Electron g factor anisotropy in asymmetric III–V semiconductor quantum wells

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2016 Semicond. Sci. Technol. 31 115008
(http://iopscience.iop.org/0268-1242/31/11/115008)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 200.128.60.24
This content was downloaded on 09/08/2017 at 13:25

Please note that terms and conditions apply.

You may also be interested in:

A model for exciton binding energies in III-V and II-VI quantum wells
R C Iotti and L C Andreani

Microscopic theory of nanostructured semiconductor devices: beyond the envelope-function approximation
Aldo Di Carlo

Physics and application of persistent spin helix state in semiconductor heterostructures
Makoto Kohda and Gian Salis

Effects of hydrostatic pressure on the electron g_{\parallel} factor and g-factor anisotropy in GaAs–(Ga, Al)As quantum wells under magnetic fields
N Porras-Montenegro, C A Duque, E Reyes-Gómez et al.

Electron g-factor study in Ga$_{1-x}$In$_x$As$_y$Sb$_{1-y}$ and GaSb–(Ga, Al)As quantum wells under magnetic fields
R Sánchez-Cano and N Porras-Montenegro

Laser-dressing effects on the electron g factor in low-dimensional semiconductor systems under applied magnetic fields
F E López, E Reyes-Gómez, H S Brandi et al.

Jumping magneto-electric states of electrons in semiconductor multiple quantum wells
Pawel Pfeffer and Wlodek Zawadzki

Magnetic field effect on electron spin dynamics in (110) GaAs quantum wells
G Wang, A Balocchi, A V Poshakinskiy et al.
Electron g factor anisotropy in asymmetric III–V semiconductor quantum wells

M A Toloza Sandoval1, E A de Andrada e Silva1,4, A Ferreira da Silva2 and G C La Rocca3

1Instituto Nacional de Pesquisas Espaciais, C.P. 515, 12201-970 São José dos Campos, São Paulo, Brazil
2Instituto de Física, Universidade Federal da Bahia 40210-340, Salvador, Bahia, Brazil
3Scuola Normale Superiore and CNISM, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

E-mail: edeandrada@gmail.com

Received 24 May 2016, revised 19 July 2016
Accepted for publication 1 August 2016
Published 27 September 2016

Abstract

The electron effective g factor tensor in asymmetric III–V semiconductor quantum wells (AQWs) and its tuning with the structure parameters and composition are investigated with envelope-function theory and the 8×8 $k \cdot p$ Kane model. The spin-dependent terms in the electron effective Hamiltonian in the presence of an external magnetic field are treated as a perturbation and the g factors g^*_{\parallel} and g^*_{\perp}, for the magnetic field in the QW plane and along the growth direction, are obtained analytically as a function of the well width L. The effects of the structure inversion asymmetry (SIA) on the electron g factor are analyzed. For the g-factor main anisotropy $\Delta g = g^*_{\parallel} - g^*_{\perp}$ in AQWs, a sign change is predicted in the narrow well limit due to SIA, which can explain recent measurements and be useful in spintronic applications. Specific results for narrow-gap AlSb/InAs/GaSb and Al$_{1-x}$Ga$_x$As/GaAs/Al$_{1-x}$Ga$_x$As AQWs are presented and discussed with the available experimental data; in particular InAs QWs are shown to not only present much larger g factors but also a larger g-factor anisotropy, and with the opposite sign with respect to GaAs QWs.

Keywords: electron g factor, semiconductor quantum wells, spin–orbit interaction

(Some figures may appear in colour only in the online journal)

1. Introduction

Electron g-factor engineering, i.e. tuning the effective g factor (g^*) with quantum confinement effects in semiconductor nanostructures is of great interest to semiconductor spintronics [1–3]. g^* is a fundamental parameter that determines the Zeeman splitting of the electronic states and depends on different quantum effects. For the most basic example, in GaAs/AlGaAs like quantum wells (QWs) the g factor is determined by the confined wave-function and by the mesoscopic (Rashba type) spin–orbit (SO) interaction at the interfaces [4–7]. Breaking of translation symmetry along the QW growth direction (\hat{z}) leads to an electron (leading-order) g-factor tensor in the following form:

$$g^*_{\text{QW}} = \begin{pmatrix} g^*_{\parallel} & 0 & 0 \\ 0 & g^*_{\perp} & 0 \\ 0 & 0 & g^*_{z} \end{pmatrix}$$

where g^*_{\parallel} gives the Zeeman splitting for magnetic field in the QW (i.e. xy) plane and g^*_{z} for $\vec{B}||\hat{z}$. The difference $\Delta g = g^*_{\parallel} - g^*_{\perp}$ is the QW g-factor anisotropy, which in first order perturbation theory and for symmetric QWs with barriers at $z = \pm L/2$, reads [6]

$$\Delta g = \frac{4m_e}{\hbar^2} (\beta_{\parallel} - \beta_{\perp}) L |f^{(0)}(L/2)|^2,$$

$f^{(0)}$ being the unperturbed confined wave-function and β the (energy-dependent) Rashba SO coupling parameter, discussed below; with $g^*_{z} = g_{\text{bulk}} = |f^{(0)}| g_{\text{bulk}} |f^{(0)}|$ (i.e. equals to the...
bulk average). The g-factor anisotropy is then proportional to the difference between the βs in the well and in the barrier, and to the amplitude squared of the wave-function at the interface; and as a function of L (as shown later in figures 3 and 4), Δg is seen to start equals to zero at $L = 0$, to reach then an extremum (e.g., a maximum at $L \sim 4$ nm for GaAs QWs) and then to return slowly to zero as L goes to infinity.

These theoretical results for $g_{QW}^*(L)$ give a simple picture for the renormalization of the electron g factor due to quantum confinement effects in III–V semiconductor QWs, in good agreement with the experimental data for GaAs QWs [8–13], but are limited to symmetric QWs. The well known Ivchenko and Kiselev framework for the g-factor calculation [4, 14, 15] which is also based on the Kane model and envelope function approximation, presents an accurate solution for a general confinement (i.e., for both symmetric and asymmetric QWs) and was explicitly applied in biased GaAs and InGaAs triangular QWs [16]. However, the above perturbative solution is much simpler, gives an intuitive and useful physical interpretation for the g-factor renormalization, derives from long used and tested approximations in similar problems [17], more recently the g-factor solution has been applied also to PbTe QWs [7], GaN QWs [18] and GaAs nanodisks [3] and therefore it would be highly desirable to have such a solution for a general nanostructure. In particular, asymmetric quantum wells (AQWs), i.e., QWs with structure inversion asymmetry (SIA), are important candidates for structures with large g-factor variation. It is still not clear, for example, how the SIA affects the above results for the g factor in typical III–V AQWs. In this work we consider square AQWs (i.e., QWs with different left and right barriers), focus on the small L limit where both the quantum and SIA effects are larger, and extend the above solution for $g_{QW}^*(L)$ to the case of AQWs. Such low field perturbation solution has shown to be accurate in the $L \rightarrow 0$ limit [6, 9–11], and reveal here an interesting g-factor anisotropy sign change in narrow AQWs that can be useful in different spintronic applications; a detailed derivation of the main results is provided.

It is also interesting to investigate the electron g factor in narrow-gap III–V semiconductor QWs with larger bulk g factors, stronger SO interaction and smaller remote-bands contribution than GaAs QWs. Among the narrow gap III–V semiconductors, InAs presents large SO interaction, high electron mobilities, small Shottky barriers and is therefore particularly attractive for spintronic applications [19, 20]. The gate-controlled electron g factor has been studied using InAs AQWs [2]. Here we consider the g_{QW}^* for electrons confined in undoped AlSb/InAs/GaSb AQWs. These are QW structures with SIA, analytical spin-split electronic structure and therefore of interest to the physics of Rashba coupling in semiconductor 2DEGs; the special possibilities connected with the type II band-alignment in one interface and type III in the other make them of interest also to the topological insulator physics [21, 22]. Here expressions for the electron $g_{QW}^*(L)$ in general III–V square AQWs are obtained and used to calculate the electron g factor in specific InAs and GaAs AQWs. Several differences are found between them and between symmetric and asymmetric QWs; for example, the g-factor anisotropy Δg is seen to have opposite signs in InAs and GaAs QWs and, differently to the symmetric case, to change sign in narrow AQWs due to SIA.

Next we present the multi-band envelope-function model, then the AQW g-factor calculation, the results for GaAs and InAs AQWs, the comparison with the experiments and finally, in the conclusions, the summary of the results.

2. Multi-band envelope-function model

Using standard envelope-function method based on the $8 \times 8 \mathbf{k} \cdot \mathbf{p}$ Kane model for the bulk, the set of equations for the envelope functions can be written as an effective Hamiltonian for the electron (i.e., conduction band (CB)) envelope-functions, with energy dependent effective-mass and explicit Rashba SO coupling [23–25]. In the presence of an external magnetic field we follow [6], add the bare Zeeman interaction, make the fundamental substitution $\mathbf{k} \rightarrow \mathbf{k} + \frac{\mathbf{g}}{e} \mathbf{A} \left(- e^* \text{ being the electron charge} \right)$ and, as further explained in the appendix, obtain the following effective Hamiltonian for the QW electronic states in an in-plane magnetic field $\mathbf{B} = (0, B, 0)$:

$$H_{\text{eff}}^{(\sigma)} = -\frac{\hbar^2}{2m_\sigma} \frac{d}{dz} \left[\frac{1}{m_\sigma} \frac{d}{dz} + \frac{\hbar^2}{2m_\sigma} \left[(z - zo)/\ell^2 \right]^2 \right] E_v(z) \mp 2m_\sigma \left[\alpha(z, \varepsilon_\sigma)(z - zo) + \beta(z, \varepsilon_\sigma) \right] \mu_B B,$$

where the CB edge profile $E_v(z)$ is now a general one. The Landau gauge is used with vector potential $\mathbf{A} = (z, B, 0)$ and the signs \mp stand for spin down or up along \hat{z}. Note that with this gauge the envelope function can be written as $\psi = e^{i(k_x x + k_y y)f(z)}$, with $f(z)$ satisfying $H_{\text{eff}}^{(\sigma)} f = e_\sigma f$, $k\ell$ being a quantum number that gives the center of the cyclotron orbit, i.e. $z_0 = -\ell^2 k\ell$, where $\ell = \sqrt{\hbar/eB}$ is the magnetic length; and $k\ell$ is the wave-vector for the free motion along the B-field direction which is zero for the ground-state. Finally $\varepsilon_\sigma = e_\sigma$ is the electron energy with spin $\sigma (\mp z)$, the Bohr magneton $\mu_B = e\hbar/2m_e$ (m_e being the free-electron mass), $\alpha(z, \varepsilon_\sigma) = \frac{1}{\ell^2} \beta(z, \varepsilon_\sigma)$ and the effective mass $m(z, \varepsilon_\sigma)$ and Rashba SO parameter $\beta(z, \varepsilon_\sigma)$ are given by:

$$\frac{1}{m(z, \varepsilon_\sigma)} = \frac{p^2}{\hbar^2} \left[\frac{2}{\varepsilon_\sigma - E_v(z)} + \frac{1}{\varepsilon_\sigma - E_v(z) + \Delta(z)} \right]$$

and

$$\beta(z, \varepsilon_\sigma) = \frac{p^2}{2} \left[\frac{1}{\varepsilon_\sigma - E_v(z) + \Delta(z)} \right],$$

where E_v and Δ stand for the material valence band (VB) edge and SO splitting respectively; $P = -i\hbar/m_e \sqrt{2} \left[\mathbf{S} \mathbf{p} |X \right]$ is the momentum matrix element, assumed constant along the structure (as a fundamental assumption of the envelope-function approximation) and determined by the measured CB edge effective-mass in the well m^*, i.e. $P = \frac{\hbar^2 E_v(k+\Delta)}{m^* - 3\hbar^2 + 2\Delta}$. It is easy to test and verify that the above effective Hamiltonian
reduces exactly to well-known Hamiltonians in three limits: (1) in the zero magnetic field limit, giving the usual model for the Rashba effect [23–25], (2) with no SO interaction, giving the regular Landau level quantization in a QW [26] and (3) in the bulk limit, reducing to the theory of Roth et al [27] for the energy-dependent bulk g factor.

3. The g factor in AQWs

The ground state \(g^*_{\text{AQW}} \) can be calculated in the small magnetic-field limit considering the spin dependent terms in \(H_{\text{eff}} \) as a perturbation. The zeroth order wave-function \(f^{(0)}(z) \) and energy \(\varepsilon_0 \) are solutions of the unperturbed problem, i.e. with \(B = 0 \) and \(k_y = k_z = 0 \),

\[
\frac{\hbar^2}{2m} \frac{d}{dz} \left(\frac{d}{dz} + \varepsilon(z) \right) f^{(0)}(z) = \varepsilon_0 f^{(0)}(z),
\]

which corresponds to the Kane AQW problem, which in turn can be easily solved exactly [25]. However, differently to the case of a symmetric QW, the expectation value \(\langle z \rangle \) does not coincide in general with the center of the well. For symmetric QWs with barriers at \(z = \pm 2L/3 \), \(\langle z \rangle = 0 \) and thus the lowest energy state also has \(\varepsilon_0 = 0 \) (i.e., \(k_z = 0 \)). For AQWs instead, \(\varepsilon_0 \) has to be calculated minimizing the term

\[
\frac{\hbar^2}{2m(z_0)} \left((z - z_0)/f^2 \right)^2 \text{ in } H_{\text{eff}}^{(0)}
\]

which simply leads to \(z_0 = \bar{z} \), independent on \(B \) (while \(k_y \propto B_z \) still vanishes when \(B \to 0 \)). We note that an alternative approach would be to change both coordinates, using \(\bar{z} = z - \bar{z} \), and gauge, using \(\mathbf{A} = (z^2, B \mathbf{O}, 0, 0) \), in which case the wave function changes as \(\Psi \to \Psi' = e^{i \gamma x_0} \Psi \) and the lowest energy \(\Psi' \) would correspond to \(\varepsilon_0 = 0 \) and \(k_z = 0 \). Focusing here on AQWs, we prefer to leave the role played by \(\bar{z} \) explicit, which accounts for the diamagnetic shift [14–16].

In first order perturbation theory, one can simply calculate the g factor from equation (3) as:

\[
g^*_{l} = \frac{4m_l}{\hbar^2} \langle f^{(0)}(z) \rangle (\langle \alpha_r(z, \varepsilon_0) (z - \bar{z}) \rangle f^{(0)}). \tag{6}
\]

Note that in flat-band wells \(\alpha_R = (\frac{d}{dz} \beta) \) is different from zero only at the interfaces where \(\beta \) changes abruptly. With \(\beta(z) \), the system recovers the rotation symmetry around to growth direction, and in the same approximation (see appendix) \(g^*_{l} \) is given by the bulk average, i.e.

\[
g^*_{l} = \frac{4m_l}{\hbar^2} \langle f^{(0)}(z) \rangle + \delta g_{\text{rem}}(z) f^{(0)}), \tag{7}
\]

\(\delta g_{\text{rem}} \) being the difference between the g-factor measured experimentally and that given by the Roth formula, i.e. the remote-bands contribution [27], and \(g_e \) the free electron g factor equals to 2. The QW g-factor anisotropy is then given simply by:

\[
\Delta g = g^*_{l} - g^*_{0} = -\frac{4m_l}{\hbar^2} \langle f^{(0)}(z) \rangle (\langle \alpha_R(z, \varepsilon_0) (z - \bar{z}) \rangle f^{(0)}). \tag{8}
\]

As illustrated in figure 1, for a general III–V square QW we set the two non-equivalent interfaces at \(z = z_l \) and \(z = z_r \), with \(z_r - z_l = L \). The expectation values above can be easily calculated and one gets:

\[
g^*_{l} = g_l(\varepsilon_0) P_l + g_w(\varepsilon_0) P_w + g_r(\varepsilon_0) P_r \tag{9}
\]

and

\[
\Delta g = (\Delta g)_l - (\Delta g)_r, \tag{10}
\]

where \(P_i = (\langle f^{(0)}(z) \rangle f^2 \rangle) \) is the probability to find the electron in the region \(i = l \) for \(z < z_l \), \(i = w \) for \(z_l < z < z_r \), and \(i = r \) for \(z > z_r \); the bulk g factors \(g_l = g_w \),

\[
\Delta g = \frac{4m_e}{\hbar^2} \delta \beta_l (z_l - \bar{z}) |f^{(0)}(z_l)|^2 \tag{11}
\]

with \(j = l, r \) and \(\delta \beta_l = \beta_l - \beta_r \).

The g-factor anisotropy \(\Delta g \) in AQWs is then seen to be determined by the differences \(\delta \beta \) and by the wave-function amplitudes (squared) at each interface, weighted however by their distance to the center of the ground state orbit \(z_0 = \bar{z} \). Note that in symmetric QWs \(\delta \beta_l = \delta \beta_r \), \(z - z_l = z_r - \bar{z} = L/2 \) and the symmetrical result in equation (2) is recovered. Recall also that for symmetric QWs, the ground-state corresponds to \(z = (z_l + z_r)/2 \) at the center of the well and the contributions from the two interfaces are equal:

\[
-(\Delta g)_l = (\Delta g)_r = \Delta g/2. \tag{2}
\]

The specific contribution of the SIA to \(\Delta g \) increases with \(|z_l + z_r|/2 - \bar{z} \) and with \(|\delta \beta_l f^{(0)}(z_l)|^2 - \delta \beta_r f^{(0)}(z_r)|^2 \). It is interesting to consider also the limit case of an infinite high barrier (a perfect insulator) in one of the two sides (say the l side); in this case, the g factor anisotropy is simply given by

\[
\Delta g = \frac{4m_e}{\hbar^2} \delta \beta_l (z_l - \bar{z}) |f^{(0)}(z_l)|^2. \tag{3}
\]

Contrary to the symmetric QW case, the sign of \(\Delta g \) in AQWs is not uniquely determined by the sign of \(\delta \beta \) but depends also on the sign of \(z_{\text{interf}} - \bar{z} \). In practice, to calculate \(g^*_{\text{AQW}}(L) \) one solves the unperturbed problem and in the above equations just plug in the obtained \(f^{(0)}_{L}(z), \varepsilon_0(L) \) and
as a

2

D

G

2

y

)eV

D

D

zr

i

-

A

i

x

Al Ga As GaAs Al Ga As0.15 0.85 0.15 0.85

(1)

()- ∣()

x

L

E

x

Ga1

y

/GaAs

0.37

E

y

-5 nm, showing that the wave-function is deformed and

fi

In

*, i.e. when the expectation value of the electron

position along the growth direction lies outside the QW or

GaAs region. Note also that for large well widths, the

anisotropy of the Al,Ga1-,As/GaAs/Al,Ga1-,As AQWs

tend to that of the GaAs SQW, and when one of the barriers is

infinitely high, the anisotropy is a factor of 2 smaller, as due
to one interface only.

4. AlGa1-xAs/GaAs/Al,Ga1-xAs AQW

As a first example we consider Al,Ga1-,As/GaAs/

Al,Ga1-,As (with x = y) AQWs. The results for g (L) in

these wells are compared to those in similar GaAs symmetric

wells (SQWs) and in insulator/GaAs/Al,Ga1-,As AQWs. Typical ground-state unperturbed solutions for these three types of QWs are shown in figure 2 with the CB profile and

L = 5 nm, showing that the wave-function is deformed and z0 is

pushed away from the barrier on the left as the barrier height increases. Similarly, for a fixed AQW profile, z0 is pushed away from the higher barrier as the well width L is decreased.

In figure 3, the obtained g , g* and Δg for these three

wells are plotted as a function of L. First it is interesting to see

that the break of specular symmetry (or SIA) has only small

quantitative effects in the GaAs QW electron g factor except

for narrow wells when the g-factor anisotropy changes sign

and starts to increase rapidly. In these GaAs square AQWs

there is always a critical well width below which g becomes

smaller than g*, i.e. Δg becomes negative, while in symmetric

SQWs Δg is always positive. Such anisotropy sign change in thin AQWs is due to the z dependence. For example, in insulator/GaAs/GaAlAs AQWs it happens when z > z, i.e. when the expectation value of the electron

position along the growth direction lies outside the QW or

GaAs region. Note also that for large well widths, the

anisotropy of the Al,Ga1-,As/GaAs/Al,Ga1-,As AQWs

tend to that of the GaAs SQW, and when one of the barriers is

infinitely high, the anisotropy is a factor of 2 smaller, as due
to one interface only.

5. AlSb/InAs/GaSb AQW

The present 8 x 8 k · p Kane model is much more precise for

InAs than it is for GaAs, as indicated by a much smaller δbrem/g, which is ~0.03 for InAs and ~1.1 for GaAs. Here we consider the electron g factor in InAs QWs similar to the

GaAs ones discussed above, namely thin InAs/GaSb symmetric

QWs, AlSb/InAs/GaSb AQWs and insulator/

InAs/GaSb AQWs. Due to the broken-gap band alignment,
There are InAs confined electron states in these QWs with GaSb barriers only when the well width $L < L_c \sim 9 \text{ nm}$. This is because in InAs/GaSb QWs with $L > L_c$, the electron energy ε gets below E_g, and the state is not confined in the InAs layer anymore [30, 31]. Note that when $\varepsilon = E_g$, the GaSb (bulk) g factor diverges (see expression for β in equation (5)) and $g_{\text{AQW}}(L \sim L_c)$ is therefore expected to be quite large since the barrier penetration is also expected to increase when $L \rightarrow L_c$.

In figure 4(a) it is plotted the calculated g^{\star}_{aqw} (continuous lines) and g^{\star}_L (dashed lines) for the three types of wells as a function of L; and in figure 4(b), the corresponding Δg. The SIA can be clearly seen to have a much stronger effect in InAs QW g factors than it has in GaAs wells, due to the stronger SO interaction. Compared to GaAs QWs, the electron g factor in InAs QWs is seen to be two-orders of magnitude larger, with Δg also much larger and of the opposite sign. Note that the anisotropy Δg in these InAs AQWs changes sign at a smaller well width and that in AlSb/InAs/GaSb wells, in the large L limit, Δg tend to that of insulator/InAs/GaSb AQWs, instead to that of SQWs as in GaAs wells, due to the large conduction band offsets. In these InAs AQWs, g^{\star}_L is seen to present a maximum as a function of L.

It is also interesting to note the obtained large (in absolute value) electron g factor (~ 30) in InAs/GaSb QWs when $L \rightarrow L_c$, which as just discussed, is due to barrier penetration and to a divergence in the energy dependence of the bulk g factor in GaSb. We now compare these calculations with the available experimental data.

6. Comparison with the experiments

The electron g factor in GaAs/AlGaAs symmetric QWs has been measured by different groups using both optical and transport techniques, involving time-resolved photoluminescence and magnetoresistance measurements [8–13]. In particular g^{\star}_L is now well known; with good accuracy, it is given by the above QW average of the bulk g factors, which includes effects from the energy dependence of the bulk g factors and from the wave-function barrier penetration. Shown in figure 3(a), as L goes from very large values to near zero, g^{\star}_L interpolates from the g factor in the well material to that in the barrier, with a sign change and, therefore, $g^{\star}_L = 0$ for a certain (narrow) well width [4, 13].

The anisotropy Δg and its well width dependence are less well known. With spin-quantum beats in the time-resolved photoluminescence [9], Le Jeune et al [10] and Malinowski and Harley [11] have measured $\Delta g(L)$ in GaAs symmetric QWs, and as shown in [6] it is simply and accurately described by equation (2) above. In AlGaAs/GaAs/AQWs, Ye et al [33] have measured the in-plane Zeeman splitting anisotropy which is allowed by the SIA but is due to higher order terms (in k and in B) [34].

More recently, $g^{\star}_{\text{AQW}}(L)$ in asymmetrically doped GaAs/AlGaAs AQWs was studied by Shchepetilnikov et al [29] using electron spin resonance detected with magnetoresistance measurements. These data with doped AQWs can not be precisely compared with our undoped square AQW results; nevertheless, as shown in figure 3(a), the observed values and well width dependence of g^{\star}_L agree fairly well with the theory. As expected the experimental g^{\star}_{aqw} (which is for doped, $\varepsilon_F \neq 0$, AQWs) is a little larger than the calculated one (which is for undoped wells); more interesting, the measured g-factor anisotropy $\Delta g \sim 0.08$ for the 8 nm AQW (see [29] figure 3) is not far from the calculated $\Delta g = 0.05$ in figure 3(b) above (note that in such well width range, both g_{aqw} and Δg increase with electron energy).

In such GaAs AQWs, there are also measurements of the g-factor sign-reversal well-width L_0 [13] and of the g-factor dependence on the barrier height, controlled by the Al concentration x [29], which can further test of our model. A $L_0 = 6.5 \pm 0.3 \text{ nm}$ was determined for a GaAs/Al$_{0.33}$GaSb asymmetrically doped QW and in figure 5 it is shown that a L_0 very close to that is expected also theoretically, considering the above mentioned shift due to the non zero Fermi energy. The figure compares our results for $g^{\star}_{\text{aqw}}(L)$ in both symmetric and asymmetric (with infinite
high left barrier) GaAs/Al$_x$Ga$_{1-x}$As QWs, with $x = 0.15$ and 0.33, and with the experimental data of [29]; one sees that L_0 increases with both x and SIA and that the model describes quantitatively well also the barrier height dependence, i.e. nearly the same difference with the same change in x. The measurement is from both theoretical and experimental. Note that this increases with both x and Landau-level splittings at the interfaces are as described here. Nevertheless, measurements of Δg in thin undoped square AQWs would still be the best test of our model and of the predicted effect of anisotropy sign change.

Regarding such negative anisotropy in narrow GaAs AQWs, Tomimoto et al [35] have measured a negative Δg in a single sample with very narrow ($L = 0.32$ nm) CdTe/ZnTe QW and attributed it to a change in the sign of $\delta \beta$. It is interesting to note however that the g factor in such wells behaves as in GaAs QWs, with positive Δg and no change in the sign of $\delta \beta$ as a function of L when it is symmetric; this observed negative Δg is then likely to have another explanation. The growth of homogeneous and symmetric CdTe/ZnTe QWs is difficult due to the large lattice mismatch and the sample studied may well present some specular asymmetry which can account for the observed negative Δg.

For InAs QWs there are much fewer experimental data. Smith and Fang [36] measured an electron $g_{QW}^* \sim -8$, in 10 nm GaSb/InAs/GaSb QWs, which however is a too wide QW, i.e. beyond the bound state regime considered here; and can not be compared with our results also due to the large magnetic fields employed in the coincidence (between Zeeman and Landau-level splittings) method used. The g factor in wide InAs QWs was determined with similar methods also in references [37, 38]. The electron g factor in thin InAs AQWs was studied by Nitta et al [2] and an $|g_{QW}^*|$ of the order of 3.5 was measured in biased 4 nm InAs/InGaAs QWs, which is not far from the present results, however the structures are quite different and can not be directly compared. In general, a self-consistent treatment of the band-edge profile and/or a fine control of the structure parameters (including temperature dependence, precise band-offset and electron effective mass etc.) are needed for a quantitative precise description of the experimental data. The anisotropy Δg in InAs QWs does not seem to have been measured yet.

7. Conclusions

Enough ground has been given to believe that the electron effective g factor in III–V semiconductor AQWs can be tuned within a wide range of values by controlling the well width and composition, including a change of sign in both g factor and g-factor anisotropy. The obtained effect of g-factor anisotropy sign change in narrow wells is shown to be due to SIA and determined by the electron average position in the AQW, and can explain recent observations. Results for the electron effective g factor tensor in different GaAs and InAs QWs have been presented in fairly good agreement with the available experimental data. With respect to GaAs QWs, InAs QWs are seen to not only have a much larger g factor and g-factor anisotropy but also opposite anisotropy sign. The analytical expressions derived apply to general III–V square AQWs and, as for the SQW case, can be easily extended to describe also IV–VI and GaN AQWs, for example. These results for the g-factor renormalization by the mesoscopic quantum confinement in semiconductor nanostructures should be of importance not only for the development of spintronic devices but also for the spin manipulation with external electric or magnetic fields in spin-based qubits made with semiconductor nanostructures.

Acknowledgments

EAAS is thankful to the Scuola Normale Superiore di Pisa, for the kind hospitality. Support from the brazilian agencies FAPESP/PRONEX, FAPESP (2014/09878-1, 2016/03845-9) and CNPq (303304/2010-3, 506194/2013-2 and 170145/2013-1) is also acknowledged.

Appendix. Effective Hamiltonian and g^* for III–V QWs

The effective Hamiltonian used for the QW electronic states in both transverse (equation (3)) and longitudinal magnetic fields, is obtained projecting the 8×8 Kane Hamiltonian into the 2×2 conduction-band space. Considering QWs grown along ξ and using the same basis states as in [24] after some simple algebra one obtains the following Schroedinger-Pauli-
like effective Hamiltonian:

\[
H_{\text{eff}} = H_0 + i \beta (z, \varepsilon) \hat{k}_x \hat{k}_y \sigma_y + \frac{i}{\hbar} \beta (z, \varepsilon) \hat{k}_y \sigma_x + i \beta (z, \varepsilon) \hat{k}_y \sigma_3 \sigma_x. \tag{A.1}
\]

where \(H_0 \) is the usual spin-independent part, i.e.

kinetic energy plus confining potential, with the energy dependent effective mass in equation (4). The components \(\hat{k} \) are the momentum \((\mathbf{k} + \frac{e}{\hbar} \mathbf{A})\) operators, which for zero magnetic field lead to \(\hat{k}_x = \hat{k}_y \) \(\hbar \) plus \(\hat{k}_y = k_y \) (i.e.

good quantum numbers). Note that in this case one then has \([\hat{k}_x, \hat{k}_y] = 0 \), \([\hat{k}_x, \hat{k}_y] = i \alpha \hat{\sigma}_x \) and \([\hat{k}_y, \hat{k}_y] = i \alpha \hat{\sigma}_y \) (recall that \(\alpha = \frac{\Delta}{\hbar} \)) which substituting above give the well known Rashba effective Hamiltonian [23–25] (with energy dependent SO coupling parameter \(\alpha \); note that \(\beta \) is sometimes also called Rashba coupling parameter, but clearly should not be confused with its derivative \(\alpha \)).

In the presence of a longitudinal homogeneous magnetic field, one can use the Landau gauge \(\mathbf{A} = (–B_y z, 0, 0) \) and after the fundamental substitution finds \(\hat{k}_x, \hat{k}_y = -i \frac{e}{\hbar} B \), \([\hat{k}_x, \hat{k}_y] = i \alpha \hat{\sigma}_x \) and \([\hat{k}_y, \hat{k}_y] = i \alpha \hat{\sigma}_y \). Since in this case \(H_0 \) does not depend on \(x \), one can write the envelope spinor as \(\psi = e^{i k z} \psi(y, z) \), where \(k_z \) sets the center of the orbit and can be chosen equal to zero, and one then has:

\[
H_{\text{eff}} = H_0 + \alpha \left(\hat{k}_x \sigma_x + \frac{e}{\hbar} B \hat{\sigma}_y \right) + \frac{\Delta}{\hbar} B \hat{\sigma}_y. \tag{A.2}
\]

Note that independently of the known divergence of the vector potential in infinite systems (which can be treated with a modulated vector potential [15, 39] or by considering finite systems [14]), the off-diagonal terms above, i.e.

those proportional to \(\alpha \) are much smaller than the diagonal ones (proportional to \(\beta \) and in a good first approximation can be neglected, so that \(\sigma^\mu_{\nu} \) is simply given by equation (7). The accuracy of this approximation was verified in [4] where it is shown to be in close agreement with the full solution of the Kiselev–Ivchenko equations (see curves 1 and 3 in figure 3 there); the present approximation corresponds to neglecting the Kiselev–Ivchenko auxiliary function \(h \) [14, 15], which is indeed several orders of magnitude smaller than the main function. Note also that in the flat-band QWs considered here \(\alpha \) is different from zero only at the two interfaces, where it presents opposite signs, so that the corresponding expectation values should indeed be very small compared with the main term.

Similarly for a transverse magnetic field, as already discussed, one can choose \(\mathbf{A} = (B_z, 0, 0) \) and has \(\hat{k}_x, \hat{k}_y = 0 \), \([\hat{k}_x, \hat{k}_y] = i \alpha \hat{\sigma}_x \) and \([\hat{k}_y, \hat{k}_y] = i \alpha \hat{\sigma}_y \), which substituting above give the effective Hamiltonian in equation (3).

References

[34] Kalevich V K and Korenev V L 1993 JETT Lett. 57 571