Repositorio Dspace

Segmentação automática da placa dentária com base em aprendizado profundo

Mostrar el registro sencillo del ítem

dc.creator Andrade, Katia Montanha de
dc.date.accessioned 2023-04-04T09:41:55Z
dc.date.available 2023-04-04T09:41:55Z
dc.date.issued 2022-05-04
dc.identifier.uri https://repositorio.ufba.br/handle/ri/36801
dc.description.abstract Dental plaque biofilm is the main etiologic factor for dental caries and periodontal diseases. However, its visualization is difficult, and the use of disclosing agents is a laborious and unpleasant process. Therefore, plaque identification through an automatic process is important. The present research aimed to apply a Convolution Neural Network (CNN) model to segment dental plaque in intraoral digital photographs without the use of disclosing agents. The dataset used to evaluate the proposed system included 480 intraoral photos including lateral and frontal views of permanent and deciduous dentition, contemplating the presence and absence of orthodontic appliances. The photographs were divided into three subsets: 360 images were used for training; 60 photos were used for validation; and 60 photos were used for testing. All images have been labeled by a specialist dentist with over 30 years of experience. The U-Net architecture was used for image segmentation. Metrics of accuracy, sensitivity, specificity and F1 score were used to evaluate the performance of the model in each dental unit. The trained model obtained 91.8% accuracy, 67.2% sensitivity, 94.4% specificity and 60.6% F1 score. These metrics were chosen for their easy interpretability (accuracy), their use in health areas (sensitivity and specificity) and for weighting unbalanced classes (F1 score). A higher plaque fraction was observed in the lateral view images, as well as in the images with orthodontic appliances. These images also exhibited higher F1 scores (61.7% and 61.5%, respectively) and specificity (94.5% and 95.6%, respectively). In conclusion, a deep learning method for segmenting dental biofilm in permanent and deciduous dentitions is feasible and could be a visual aid tool to improve oral hygiene and patient control of dental plaque. pt_BR
dc.description.sponsorship FAPESB pt_BR
dc.language por pt_BR
dc.publisher UNIVERSIDADE FEDERAL DA BAHIA pt_BR
dc.rights CC0 1.0 Universal *
dc.rights.uri http://creativecommons.org/publicdomain/zero/1.0/ *
dc.subject Biofilme dental pt_BR
dc.subject Aprendizado profundo pt_BR
dc.subject Redes neurais convolucionais pt_BR
dc.subject Inteligência artificial pt_BR
dc.subject.other Dental biofilm pt_BR
dc.subject.other Deep learning pt_BR
dc.subject.other Convolutional neural networks pt_BR
dc.subject.other Artificial intelligence pt_BR
dc.title Segmentação automática da placa dentária com base em aprendizado profundo pt_BR
dc.type Tese pt_BR
dc.publisher.program Programa de Pós-Graduação em Odontologia e Saúde  pt_BR
dc.publisher.initials UFBA pt_BR
dc.publisher.country Brasil pt_BR
dc.subject.cnpq CNPQ::CIENCIAS DA SAUDE::ODONTOLOGIA pt_BR
dc.contributor.advisor1 Cury, Patrícia Ramos
dc.contributor.advisor1ID https://orcid.org/0000-0001-8907-0483 pt_BR
dc.contributor.advisor1Lattes http://lattes.cnpq.br/0714090324773908 pt_BR
dc.contributor.advisor-co1 Oliveira, Luciano Rebouças de
dc.contributor.referee1 Cury, Patricia Ramos
dc.contributor.referee1ID https://orcid.org/0000-0001-8907-0483 pt_BR
dc.contributor.referee1Lattes http://lattes.cnpq.br/0714090324773908 pt_BR
dc.contributor.referee2 Santos, Jean Nunes dos
dc.contributor.referee2Lattes http://lattes.cnpq.br/0926138204356872 pt_BR
dc.contributor.referee3 Oliveira, Luciano Rebouças de
dc.contributor.referee4 Calumby, Rodrigo Tripodi
dc.contributor.referee5 Lima, Kalyf Abdalla Buzar
dc.contributor.referee5ID https://orcid.org/0000-0002-4828-2110 pt_BR
dc.creator.ID https://orcid.org/0000-0002-9010-5185 pt_BR
dc.creator.Lattes http://lattes.cnpq.br/1548251537169148 pt_BR
dc.description.resumo O biofilme da placa dentária é o principal fator etiológico para cárie dentária e doenças periodontais. No entanto, sua visualização é difícil e o uso de agentes evidenciadores é um processo trabalhoso e desagradável. Por isso, a identificação de placa através de um processo automático é importante. Esta pesquisa teve como objetivo aplicar um modelo de Convolution Neural Network (CNN) para segmentar a placa dentária em fotografias digitais intraorais sem o uso de evidenciadores. O conjunto de dados usado para avaliação do sistema proposto incluiu 480 fotos nas vistas laterais e frontal de dentições permanente e decídua, contemplando a presença e ausência de aparelhos ortodônticos. As fotografias foram divididas em três subconjuntos: 360 imagens foram usadas para treinamento; 60 fotos foram usadas para validação; e 60 fotos foram usadas para teste. Todas as imagens foram rotuladas por um dentista especialista com mais de 30 anos de experiência. A arquitetura U-Net foi utilizada para segmentação nas imagens. As métricas de acurácia, sensibilidade, especificidade e F1 score foram usadas para avaliar o desempenho do modelo em cada unidade dentária. O modelo treinado obteve 91.8% de acurácia, 67.2% de sensibilidade, 94.4% de especificidade e 60.6% de F1 score. Essas métricas foram escolhidas pela sua fácil interpretabilidade (acurácia), uso em áreas da saúde (sensibilidade e especificidade) e por ponderar classes desbalanceadas (F1 score). Maior fração de placa foi observada nas imagens em vista lateral, bem como nas imagens com aparelhos ortodônticos. Essas imagens também exibiram maiores F1 score (61,7% e 61,5%, respectivamente) e especificidade (94,5% e 95,6%, respectivamente). Em conclusão, um método de aprendizado profundo para segmentação do biofilme dentário nas dentições permanente e decídua é viável e pode ser utilizado por e pacientes, melhorando a higiene e a saúde bucal. pt_BR
dc.publisher.department Faculdade de Odontologia pt_BR
dc.type.degree Doutorado pt_BR


Ficheros en el ítem

Ficheros Tamaño Formato Ver

No hay ficheros asociados a este ítem.

El ítem tiene asociados los siguientes ficheros de licencia:

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

CC0 1.0 Universal Excepto si se señala otra cosa, la licencia del ítem se describe como CC0 1.0 Universal