRICE, R. B. Influence of emission spectrum and irradiance on light curing of resin-based composites. Oper. Dent., Estados Unidos, v. 42, n.5, p. 537-547, 2017. DOI:10.2341/16-349-l. 31. SOUZA, M.B.de. A.; BRISO, A.L.F.; OLIVEIRA-REIS, B. de.; SANTOS, P. H. dos.; FAGUNDES, T. C. Influence of light-curing units on surface microhardness and color change of composite resins after challenge. J. Contemp. Dent. Pract., India, v. 20, n. 2, p. 204-210, 2019. 32. PARK, Y.J.; CHAE, K.H.; RAWLS, H.R. Development of a new photoinitiation system for dental light-cure composite resins. Dent. Mater, Estados Unidos, v.15, n.2, p. 120-127, 1999. DOI: 10.1016/s0109-5641(99)00021-4. 33. RUEGGEBERG, F. A.; GIANNINI, M.; ARRAIS, C.A.G.; PRICE, R.B.T. Light curing in dentistry and clinical implications: a literature review. Braz. Oral Res., São Paulo, v.31, Supl. 1, n.61, 2017. DOI: https://doi.org/10.1590/1807-3107BOR-2017.vol31.0061. 34. ALBINO, L.G.B.; RODRIGUES, J.A.; KAWANO, Y.; CASSONI, A. Knoop microhardness and FT-Raman evaluation of composite resins: influence of opacity and photoactivation source. Braz. Oral Res., São Paulo, v.25, n.3, p.267-273, 2011. DOI:10.1590/S1806-83242011000300013. 68 35. ILIE, N. Sufficiency of curing in high-viscosity bulk-fill resin composites with enhanced opacity. Clin. Oral Investig., Berlin, v.23, n.2, p.747-755, 2019. DOI: 10.1007/s00784-0182482-2 36. RUEGGEBERG, F. A. State-of-the-art: dental photocuring–a review. Dent. Mater, Estados Unidos, v.27, n.1, p.39-52, 2011. DOI: 10.1016/j.dental.2010.10.021. 37. SLINEY, D. H. What is light? The visible spectrum and beyond. Eye, [s.l.], v. 30, n.2, p.222-229, 2016. 38. RIBEIRO, B.C.I.; BOAVENTURA, J.M.C.; BRITO-GONÇALVES, J. de.; RASTELLI, A.N. de S.; BAGNATO, V.S.; SAAD, J.R.C. Degree of conversion of nanofilled and microhybrid composite resins photo-activated by diferente generations of LEDs. J. Appl. Oral Sci., São Paulo, v. 20, n.2, p. 212-217, 2012. DOI: https://doi.org/10.1590/S167877572012000200015. 39. HADIS, M. A.; SHORTALL, A.C.; PALIN, W.M. Competitive light absorbers in photoactive dental resin-based maerials. Dent. Mater, Estados Unidos, v.28, n.8, p.831-841, 2012. DOI: 10.1016/j.dental.2012.04.029. 40. KONERDING, K.L.; HEYDER, M.; KRANZ, S.; GUELLMAR, A.; VOELPEL, A. WATTS, D.C.; JANDT, K.D.; SIGUSCH, B. W. Study of energy transfer by different light curing units into a class III restoration as a function of tilt angle and distance, using a MARC Patient Simulator (PS). Dent. Mater, Estados Unidos, v.32, n.5, p. 676-686, 2016. DOI: 10.1016/j.dental.2016.02.007. 41. PRICE, R.B.T.; MCLEOD, M.E.; FELIX, C. M. Quantifying light energy delivered to a class I restoration. J. Can. Dent. Assoc., Canada, v. 76, n.2, p.1-8, 2010. 42. CORCIOLANI, G.; VICHI, A.; DAVIDSON, C.L.; FERRARI, M. The influence of tip geometry and distance on light-curing efficacy. Oper. Dent., Estados Unidos, v.3, n.3, p. 325331, 2008. 43. PRICE, R.B.; LABRIE, D.; WHALEN, J.M.; FELIX, C. M. Effect of distance on irradiance and beam homogeneity from 4 light-emitting diode curing units. J. Can. Dent. Assoc., Canada, v.77, p. b9, 2011. 44. XU, X.; SANDRAS, D.A.; BURGESS, J.O. Shear bond strength with increasing lightguide distance from dentin. J. Esthet. Restor. Dent., Hamilton, v.18, n.1, p. 19-27, 2006. DOI: 10.2310/6130.2006.00007. 45. TANTHANUCH, S.; KUKIATTRAKOON, B. The effect of curing time by conventional quartz tungsten halogens and new light-emitting diodes light curing units on degree of conversion and microhardness of a nanohybrid resin composite. J. Conserv. Dent., India, v.22, n.2, p.196-200, 2019. DOI: 10.4103/JCD.JCD_498_18. 46. TARLE, Z.; ATTIN, T.; MAROVIC, D.; ANDERMATT, L.; RISTIC, M.; TAUBÖCK, T. T. Influence of irradiation time on subsurface degree of conversion and microhardness oh 69 high- viscosity bulk-fill resin composites. Clin. Oral Investig., Berlin, v.19, n.4, p.831-840, 2015. DOI: 10.1007/s00784-014-1302-6. 47. SHORTALL, A.C.; WILSON, H.J.; HARRINGTON, E. Depth of cure of radioationactivated composite restoratives- Influence of shade and opacity. J. Oral Rehabil., Oxford, v.22, n.5, p.337-342, 1995. DOI: 10.1111/j.1365-2842.1995.tb00782.x. 48. CHEE, W.W.L.; DONOVAN, T. E. Polyvinyl siloxane impression materials: A review of properties and techniques. J. Prosthet. Dent., St. Louis, v. 68, n.5, p.728–732, 1992. DOI:10.1016/0022-3913(92)90192-d. 49. RUBEL, B. S. Impression Materials: A Comparative Review of Impression Materials Most Commonly Used in Restorative Dentistry. Dent. Clin. North Am., Estados Unidos, v.51, n.3, p. 629–642, 2007. DOI: 10.1016/j.cden.2007.03.006. 50. DONOVAN, T. E.; CHEE, W. W. A review of contemporary impression materials and techniques. Dent. Clin. North Am., Estados Unidos, v.48, n.2, p.445–470, 2004. DOI: 10.1016/j.cden.2003.12.014. 51. PUNJ, A.; BOMPOLAKI, D.; GARAICOA, J. Dental Impression Materials and Techniques. Dent. Clin. North Am., Estados Unidos, v.61, n.4, p.779–796, 2017. DOI: 10.1016/j.cden.2017.06.004. 52. CHEN, L.; KLEVERLAAN, C.J.; LIANG, K.; YANG, D. Effect of polyvinyl siloxane impression material on the polymerization of composite resin. J. Prosthet. Dent., Estados Unidos, v.117, n.4, p.552-558, 2017. 53. BROOK, A. H.; SMITH, R. N.; LATH, D. J. The clinical measurement of tooth colour and stain. Int. Dent. J., London, v.57, n.5, p.324-330, Oct. 2007. DOI: 10.1111/j.1875595x.2007.tb00141.x. 54. CECI, M.; VIOLA, M.; RATTALINO, D.; BELTRAMI, R.; COLOMBO, M.; POGGIO, C. Discoloration of different esthetic restorative materials: A spectrophotometric evaluation. Eur. J. Dent., Germany, v.11, n.2, p.149-156, 2017. DOI: 10.4103/ejd.ejd_313_16. 55. FRANCISCONI, L. F.; HONÓRIO, H.M.; RIOS, D.; MAGALHÃES, A.C.; MACHADO, M.A.A.M.; BUZALAF, M.A.R. Effect of erosive pH cycling on different restorative materials and on enamel restored with these materials. Oper. Dent., Estados Unidos, v.33, n.2, p.203208, 2008. DOI: 10.2341/07-77. 56. HONÓRIO, H. M.; RIOS D.; FRANCISCONI, L.F.; MAGALHÃES, A.C.; MACHADO, M.A.; BUZALAF, M. A. Effect of prolonged erosive pH cycling on different restorative materials. J. Oral Rehabil., Oxford, v.35, n.12, p.947-953, 2008. DOI: 10.1111/j.13652842.2008.01856.x. 57. GÖPFERICH, A. Mechanisms of polymer degradation and erosion. Biomaterials, [s.l.], v.17, n.2, p.103-114, 1996. DOI:10.1016/0142-9612(96)85755-3 28. 70 58. TAMADA, J.A.; LANGER, R. Erosion kinetics of hydrolytically degradable polymers. Proc Natl Acad Sci U S A., Estados Unidos, v. 90, n.2, p.552-556, 1993. DOI: 10.1073/pnas.90.2.552 29. 59. LEITE, T.M.; BOHAIENKO, L.A.; LUCIANO, M.; PILLATI, G.L.; PEREIRA, S. K. Influência de substâncias com pH ácido sobre a microdureza de resinas compostas. Stomatos, Canoas, v.16, n.30, p. 21-32, 2010. 60. TOPCU, F.T.; SAHINKESEN, G.; YAMANEL, K.; ERDEMIR, U.; OKTAY, E.A.; ERSAHAN, S. Influence of different drinks on the colour stability of dental resin composites. Eur. J. Dent., Germany, v.3, n.1, p.50-56, 2009. 61. POGGIO, C.; CECI, M.; BELTRAMI, R.; MIRANDO, M.; WASSIM, J.; MARCO, C. Color stability of esthetic restorative materials: a spectrophotometric analysis. Acta Biomater. Odontol. Scand., Sweden, v.2, n.1, p.95-101, 2016. DOI: 10.1080/23337931.2016.1217416. 62. OLIVEIRA, D.C. de.; MENEZES, L.R. de.; GATTI, A.; CORRER SOBRINHO, L.; FERRACANE, J.L.; SINHORETI, M.A.C. Effect of Nanofiller Loading on Cure Efficiency and Potential Color Change of Model Composites. J. Esthet. Restor. Dent., Canada, v. 28, n.3, p.171-177, 2016. doi: 10.1111/jerd.12189. 63. KAO, E.C. Influence of food-simulating solvents on resin composites and glass-ionomer restorative cement. Dent. Mater, Estados Unidos, v.5, n.3, p.201-208, 1989. DOI: 10.1016/0109-5641(89)90014-6. 64. GEHA, O.; INAGAKI, L.T.; FAVARO, J.C.; GONZÁLEZ, A.H.M.; GUIRALDO, R. D.; LOPES, M.B.; BERGER, S. B. Effect of chemical challenges on the properties of composite resins. Int. J. Dent., Recife, v. 2021, p. 4895846, 2021. DOI: 10.1155/2021/4895846. 65. SVIZERO, N.R.; ALONSO, R.C.B.; WANG, L.; PALMA-DIBB, R.G.; ATTA, M.T.; D’ALPINO, P. H.P. Kinetic of water diffusion and color stability of a resin composite as a function of the curing tip distance. Mat. Res., São Carlos, v. 15, n. 4, p.603-610, 2012. DOI: https://doi.org/10.1590/S1516-14392012005000070. 66. HARORLI, O.T.; BARUTCIGIL, Ç.; BAYINDIR, Y.Z.; BAYINDIR, F. Effect of water storage and additional polymerization on the color parameters of flowable resin composites. J. Contemp. Dent. Pract., India, v.14, n.6, p.1109-1114, 2013. DOI: 10.5005/jp-journals10024-1460 67. DAVIDOVICH, L. Os quanta de luz e a ótica quântica. Rev. Bras. Ensino Fís., São Paulo, v.37, n.4, p. 4201, 2015. DOI: 10.1590/S1806-11173732073. 68. BAGNATO, V. S. Os fundamentos da luz laser. Física na Escola, São Paulo, v.2, n.2, p.16, 2001. 69. ANDRÉ, C.B.; NIMA, G.; SEBOLD, M.; GIANNINI, M.; PRICE, R. Stability of the Light Output, oral cavity tip accessibility in posterior region and emission spectrum of lightcuring units. Oper Dent., [s.l.], v. 43, n.4, p.398-407, 2018. DOI: 10.2341/17-033-L. 71 70. SOARES, C. J.; BRAGA, S.; PRICE, R. B. Relationship Between the Cost of 12 Lightcuring Units and Their Radiant Power, Emission Spectrum, Radiant Exitance, and Beam Profile. Oper. Dent., [s.l.], v. 46, n.3, p.283-292, May 2021. DOI: 10.2341/19-274-L. 71. THOMÉ, T.; STEAGALL, W.; TACHIBANA, A.; BRAGA, S.E.M.; TURBINO, M.L. Influence of the distance of the curing light source and composite shade on hardness of two composites. J. Appl. Oral Sci., São Paulo, v.15, n.6, p.486-491, 2007. DOI: https://doi.org/10.1590/S1678-77572007000600006. 72. PEREIRA, R.; CARPIO, D.; CARVALHO, O.; CATARINO, S.; FARIA, O.; SOUZA, J. Relationship between the inorganic content and the polymerization of the organic matrix of resin composites for dentistry: a narrative review. RevSALUS, Coimbra, v. 4, n.1, 2022. DOI: 10.51126/revsalus.v4i1.136. |
pt_BR |