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Let & be a n x m matrix with entries in a noetherian ring R and let A’ be the 
submatrix of JY consisting of the first r columns (r < n - 1). Consider the ideal 
J,(A) of n x n minors of J! involving the columns of J/Z’. We obtain the primary 
decomposition and the homological dimension of J,(d) in the generic case. The 
proofs rely heavily on the methods and the theory of weak d-sequences and 
straightening laws. As a byproduct we obtain exact conditions under which Jr(d) 
is generated by a d-sequence and also a complete picture of the blowing-up algebras 
of J,(d) in that case. The latter proofs rely on recent methods developed by several 
authors such as those of sliding-depth, approximation complexes, Cohen-Macaulay 
residual intersections. To close the discussion we construct a free resolution of 
J,(d) when m=n+ 1 (the case r =n- 1 had been treated before by the present 
authors). A side curiosity herein obtained is an example of a nonperfect radical 
3-generated ideal of codimension 2 whose associated graded ring is a 
Cohen-Macaulay reduced ring that is not Gorenstein. Examples of this sort do not 
seem to abound. 0 1986 Academx Press, Inc 

INTRODUCTION 

Let R be a noetherian ring and let f: F + G be a map of free R-modules, 
where rank F = m 2 n = rank G. As is well known the image I,,( f ) of the 
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induced map n”f: A”F+A”G 2: R-the so-called 0th Fitting of 
coker(f )-is identified with the ideal generated by the n x n minors of a 
matrix of J Let there be given a decomposition F = F 0 F’, where F and 
F’ are free modules with rank F' = r < n - 1. Let J,( f ) denote the ideal 
which is obtained as the image of the restriction of A"f to ,4’F 0 nn -‘F” c 
A"F. Clearly, J,(f) is correspondingly identified with the ideal generated by 
the n x n minors fixing (say) the first r columns of a matrix off: 

This work grew out from an attempt to write an explicit generic free 
resolution of J,( f ). We have succeeded in doing so for the case m = n + 1 
(cf. Theorem D for a precise statement). Thus, together with the main 
result of [A-S], we have the details of the resolution for the extremal cases 
m = n + 1 (r arbitrary) and r = n - 1 (m arbitrary). 

Though failing to obtain an explicit free resolution of J,( f ) for all values 
of r, n, and m, we were nevertheless able to compute its homological 
dimension in the generic case (Theorem B). The main tool employed here 
is a collection of results springing out of the work of Huneke on weak d-se- 
quences and their related ideals. Coming to us as a surprise at first, it soon 
became clear that this was the natural frame to study the finer properties of 
the ideal J,( f ). The proof of Theorem B resorts to ideal-theoretic results 
hinging on peripheral properties of weak d-sequences. An interesting 
byproduct we are able to give is the primary decomposition of the ideal 
J,( f ) in the generic case; this result is labelled Theorem A. 

The work is divided into three short sections. In the first section we deal 
with the results which have a flavour of weak d-sequences. It is in this sec- 
tion that we prove all the ideal-theoretic results on J,( f ). 

The second section contains information on the usual blowing-up 
algebras of J,( f ), i.e., the symmetric and Rees algebras and the associated 
graded ring. First, we give necessary and sufficient conditions on the values 
of r and m in order that J,( f ) be generated by a d-sequence. We then 
estimate certain depths thus giving what essentially amounts to be the 
proof that J,( f ) is residually Cohen-Macaulay for those particular values 
of r and m. A byproduct is that the sliding-depth condition holds in these 
cases. This allows us to use the main result of the approximation complexes 
theory [H-S-Vl], yielding the usual arithmetical properties for the 
associated blowing-up rings. Finally, the nature of the primary decom- 
position of Jr(f) allows for the proof of the torsion freeness of the 
associated graded ring along with the traditional outcome of equality 
between ordinary and symbolic powers. The fact that the graded ring is not 
Gorenstein yields some insight into the question as to when the graded ring 
is reduced Cohen-Macaulay but not Gorenstein (cf. [H-S-V3]). 

The third section describes a generic complex that, under suitable 
natural conditions, is a free resolution of J,( f ). This should be confronted 
with the result of [A-S]. 
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1. IDEAL-THEORETIC RESULTS 

This section is wholly concerned with the generic case. To be more 
precise, let R=K[X,] where k is a field and XV (l<i<n, 1 <j<m) 
indeterminants over k. We think of (X,) as the matrix of a map f: F+ G of 
free R-modules and, for fixed 1~ r < n, we think of the submatrix (X,), 
1 < i< n, 1 <j< r, as the matrix corresponding to the restriction map 
f’:F’-,G, with F=FOF’and rankF=r. 

We will need certain “reduced” Plucker relations. These are probably 
well known but, for lack of proper reference, we include a proof here. 

As a matter of notation, A;;:::$, will denote the t x t minor of (X,) involv- 
ing rows il ,..., i, and columns j, ,..., j,. In the case of an n x n minor, we 
drop the superscripts. We then have 

LEMMA 1.1. Given minors A;;:::; and Aj;...j; of (X,), the following 
relation holds: 

Ai.1 :‘.‘I . A, J;...i;,=c A”, ,. ‘! : ...’ .I . A .I ,_, .I .I 
JI “Jr JL Jr-ilk JI Jkm,J,Jk+,“‘i;. 

k 

Proof. For the sake of simplicity, assume i, = j, = l,..., i, = j, = t. We 
consider the enlarged n x (m + n - t) matrix 

0 

:- 
l.0 0” 1 

n-t 

Clearly, we get an equality A:::::=Al...,,+l...,+._, between the txt 
minor of the original matrix and an n x n minor of the enlarged matrix. By 
the same token, we see that A~::::_,ji=A, ,..,- ?i~m+l...m+n-r. We now 
plug these equalities into the ordinary Plucker relation for n x n minors of 
the enlarged matrix in the following form: 

Al... tm+l...m-n+f .Aj;...iL=C A,...,_~i~m+~...m+n-,.Ai;...i~_,~j~+ ,... j:. 1 
k 

COROLLARY 1.2. Let ( f ) = (X,), 1 d i < n, 1 d j < m. Assume, moreover, 
that m=n+l. Then J,(f)=l,(f’)nZ,(f), where Z,(f’) is the ideal 
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generated by the r x r minors of the submatrix ( f ') = (X,), 1 d i 6 n, 
1 <j<r. 

Proof: The nontrivial inclusion is I,( f ‘) n I,( f ) c .Zr( f ). Denote 
A,=A ,... j-,j+ ,...” +1 and set Aj= (A,,..., A?), the ideal generated by all of 
Ai ,..., Ai except Ai ,..., AjO,. Here j = l,..., r. 

Clearly, Z,,(f )=J,(f)+A,. Therefore, Z,(f’)nm(f)=J,(f )+ 
(Z,(f’)nA,) since J,(f)&ZJf'). Thus, it suffices to show that Z,(f')n 
A1 E .Z,( f ). We do this by recursion as follows. 

First, observe that, as a particular case of Lemma 1.1, we obtain the 
following inclusions: 

Z,(f ‘).AicJ,(f 1, 

ZjCf;.>*AjsAj+1 +J,(f 11 j= I,..., r - 1, 

where ( fi) denotes the submatrix off’ formed with the first j columns. We 
then obtain 

Z,(ff)nA1=Z,(f')n((Ai)+A2)~Z,(f~)n((Ai)+A2) 

=(ZI(fi)n(4))+A2 since A, E I,( f,) 

=Z,(fi)-Ai +A2 since Ai $ I,( f,) 

EA,+J,(~) by the above inclusion ( j = 1). 

Thus, Z,(f')n~l~Zr(f'b-d~2+Jr(f))=(Zr(f')n~2)+Jr(f), and by 
recursion we are finished. l 

To prove the main results of this section we recall a few facts from the 
theory of weak d-sequences and their related ideals as introduced in 
[HUl]. 

Let H be a finite partially ordered set (poset). Let {Aa}aaH be a set of 
elements in a ring R indexed by H. Let ,4 G H be an ideal (i.e., CI E ,4 and 
b < tx imply Z? E A). An ideal J of R is an H-ideal if .Z is generated by 
elements indexed by an ideal ,4 c H. In particular, the ideal Z= (A,),, H is 
an H-ideal. For any given c1 E H, we have the ideal /i, = {p E H 1 /? < a}; the 
corresponding H-ideal will be denoted Z,. Finally, if J is any ideal of R, we 
denote by J* the subideal of J generated by all elements A,, Ago J. 

The main concept in the theory is this: we say that (A,},, H form a weak 
d-sequence if for any H-ideal J and any c( E H such that I, G J, A, $ J, the 
following hold: 

(1) (J: A,)* is an H-ideal, 
(2) (J: A,) n Z= (J: A,)*, 
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(3) AgE(J: A,)aA,ApEJZ, 

(4) A.$#(J:A.)*(J:A.)=(J:A;). 

An ideal of R of the form (J: d,) + Z, where J is an H-ideal such that 
Z, E J, A, 4 J, is called a related ideal to the weak d-sequence {A,} ~ E H. 

Now, we specialize the above notions to our present context of deter- 
minantal ideals. Thus, H is the set of all arrays (j, . ..j.), where 
l<j,< ... <jn d m. One decrees 

This turns H into a poset and the II x n minors { Aj,. .,,} of the matrix (X,) 
form a weak d-sequence [HUl, 1.191. Clearly, in our old notation, 
Z= I,( f ). Moreover, every related ideal to this weak d-sequence is a perfect 
ideal [HUl, Proof of Theorem 3.11. Incidentally, it goes without saying 
that both these results rely heavily on nontrivial facts from the theory of 
algebras with straightening laws (cf. [HUl, Propositions 3.A and 3.B]). 

After these preliminaries, we are ready for our next lemmata. 

LEMMA 1.3. Let (X,) he an n x m generic matrix and let I,( f ‘) denote 
the ideal of r x r minors of the submatrix (X,), 1 <j< r < n. Let 
A=A,... r-Ir+l-.-n-I 1 and denote Id the H-ideal Z~l...,-lr+l...n+l,. Then 
Z,(f')=Zd: A. 

Proof We consider the n x (n + 1) submatrix of (X,) formed with the 
first n + 1 columns, which will be denoted (g). We think of g as a map of 
free A-modules, with A = k[X,], 1 < i < n, 1 < j < n + 1 and, accordingly, g’ 
will denote its restriction to an A-direct summand of rank r. Now, by a 
special case of Lemma 1.1 (as used in the last stage of the proof of 
Corollary 1.2), we see that the inclusion I,( g’) G J,(g): A holds in A (note 
A E A). However, by Corollary 1.2, Jr(f) has no embedded primes and as 
A $ J,(g), we must have Z,(g’) = J,.(g): A. 

To conclude, note that R = A [X,], 1 d i d n, n + 1 d j d m, a polynomial 
ring over A. Therefore, one has 

Z,(f’)=Z,(g’)R=(J,(g):A)R=J,(g)R:A=Z,:A, 

where the equality Zd=(Al...,.+2...n+l ,..., AI...,,+ ,... .) (=J,(g)R) 
follows straightforwardly from the definitions. 1 

COROLLARY 1.4. For the generic matrix ( f ) = (X,), 1 < i G n, 1 < j < m 
and the submatrix (f ‘) = (X,), 1 < id n, 1 Q j< r, the ideal Zr( f ') + 
I,( f ) c k[X,] is a perfect ideal. 
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Proof: This follows immediately from our general remarks preceding 
Lemma 1.3. 1 

One of our main results now follows. 

TI-EOREM A. Let (f)=(X,), l<i<n, 16j<m and (f’)=(X,), 
1 <i<n, 1 <j<r. Then J,(f)=Zr(f’)nZn(f). 

Proof On clearly sees that Zr(f’)* = Z,(f) (in particular, .Z,( f) is an 
H-ideal on the poset H of maximal minors!). Then, by Lemma 1.3 and 
property (2) of a weak d-sequence, we get the desired result. 1 

Our second main result depends on knowing the grade of the perfect 
ideal Zr( f ‘) + I,( f ). We isolate this as a lemma. 

LEMMA 1.5. grade(Z,(f’)+Z,,(f))=m-r+ 1. 

Proof: The result holds in fact over A[X,], for any ring A which is a 
localization of a polynomial ring over k. 

For in this case Z,( f’) + I,( f ) is a prime ideal as well [HUl, Proof of 
Theorem 3.11. We then use the inductive device of Northcott [IV]. Thus, 
we consider the ring of fractions A[.YV].,, = A[X,, , X?i]X,, [XiY], where 
i=l,..., n; j=l,..., m; 2<i’<n; 26j’<m. In the latter, (Zr(f’)+ 
Z,(f)),,, = Z,(g’) + Z,(g), where g is an (n - 1) x (m - 1) matrix of indeter- 
minates over A [X,, , XljlX,, and g’ the initial (n - 1) x (r - 1) submatrix. 
Since Z,(f’) + Z,(f) is prime, grade (Z,(f’) + Z,(f)) = grade(Z,(g’) + 
L(g)). 

Therefore, by induction, we are reduced to the case r = 1. Here Z,( f ‘) + 
Zn( f 1 = v-1, ,..., X,,)+.Z,(f”), where (f”)=(X,), 16i<n, 26j<m. But 
x II ,..., X,, is an A[X,]/Z,( f”)-sequence. Therefore, grade (ZJ f’) + 
I,( f )) = grade Z,,( f “) + n = m, as was to be shown. 1 

THEOREM B. Zf m > n + 1 and n z r + 1 then the homological dimension 
0fJJf) is m-r- 1. 

Proof Using Theorem A we get the exact sequence 

o~~IJ,(f)~~/z~(f’)O~lz~(f)~~l(z~(f’)+z~(f))-,O. 

By Theorem B, R/(Z,( f ‘) + I,( f )) has homological dimension m - r + 1. 
The middle term has homological dimension (h.d.) equal to 
max{m - n + 1, n-r + l}. We thus separate the discussion into two cases: 

(1) m-n+l>n-r+l. 

We have m - r + 1 $ m - n + 1 as we are assuming r < n - 1. Therefore, 
a standard argument shows that the homological dimension of R/J,(f) is 
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am-n + 1. If strict inequality takes place, then it must be the case that 
h.d. R/Jr( f ) = m - r + 1 - 1 = m - r. In the event of equality we must have 
m-r+l<m-n+l+l and since we are given m-n+1 $ m-r+l, 
then m--r+ 1 =m-n+2 must hold, or in other words, r=n- 1. But, in 
this case we know already that h.d. R/J,( f ) = m -n + 1 [A-S]. Therefore, 
in any case we have h.d. R/J,(f) = m - r. 

(2) n-r+l>m-n+l. 

The discussion is entirely similar except when the alternative h.d. 
R/J,(f) = n - r + 1 arises. By analogy with the preceding case, we have 
here m - r + 1 = n - r + 2, i.e., m = n + 1. Thus, in any case, h.d. R/J,( f ) = 
m-r. 1 

2. BLOWING-UP RINGS AND THE ~-SEQUENCE PROPERTY FOR J,( f ) 

In this paragraph we are still concerned with the generic case. 
For simplicity, we will denote J, = J,( f ). For an R-module E, S(E) will 

stand for its symmetric algebra; for a given ideal Zc R, R(Z) and gr,(R) will 
denote, respectively, its Rees algebra and associated graded ring. 

The following is the main result of this section. It completely clarifies the 
difference between the extremal cases r = n - 1 or m = n + 1 and all other 
cases. 

THEOREM C. Let (X,), 1 Q i< n, 1 < j< m, be a generic matrix over a 
field k and let J, denote as before the ideal of n x n minors fixing an n x r 
submatrix. Then: 

(i) S(J,)=R(J,) tfandonfy ifr=n-1 or m=n+l. 

(ii) Zf r = n - 1 or m = n + 1, the following hold: 

(iil) S( Jr) = R(J,) is a Cohen-Macaulay integrally closed domain, 

(iM S(J,IJ?s) = gr,(R) is a Cohen-Macaulay reduced ring, 

(ii3) gr,(R) is a torsion-free RJJ,-module. In particular, we obtain 
equality Js = Jp) of ordinary and symbolic powers throughout. 

Remark. The theorem provides us with generic examples of nonperfect 
ideals of codimension 2 whose blowing-up rings behave in best possible 
way. Moreover, these ideals have an arbitrary number of generators 23. 
Such systematic examples do not seem to appear in the literature. 

We will prove the above theorem by enhancing a few technical results 
which may be of some interest on their own. 
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LEMMA 2.1. Let the notation be as before and assume r = n - 1. Then the 
generators of the ideal J,, _, , considered as a subset of the weak d-sequence 
of all n x n minors, form themselves a weak d-sequence. 

Proof Note the generators of J,- 1 are indexed by the set 
H= ((1 . . . n - In),..., (1 . . . n- lm)}. It is easy to check that this set is an 
ideal in the poset H of all arrays (j, . . .j,) indexing the n x n minors. On 
the other hand, it is clear that H’ is linearly ordered in the induced order 
from ZZ. Therefore, by [HUl, Proposition 1.31, the generators 
Al....-1, ,..., A I...” PI,,, form a weak d-sequence. 1 

~OWSITION 2.2. Keeping the same notation, tf r = n - 1 or m = n + 1 
then the generators of J, form a d-sequence. 

Proof: Precisely, we will show the generators of J, form a d-sequence 
for the (linear) order induced from that of the poset of all n x n minors. 

For m = n + 1 the result follows from the work of Huneke (cf., e.g., 
[HU2]). Thus, we assume r = n - 1. In this case J : = J,. = (A,. n ~, “,..., 
A1...+l,). Denote JI=(A1....-l, ,..., Al...,~,,+,), Odi<m-n. By [H-S- 
Vl, Lemma 12.11, we are to show that (JI:A.+I+,)nJ=J,, O<Z< 
m-n-l. 

For this we proceed as follows. First, observe that J, is an H’-ideal, 
where H’ is the (linearly) ordered set of generators of J. Moreover, it is 
also clear that J,= Id, n-,n+,+,, in the notation explained in the preceding 
section, and that A,. _. n _ ,n +,+ , #J,. Since the generators of J form a weak 
d-sequence on H’ (Lemma 2.1), we have, by definition, that (J,: A, + r+ , )* 
is an H’-ideal and (J,: A,+,+,)n J= (J,: A,+,+,)*. By the only H’-ideals 
are of the form J,, for some 0 < t < m - n. Therefore, (Jr: A, + , + 1 ) n J = J,, 
for some t 2 1. On the other hand, the generating relations of the ideal J 
[A-S] are Plucker relations. In particular, J,: A, +,+ , is generated by the 
generators of Jt and in addition by other n x n minors not belonging to J. 
We are then forced to conclude that (J,: A, + [+ 1) n J = J,. 1 

For the next lemma we recall a concept that has been introduced in 
[H-S-V2, Sect. 61. Thus, let Zc R be an ideal in a local ring and let H, be 
the Ith Koszul homology module on a set of generators of I. The ideal Z is 
said to satisfy the sliding-depth condition if 

depth H, > dim R - v(Z) + 1, I> 0, 

where v(Z) stands for the minimal number of generators of I. This property 
is known to be independent of the set of generators of Z and to localize 
whenever R is Cohen-Macaulay [H-S-V2, Sect. 61. 
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LEMMA 2.3. Let as before J, denote the ideal of n x n minors involving 
the first r columns of (X,). Zf r = n - 1 or m = n + 1 then J, satisfies the 
sliding-depth property. 

Proof: In both cases we will show that if x1 ,..., x, are the canonical 
generators of J,, canonically ordered so that they form a d-sequence, then 
depth R/(x, ,..., xl) > dim R - 1 for 1 < 1 <s. This is all we need to prove the 
sliding depth condition in this case (cf. [H-S-Vl, Proposition 7.11; also 
[H-S-V; Lemma 3.71). 

The argument for the two cases are slightly different, so we will consider 
them separately. 

(1) r=n-1. 

Here J := J, = (di....~,, ,..., di....-,,) and J, = (A ,... npIn ,..,, 
A,...,- infI). We consider the initial n x (n + 1) submatrix of (X,) and set 
a=R[X,], 1 <i<n, 1 <j<n+l, so that R=fi[Xij], 1 <i<n, n+l+ 1~ 
j d m. Then J, is the extension to R of the ideal 3, = (A, .~ “,- In ,..., 
A,...,- in + ,) i?. From our present Theorem B (or [A-S]) R/J, has 
homological dimension n + I - n + 1 = I+ 1, hence R/J, has this same 
homological dimension over R. It follows that depth R/J, = dim R - (I + 1) 
as intended. 

(2) m=n+l. 

Here J:= J,(f)=(A ,... r...nql ,..., A ,..., r$...n+,) and the initial ideal 
J,=(A ,... ,....ci ,..., A ,... r+l,zl...n+l). Only note that now J, has 
n + 1 - (r + I) generators! In fact, J, is precisely the ideal of n x n minors 
fixing the initial n x (r + I) submatrix (g), i.e., J, = J, + [( g) in our standard 
notation. Thus, by Theorem B, we have depth R/J,= depth R/J,+,(g) = 
dim R - (n + 1 - (r + I)), as was to be shown. 1 

Remark. Because of Proposition 2.2, we have vp(J,) < ht(P) for every 
prime Pz J,. Together with Lemma 2.3, it has just be shown that J, is a 
residualzy Cohen-Macaulay ideal in the terminology of [HU3] (cf. also 
[H-V-V, Sect. 3). In fact, the canonical generators of J, as above form a 
typical sequence of elements with all the desired properties that intervene in 
the latter concept [H-V-V, Definition 3.11. 

We now switch to the 

Proof of Theorem C. (i) If r = n - 1 or m = n + 1 then, by Proposition 
2.2, the generators of J, form a d-sequence. Under this condition, one 
knows that S(J,) = R(J,) [HU2]. 

Conversely, suppose both man +2 and r<n-2. Consider the two 
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minors Al...,,+ ,... n and d ,... rr+ ,... n-z2n+In+2, both belonging to J,. We 
have the Pliiker relation: 

A,... rr+,...nA,... rr+l~..n-Zn+ln+Z 

=A,... rr+l...n--ln+lAl...rr+l...n~2n 

-A,... rr+1...n-,In+~A,...rr+,...n~2nn+,, 

where all involved minors belong to J,. This relation thus shows that 
S,( Jr) # J,’ , as required. 

(ii) Since vp(J,) < ht(P) for any prime P 2 J, and since J, satisfies the 
sliding depth condition, we have by [H-S-Vl, Theorem 9.13 that both 
S(J,) = R(J,) and S(JJJ3 = g-.,,(R) are Cohen-Macaulay rings. As is well 
known, R(J,) is integrally closed provided gr,(R) is reduced. Now, since 
R/J, is reduced, gr,(R) is reduced whenever it is a torsion-free 
R/Jr-module. Thus, we have to show this fact alone. For this we claim that 
it suffices to prove the stronger estimates vp(J,) < M(P) - 1, for every prime 
P 2 J, containing properly a minimal prime of J,. Indeed, once these 
estimates are granted, we depth-chase along the approximation complex of 
[H-S-Vl]: 

O-,H,-+H,-,@S,(G)+ ... -+H,@S,p,(G) 

+ S,(G) + J;/J:+ ’ -+ 0, 

where G is a free R-module of rank = v(J,), using the sliding depth 
estimates for the Z-Z;s, thereby obtaining torsion freeness of J:/J:+ I. 

Therefore, we are indeed reduced to proving the estimates vp(J,) d 
h(P) - 1, whenever P contains properly some minimal prime of J,. For 
this, consider first the case where P 2 J, = Z,( f’) n Z,(f) but P 2 Z,(f’) 
(the case P & Z,(f) is entirely similar). Then we are assuming P 2 Z,(f). 
Since S(J,) = R(J,), we know that vp(Jr) = I,(J,), where I, stands for the 
analytic spread at P. But Z,(J,) = Z,(Z,(f )) as P 2 I,( f’), and for the ideal 
of maximal minors we have Zp(Z,( f )) < ht( P) - 1 provided P $ Z,( f ) (cf., 
e.g., [HU4, Theorem 3.53). We are thus done in this case. Otherwise, we 
have P?Zr(f’)+Zn(f). But ht(Z,(f’)+Z,(f))=m-r+ 1 by Lemma 1.5, 
which even exceeds v(J,) by 1. This completes the proof. 1 

Remark. In the above setting, the ring gr,(R) is not Gorenstein in 
general. Thus, let m = 4, n = 2, r = n - 1 = 1. Here v( Jr) = 3 and gr,(R) is a 
factor ring of R[ T, , T,, T3] by an ideal generated by 4 elements; as the 
homological dimensions of gr,(R) over R[ T,, T2, T3] is 3, it is well 

481/102/l-17 
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known that gr,(R) cannot be Gorenstein [B-E, Theorem 1.11. An explicit 
resolution of gr,(R) over S = R[ T, , T2, T,] is 

34 0 -AM -A,, -T3X,3 + T2X,, -T3x23 + 7’2x24’ 

24 -A,, 0 A12 T3X,,- j-,X,, T3X22- T,J’24 

23 A,, A 12 0 T2X,2 T, - x13 T2 x22 TI - x23 

0 0 0 0 -x,1 -x2, 

COROLLARY 2.4. There is a local ring R and an ideal Ic R such that: 

(i) R is regular and R/I is reduced. 

(ii) I is a codimension 2 (generically complete intersection) ideal 
generated by 3 elements. 

(iii) gr,(R) is R/I-torsion free (hence reduced by (i)). 
(iv) grl( R) is Cohen-Macaulay. 

But 

(v) gr,(R) is not Gorenstein. 

As far as we can say no such examples were known before. As a matter 
of fact, if one requires a bit more about Z, namely, that it be moreover 
height-unmixed (e.g., prime) then gr,(R) must indeed be a Gorenstein ring 
[H-S-V4]. At the other end of the spectrum, one can give examples of a 
Gorenstein local ring R of embedding dimension 4 and dimension 2 for 
which the graded ring gr,(R) is a reduced Cohen-Macaulay ring, but not a 
Gorenstein ring [H-S-V3, Example (1.2)]. 

3. AN EXPLICIT FREE RES~LIJTION 

We now come to grips with the question of constructing an explicit free 
resolution of J,. As explained in the Introduction, we are only able to do 
accomplish this for the “extremal” cases where r = n - 1 [A-S] or m = n + 1 
(Theorem D). 

We briefly review the set-up. R is a noetherian ring and f: F + G is a 
map of free R-modules, where rank F = n + 1 and rank G = n. We are given 
moreover a direct sum decomposition F= F 0 F”, where F and F’ are free 



MINORS FIXING A SUBMATRIX 257 

modules and rank F = r < n - 1. J, = .Zr( f ) is then the image of the restric- 
tion of A"f to A’F @ A”-‘F’ c A”F. 

Now, associated to the dual f ‘* of the restriction f' = f lF,: F -+ G there 
is the well-known complex [B-E] 

S(f’*): O~s,_,~,(F)OA”G*~s,_._,(F)OA”~‘G* 

se+ . . . + &(jC”)QA~+‘G* ‘/” + G* f” , J”*. 

Next, we will need the dual f “* of the restriction f N = f ,F”: F” + G, If we 
replace the tail of G( f I*), 

S,(F’)Q/l’+‘G* ‘f” , G* f” l Fe, 

by the composite 

S,(F’)@Ar+‘G* Ep ) G* ;,;: rF”*rA’F’QA”-‘F’, 

we will obtain the following modified complex 

G(f’*, f “*):O+S,p,p,(F’)@A”G*% S,p,-,(F’)@A’-‘G* 

It is well known [B-E] that the complex G( f ‘*) is acyclic if and only if 
grade Z,( f ‘*) ( =grade Zr( f ‘)) 3 n - r + 1. The main result in the section 
reads in turn as follows. 

THEOREM D. The following conditions are equivalent: 

(i) G( f ‘*, f I’*) is a free resolution of the ideal J,. 

(ii) gradeZ,(f’)>n-r+l andgradeZ,(f)32. 

Proof (ii) z- (i). By the remark on the exactness of G( f ‘*) we need 
only show that U3( f ‘*, f “*) is exact at the terms S,(F) 0 Ar+lG* and 
A’F’Q A”-‘F”. 

First, we check exactness at S,(F) 0 A’+ ‘G*. Thus, let a E ker(8,). Then 
Ers.(a) E ker( f “*), by construction, and .+(a) E ker( f ‘*) since 6( f ‘*) 
is a complex. Therefore +(a) E ker( f *). But ker( f *) = (0) is more than 
granted by the assumption grade Z,(f) 2 2. Again, by the exactness of 
G( f ‘*) at S,(F)@ Ar+‘G*, we are through. 

Next, we verify exactness at A’F@ A”-‘F” N F’*. Under the full 
hypothesis that grade I,( f ) 2 2, we have the well-known short acyclic 
complex 

O-+G*zF*=A”F A” > R. 
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which embeds into the commutative diagram 

i’* I 
F* =A”F “‘,R 

where i’: F -+ F and i”: F’ + F are the natural inclusion maps. From this 
diagram one easily sees, by using exactness of S(f’*) at G*, that the bot- 
tom sequence is exact at A’F@ A”-‘F’. 

(i) 3 (ii) First, we show that S(f’*) is acyclic. As remarked before this 
implies gradeZ,(f’)>n-r+ 1. 

Clearly, it suffices to check exactness at S,(F)@A’+ ‘G* and G*. The 
first is trivial as ker(+)c ker(8,). Thus, we turn to the term G*. Let 
b E ker( f’*). Then, an easy consequence of Laplace rule shows that f”*(b) 
belongs to the kernel of the structural map 

By assumption, we can find a E S,(F) 0 A’+ ‘G* such that a,(a) = f”*(b). 
We now claim that +(a) = b. 

At any rate, we have f’*(~~,*(a) - 6) =0 and also f”*(+(a)- 6) = 
a,(a) -f”*(b) = 0. Hence, f*(~~,.(a) - b) = 0. However, f * is injective as 
grade Z,(f) > grade Jr > 1, J, being an ideal with a free resolution. 
Therefore, +(a) = b, thereby showing exactness of S(f’*) at G*. 

Finally, to show that grade I,( f ) B 2 it suffices to show that grade J, > 2. 
But this follows by an standard argument of reduction to the generic case 
[A-S]. This concludes the proof of the theorem. 1 

Note added in proof: Corollary 1.4 is contained in J. Eagon and M. Hochster: Cohen- 
Macaulay rings, invariant theory and the generic perfection of determinantal loci, Amer. J. 
Math. 53 (1971), 1020-1058. Theorem A can be obtained in a quicker manner without 
resorting to properties of weak d-sequences. We thank W. Bruns for calling our attention to 
these facts. 
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