Repositorio Dspace

A Characterization of Principal Congruences of De Morgan Algebras and its Applications

Mostrar el registro sencillo del ítem

dc.contributor.author Sankappanavar, H. P.
dc.creator Sankappanavar, H. P.
dc.date.accessioned 2013-09-26T18:12:41Z
dc.date.available 2013-09-26T18:12:41Z
dc.date.issued 1980
dc.identifier.uri http://www.repositorio.ufba.br/ri/handle/ri/13064
dc.description p. 341–349 pt_BR
dc.description.abstract In this paper a characterization of principal congruences of De Morgan algebras is given and from it we derive that the variety of De Morgan algebras has DPC and CEP. The characterization is then applied to give a new proof of Kalman's characterization of subdirectly irreducibles in this variety and thus to obtain the representation theorem for DeMorgan algebras first proved by Kalman and independently, using topological methods, by Bialynicki-Birula and Rasiowa. From this representation it is deduced that finite De Morgan algebras are not the only ones with Boolean congruence lattices. Finally it is shown that the compact elements in the congruence lattice of a De Morgan algebra form a Boolean sublattice. pt_BR
dc.language.iso en pt_BR
dc.publisher Studies in Logic and the Foundations of Mathematics pt_BR
dc.source http://www-sciencedirect-com.ez10.periodicos.capes.gov.br/science/article/pii/S0049237X09704938 pt_BR
dc.title A Characterization of Principal Congruences of De Morgan Algebras and its Applications pt_BR
dc.title.alternative Studies in Logic and the Foundations of Mathematics pt_BR
dc.type Artigo de Periódico pt_BR
dc.description.localpub Salvador pt_BR
dc.identifier.number v. 99 pt_BR


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem