
QUANTIFYING THE EFFECTS OF ASPECTUAL

DECOMPOSITIONS ON DESIGN BY CONTRACT

MODULARIZATION: A MAINTENANCE STUDY

HENRIQUE REBÊLO*,||, RICARDO LIMA*,**, UIR �A KULESZA†,§§,

M �ARCIO RIBEIRO‡,||||, YUANFANG CAI§,***, ROBERTA COELHO†,¶¶,
CL �AUDIO SANT'ANNA¶,††† and ALEXANDRE MOTA*,††

*Federal University of Pernambuco, PE, Brazil

†Federal University of Rio Grande do Norte, RN, Brazil

‡Federal University of Alagoas, AL, Brazil

§Drexel University, PA, USA
¶Federal University of Bahia, BA, Brazil

||hemr@cin.ufpe.br
**rmfl@cin.ufpe.br
††acm@cin.ufpe.br

§ §uira@dimap.ufrn.br
¶¶roberta@dimap.ufrn.br

||||marcio@ic.ufal.br
***yfcai@cs.drexel.edu

†††santanna@dcc.ufba.br

Received 3 February 2012
Revised 14 January 2013

Accepted 28 February 2013

Although it is assumed that the implementation of design by contract is better modularized by

means of aspect-oriented (AO) programming, there is no empirical evidence on the e®ectiveness
of AO for modularizing non-trivial design by contract code in realistic development scenarios.

This paper reports a quantitative and qualitative case study that evolves a real-life application

to assess various facets of the adequacy of aspects for modularizing the design by contract

concern. Our evaluation focused upon a number of system changes that are typically performed
during software maintenance tasks. The study was driven by an analysis of fundamental

modularity attributes, such as separation of concerns, coupling, conciseness, and change

propagation. We have found that AO techniques improved separation of concerns and the

design stability between the design by contract code and base application code throughout
the development scenarios. However, contradicting the general intuition, the AO versions of the

system did not present signi¯cant gains regarding four classical size metrics we employed.

Keywords: Design by Contract; aspect-oriented programming; refactoring; maintenance study.

International Journal of Software Engineering

and Knowledge Engineering

Vol. 23, No. 7 (2013) 913–941
#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194013500265

913

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0218194013500265

1. Introduction

Design by Contract (DbC), originally conceived by Meyer [32], is a technique for

developing and improving functional software correctness and quality [44, 3, 28, 27].

The key mechanism in DbC is the use of the so-called \contracts". A contract

formally speci¯es an agreement between a client and its suppliers. Client classes

must satisfy the supplier class conditions before calling one of its methods. When

these conditions are satis¯ed, the supplier class must guarantee certain properties,

which constitute the supplier class's obligations. For instance, when a client breaks

a condition (client violation), a runtime error occurs. The use of such pre- and

postconditions and invariants to specify software contracts dates back to Hoare's

1969 paper on formal veri¯cation [21]. The novelty with DbC is to make these

contracts executable. This is useful for isolating errors during debugging, and for

validating contracts that are used as documentation or for increasing code reliability

and correctness [3, 42].

It is often claimed that the contracts of a system is de-facto a crosscutting concern

that can be better modularized by the use of aspect-orientation (AO) [23, 30, 31].

Recent studies [30, 23, 3, 42, 38, 40] have shown that object-oriented (OO)

abstractions are not able to modularize the main features of design by contract

methodology, such as invariants and pre- and postconditions, and tend to lead to

programs with poor modularity (scattered and tangled DbC code).

To the best of our knowledge, Lippert and Lopes [30] conducted the most

well-known systematic study that explicitly investigated the use of AO to implement

classical design by contract features such as pre- and postconditions of a large

OO framework, called JWAM. Among other things, they compared the contracted

Java and AspectJ implementations of such OO framework. According to their

¯ndings, the AspectJ implementation improved the modularity of design by contract

concern. Also, they argue that the use of AO drastically reduced the number of

contracts (e.g. precondition) and lines of code (LOC). However, the authors pre-

sented their ¯ndings in terms of a qualitative assessment. Quantitative evaluation in

their study consisted solely of counting LOC. Hence, there is no empirical evidence

that AO techniques promote a superior solution in well-understood modularity

attributes such as separation of concerns, coupling, and conciseness, when used for

modularizing non-trivial homogeneous and heterogeneous design by contract code.

Moreover, they have not analyzed the scalability of AO for implementing design

by contract concern in the presence of widely-scoped design changes. Hence, the

understanding of the e®ects of AO decompositions to implement DbC concern on

key maintainability-related software attributes are still deep challenges to software

engineers.

This paper presents a systematic case study that quantitatively and qualitatively

assesses the positive and negative impacts of AO techniques for implementing the

classical design by contract features (pre- and postconditions, and invariants) on a

number of design changes applied on a real-life web-based information system, called

914 H. Rebêlo et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Health Watcher (HW) [20]a. The OO versions were implemented in Java, whereas

the AO versions were implemented in AspectJ. The design stability evaluation of the

Java and AspectJ versions were based on two conventional metric suites for mod-

ularity attributes [45, 14] (such as separation of concerns, coupling, and conciseness)

and change impact [53]. Hence, our investigation complements in two senses the

existing well-known qualitative empirical study on the use of AO for implementing

design by contract concern performed by Lippert and Lopes work [30].

The main outcomes of our analysis in favour of AO implementations of design by

contract concern were:

(i) The design by contract concern tended to show superior modularity stability in

the AO designs; changes tended to be con¯ned with the same modules and fewer

operations were added due to the higher reuse achieved by AO techniques;

(ii) The \aspectization" of design by contract drastically reduced the number of

design by contract features, specially the number of invariants;

(iii) AO solutions required less intrusive modi¯cations (e.g. changes to existing

operations and lines of code) of the design by contract concern throughout the

applied maintenance scenarios;

(iv) Aspectual decompositions have demonstrated superior satisfaction of the

Open-Closed principle [33] in all the maintenance scenarios;

(v) In all the maintenance scenarios, the use of aspects led to improvements

in coupling in the implementation of design by contract features, such as

preconditions.

Alternatively, the main ¯ndings against aspectual decompositions were:

(i) The use of size measures was helpful to show that the AO implementations

of design by contract have not presented signi¯cant gains regarding four clas-

sical size metrics, for example, the AO implementations of DbC increased the

number of lines of code and the number of operations of the studied target

system throughout the maintenance scenarios;

(ii) Although invasive modi¯cation was more frequent in the OO solutions, the AO

modi¯cations tended to propagate to unrelated modules when performing OO

refactoring changes;

(iii) In general the aspectization of design by contract has shown no improvement

when dealing with heterogenous contracts.

This paper is structured as follows: Section 2 describes our experimental settings

and justi¯es the decisions made to ensure the study validity. Section 3 describes the

Health Watcher system used as the base for this study and also describes the changes

applied. The results gathered from applying the modularity metrics are discussed in

Sec. 4. Section 5 discusses how the changes propagate within each paradigm.

aThe work described in this article is the revised and extend version of a paper presented at SEKE

2011 [41].

Quantifying the E®ects of Aspectual Decompositions on Design by Contract Modularization 915

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Section 6 analyzes the obtained results and points some constraints on the validity

of our study. Section 7 discusses related work. Finally, Sec. 8 concludes this paper by

summarizing this paper's ¯ndings.

2. Experimental Settings

This section describes the con¯guration of our study. Section 2.1 brie°y exempli¯es

and explains how we have implemented the design by contract concern using aspect-

oriented decompositions. Section 2.2 discusses the choice of the target system.

Finally, Sec. 2.3 describes our assessment procedures.

2.1. Aspectizing design by contract

In order to enable the design by contract implementation and modularization, this

work considers two implementation techniques: standard object-orientation features

with Java and AO [24] decompositions. We chose AspectJ [23] to modularize DbC

features with AO because it is the most consolidated AO language. Besides, our goal

was to assess the suitability of core AO mechanisms for handling DbC modula-

rization rather than other emerging AO mechanisms available in programming

languages such as CaesarJ [34]. Java assertions, on the other hand, is a well-known

technique for contract enforcement of Java code. Since our study explicitly distin-

guishes between pre- and postconditions, and invariants, we encapsulate Java

assertions in three kinds of Java contract methods: JC.requires for precondition

enforcement, JC.ensures for postcondition enforcement, and JC.invariant for in-

variant enforcement. Lippert and Lopes [30] use the same strategy to deal with Java

contracts, except that they just consider pre- and postconditions.

Our study focused on the placement of contracts. We refactored all the

JC.requires, JC.ensures, and JC.invariant calls in the selected portions of the selected

target system to aspects. These methods are declared in the JC class which encap-

sulate all the Java contract (assertion) operations. We used the Extract Fragment to

Advice [35] refactoring to move contracts to aspects. Figure 1 illustrates these me-

chanics. It shows a trivial example of aspectization of preconditions using a before

advice. Note that since the two methods of the class C have the same precondition �,

we were able to refactor it to single advice, hence exploring reuse opportunities.

Likewise, we modularize the postcondition � in a single after returning advice (see

Fig. 2). We use after returning advice since the postcondition should be established

just after the normal termination of a method. In this paper, we do not consider

exceptional postconditions [28, 42]. Regarding invariants, we use both before and

after returning advice for modularizing invariant constraints (see Fig. 3).

According to the semantics of invariants [28, 42], they should be established just after

the normal termination of a constructor's execution and before and after execution of

every instance method of a particular class. The left hand side of Fig. 3 illustrates how

scattered and tangled a Java implementation of an invariant constraint becomes.

916 H. Rebêlo et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

Fig. 2. Refactoring postcondition code to aspects.

Fig. 1. Refactoring precondition code to aspects.

Fig. 3. Refactoring invariant code to aspects.

Quantifying the E®ects of Aspectual Decompositions on Design by Contract Modularization 917

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

2.2. Target system selection

The ¯rst major decision, that we had in our investigation, was the selection of the

target system. The chosen system is a real web-based information system, called

Health Watcher (HW) [20]. The main purpose of the HW system is to allow citizens

to register complaints regarding health issues. This system was selected because it

addresses a number of relevant criteria for our intended evaluation. First, it is a real

and non-trivial system with available OO and AO implementations with a number of

recurring concerns and technologies common in day-to-day software development,

such as GUI, persistence, concurrency, RMI, Servlets and JDBC [20]. Second, the

original implementation of HW is composed by eleven use cases that are detailed by

an available requirements document, which is essential to understand its main

functionalities [20]. Third, other qualitative and quantitative studies of the HW

system have been recently conducted [26, 15, 20, 8], and so provided a solid foun-

dation for this study.

2.3. Assessment procedures

The main goal of this empirical case study is to answer how a system behaves

regarding design by contract modularity when implemented with AO techniques.

To this end, we analyzed the impact of DbC modularity through a set of software

modularity, change propagation, and pluggability attributes as main driving design

criteria.

The study was divided into three major phases: (i) implementation and alignment

of the HW design by contract concern according to its requirements document;

(ii) implementation of change scenarios, and (iii) quantitative assessment of the OO

and AO versions of the HW system along with their change scenarios.

Development of the HW Base Release. In the ¯rst phase, we implemented

the design by contract concern for the OO and AO base release of the HW system,

which is already available and implemented in Java and AspectJ [20], respectively.

As mentioned above, HW comprises several classical crosscutting concerns, but no

existing quantitative work have explored the design by contract one. Hence, we

analyzed the, entire available, requirements document of the HW system to under-

stand its functionalities and involved actors. This analysis was fundamental to rec-

ognize the HW's design constraints in terms of pre-, postconditions, and invariants

[20]. The implementation comprehends both homogeneous and heterogeneous con-

tracts for the HW use cases. We found some inconsistences of the original HW

implementation by its validation with contracts. Since this task is out of scope, we

just mention that we made an alignment (¯xing the found bugs) of the HW imple-

mentation to ful¯l its requirements. Moreover, a number of test cases were exhaus-

tively used for all the used releases of the Java and AspectJ versions of the HW

system. This assure that the comparison conducted between the object-oriented

(OO) and aspect-oriented (AO) versions was fair.

918 H. Rebêlo et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

HW Change Scenarios. The second phase involved the implementation of four

changes (Sec. 3.3) in the original HW system [20]. Each change involved: (i) the

design improvement through refactoring and design patterns [2, 29, 18], (ii) the

design and implementation of new functionalities (comprising six new user cases) to

be included, (iii) the removal of one use case from the system, and (iv) the complete

removal of the design by contract concern.

HW DbC Modularity Assessment. The goal of the third phase was to

compare in a quantitative way the design by contract modularity of AO and OO

implementations of HW system. In order to support a multi-dimensional data

analysis, the assessment phase was further decomposed in three main stages. The

¯rst two stages (Sec. 4.2) are aimed at examining the overall maintenance e®ects

(regarding DbC concern) in fundamental modularity attributes through the HW

used releases. The last stage (Sec. 5) evaluates the OO and AO implementations from

the perspective of change propagation and pluggability. Traditional metrics were

used in all the assessment stages, and will be discussed in the respective sections. All

measurement results are available from [39].

3. Health Watcher System

This section illustrates and describes the OO and AO architectural designs of the

HW system. Section 3.1 brie°y describes the HW OO design. The AO design of HW

is discussed in Sec. 3.2. In addition, we discuss the selected change scenarios applied

to HW in Sec. 3.3.

3.1. OO architectural design

The OO version of the HW system is implemented using the Java programming

language. The Layer architectural pattern [4] is used to structure the system classes

into three main layers: GUI (Graphical User Interface), Business, and Data. Figure 4

presents a partial class diagram of the OO implementation. It illustrates the main

architectural elements. For instance, the GUI layer implements a web user interface

for the system. The Java Servlet API is used to codify the classes of this layer. The

Business layer aggregates the classes that de¯ne the system business rules. Finally,

the Data layer de¯nes the functionality of database persistence using the JDBC API.

Also, several design patterns [2, 29, 18] are used in the design of the HW layers to

achieve a reusable and maintainable implementation.

Figure 4 presents other details about the HW system such as:

. the Distribution concern which is responsible for making distributed the system

services provided by the Business layer;

. implementation of concurrency control mechanisms in business and data classes;

. implementation of the design by contract concern in all the system layers.

Quantifying the E®ects of Aspectual Decompositions on Design by Contract Modularization 919

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

The design of the OO HW system fails to completely modularize the design by

contract concern (focus of our work). Even though the HW system is organized in

layers and uses several design patterns, the realization of DbC is completely scattered

and crosscuts the entire HW layers.

3.2. AO architectural design

The AO version of the HW system was implemented using AspectJ [23]. The design

followed the same Layer architectural pattern [4] to structure the system into three

layers. Unlike previous works [26, 20], we modularized only the design by contract

concern (not considered by such works), since it is our main concern of interest.

Figure 5 shows the design of the AO HW system version. A UML stereotype

�aspect� is used to represent the DbC aspects of the system. Moreover, UML

dependency relationships with the�crosscuts� stereotype indicate that an aspect is

introducing behavior in the system classes. As we can see in Fig. 5, di®erent aspects

modularize the design by contract crosscutting concern extracted from the OO im-

plementation. Hence, we were able to isolate the DbC concern as aspects. Besides,

the physical separation, the main bene¯ts and drawbacks to use aspect decomposi-

tions to modularize contracts are discussed in Secs. 4 and 5.

Fig. 4. Health Watcher Object-Oriented Design.

920 H. Rebêlo et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

3.3. Change scenarios

As mentioned in Sec. 2.3, in the second phase of our investigation, we evolved both

OO and AO implementations of the HW base release according to a set of change

scenarios. Table 1 summarizes changes made in each release. The scenarios comprise

di®erent types of changes involving refactoring and improvement, addition of six new

functional use cases (which represent typical operations encountered in the main-

tenance of information systems), removal of one functional use case, and the com-

plete removal of the design by contract concern. Table 1 also presents which type of

change each release encompassed. The purpose of these changes is to exercise the

implementation of the design by contract features boundaries and, so, assess the

overall modularity of contracts in the presence of maintenance and evolution tasks

that are recurring in incremental software development.

4. Modularity Analysis

We have described how the assessment phase was organized in three stages

(Sec. 2.3). This section presents the results for the ¯rst two stages, where we analyze

the initial modularity of each OO and AO solutions of the HW base version

(Sec. 4.1). Then we analyze their stability throughout the change scenarios

(Sec. 4.2). We used a metrics suite (Table 2 summarizes each metric used in this case

study) that quanti¯ed three fundamental modularity attributes, namely separation

Fig. 5. Health Watcher Aspect-Oriented Design.

Quantifying the E®ects of Aspectual Decompositions on Design by Contract Modularization 921

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

os concerns (SoC), coupling, and conciseness [45, 14]. Such metrics were chosen

because they have already been used in several experimental studies and proved to be

e®ective maintainability indicators [19, 26, 15, 20, 8, 12].

The metrics for coupling and size were de¯ned based on classic OO metrics [7]; the

original metrics de¯nitions were extended to be applied in a paradigm-independent

Table 1. Summary of change scenarios in Health Watcher.

Release Descriptions Type of change

R1 Addition of two Adapter patterns and two

Factory pattens to improve the distribu-

tion, data, and view concerns

Refactoring and improvement

R2 Addition of six new functional use cases: Addition of functionality

InsertMedicalSpecialty,

and UpdateMedicalSpecialty
and InsertHealthUnit

and InsertSymptom

and UpdateSymptom

R3 Removal of one use case: Removal of functionality

SearchSpecialtiesByHealthUnit

R4 Removal of the design by contract concern Removal of the design by contract concern

Table 2. The metrics suite.

Attributes Metrics De¯nitions

Separation of

Concerns (SoC)

Concern Di®usion over

Components (CDC)

Number of classes and aspects that contribute

to the implementation of a concern [19].
Concern Di®usion over

Operations (CDO)

Number of methods and advice that contrib-

ute to a concern's implementation [19].

Concern Di®usion over LOC

(CDLOC)

Counts the number of transition points for

each concern in the LOC. Transition
points are points in the code where there is

a \concern switch" [19].

Coupling Coupling Between Components
(CBC)

Number of classes and aspects declaring
methods or ¯elds called or accessed by

other components [7].

Size Lines of Code (LOC) Number of lines of code [7].

Design By Contract Lines of

Code (DbCLOC)

Number of lines of code that are relative to

DbC.

Number of Preconditions
(NOPre)

Number of preconditions of each class or
aspect.

Number of Postconditions

(NOPo)

Number of postconditions of each class or

aspect.

Number of Invariants (NOI) Number of invariants of each class or aspect.
Number of Attributes (NOA) Number of attributes of each class or

aspect [7].

Number of Operations (NOO) Number of methods and advice of each class
or aspect [7].

Vocabulary Size (VS) Number of components of the system [7].

922 H. Rebêlo et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

way, supporting the generation of comparable results. The size metric group also

includes metrics for both general system attributes (e.g. Number of Lines of Code)

and metrics that are speci¯c to design by contract such as Number of Preconditions

(NOPre). The size metrics related to DbC are useful to quantify reuse of design by

contract code in existing systems. In addition, this suite introduces three new metrics

for quantifying SoC [45, 14]. They measure the degree to which a single concern

(design by contract, in the case of this study) in the system maps to: (i) components

(i.e. classes and aspects) ��� based on the metric Concern Di®usion over Components

(CDC), (ii) operations (i.e. methods and advice) ��� based on the metric Concern

Di®usion over Operations (CDO), and (iii) lines of code ��� based on the metric

Concern Di®usion over Lines of Code (CDLOC). The majority of these metrics can

be collected automatically by applying an existing measurement tool [13]. Addi-

tionally, we used the AOP metrics tool [1] to collect the coupling (CBC) metric.

The SoC metrics require the manual \shadowing" of the code (i.e. identifying

which segment of code contributes to the DbC concern such as pre- and post-

conditions). Although the mapping of DbC features to the source code is not

completely automated, it is facilitated with tool support [43]. For all the employed

metrics, a lower value implies a better result. Detailed discussions about the metrics

appear elsewhere [45, 19, 14]. The complete description of the gathered data, mea-

surement tools, and shadowed code is also available at [41].

4.1. Quantifying initial modularity

This stage evaluates the modularity of the base versions in order to have an overall

understanding of the modularity attributes of the ¯rst release of each OO and AO

implementations of HW system. Instead of analyzing each individual metric result,

we provide a general view of the meanings behind the results. Figure 6 presents the

modularity results for SoC, coupling, and size in the base version regarding design by

contract crosscutting concern.

The application of the SoC metrics was useful to quantify how e®ective was the

separation of the design by contract concern in the OO and AO implementations of

the HW system (Fig. 6). Hence, a careful analysis of the measures determines that

Fig. 6. Relative SoC, coupling, and size metrics values for design by contract of the base versions of Health

Watcher.

Quantifying the E®ects of Aspectual Decompositions on Design by Contract Modularization 923

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

the AO implementations o®er superior modularity (for all the SoC metrics: CDC,

CDO, and CDLOC) in these initial HW versions.

Regarding coupling, as observed, there is a small di®erence in favor of the AO

implementation of HW system. Aspects reduced the coupling between system classes

by removing the DbC-related code from them. However, the aspects still need to

reference and, thus, are coupled to classes on which they introduce the DbC be-

havior. Hence, we had only 3.90% percentage reduction in favor of AO solution (see

the CBC metric in Fig. 6).

Contradicting the general intuition that aspects make programs smaller due to

reuse [30, 23, 48, 26], the OO version and its counterpart in AO did not present

signi¯cant gains in relation to the four classical metrics: Vocabulary Size (VS),

Number of Operations (NOO), Lines of Code (LOC), and Number of Attributes

(NOA). The VS metric in Fig. 6 shows that the AO implementation needed to de¯ne

9.32% more components (classesþ aspects) than the OO version. This di®erence is

justi¯ed by the presence of several new aspects in the AO implementation of the HW

system. Such aspects are used to modularize the design by contract concern which is

completely tangled and scattered in all the system layers.

The Number of Operations (NOO) grew signi¯cantly in the AO version due to

the modularization of DbC with new mechanisms such as advice. As a result, we

had 25.49% more method-like de¯nitions in the AO version. In the HW system, the

di®erence of the number of LOC was only 1.06% in favor to AO solution. Hence,

even with signi¯cant reuse of design by contract code (illustrated by the speci¯c DbC

size metrics NOPre, NOPos, and NOI), the aspect code used for realizing the DbC

concern requires a lot of extra idioms which led to extra e®ort during implementa-

tion. This ¯nding, contradicts the Lipert and Lopes study [30], on which they had a

reduction of more than 50% in DbC LOC due to reuse. While HW system has

homogeneous contracts that can be signi¯cantly reused, some heterogenous con-

tracts can be harmful to the ¯nal LOC due to the poor reuse and the extra aspect

code needed to \aspectize" the design by contract concern.

Finally, we had no di®erence between the two versions in relation to the Number

of Attributes (NOA) and do not bring any interesting insights. The subsequent

sections will analyze how these modularity properties alter due to the application of

change scenarios (Sec. 3.3).

4.2. Quantifying modularity of change scenarios

After producing an overview of the modularity attributes in the base versions, we

proceeded with the analysis regarding the stability of modularity attributes in the

presence of change scenarios. Generally, any variation to their values is considered

undesirable and indicate instability. However, variations are unavoidable, particularly

when a certain module is the focus of an implementation change. Hence, variation in

the values can be unavoidable or negative. Unavoidable variations occur when a

component that is directly related to the a®ected concern is modi¯ed. For example, if a

924 H. Rebêlo et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

scenario targets the DbC concern (which is the focus of this work), then variations in

the metric for the related modules are generally expected and unavoidable. Since, the

DbC concern crosscuts the entire layer of the HW system among several modules, let

us say that in a particular development phase we are interested on the contracted

modules of the GUI concern. Hence, the change propagation of adding, removing, or

changing a contract in the view related modules are expected and also unavoidable.

However, if unrelated modules are a®ected, these changes should be considered as

being a negative variation. In summary, the approach with most stable design is the

one which minimizes the number of negative variations.

In relation to the change scenarios (discussed in Sec. 3.3), it is important to stress

that we do not consider the change scenario denoted by the HW release 4. Such

scenario is useful to assess in a qualitative and quantitative way the pluggability of

the design by contract concern (Sec. 5.3). Hence, since the last HW release does not

contain the DbC concern anymore, it does not make sense do quantify the SoC,

coupling, and size of this version. In the following we present the most signi¯cant

results for each modularity attribute regarding the other HW change scenarios.

(All the absolute values are available in [41].)

Separation of Concerns. Figure 7 presents the metrics results for the design by

contract concern regarding separation of concerns. It shows that the widely-scoped

crosscutting nature of DbC have presented superior design stability when imple-

mented using AO techniques. In general, the concern di®usion over components

(CDC) metric is less a®ected on AO implementations as the initial modules seem to

cope well with newly introduced scenarios and the changes are localized in these

modules. The concern di®usion over operations (CDO) metrics also presents a very

superior design stability for the AO implementations. This divergence largely comes

from the quanti¯cation properties in AO, where the use of existing pointcut

Fig. 7. Changes in the SoC metrics for the design by contract concern.

Quantifying the E®ects of Aspectual Decompositions on Design by Contract Modularization 925

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

declarations eliminates the need for declaring operations (advice in this case). Even

though the evolution scenario (denoted by the HW release 2) extends the system

with six new use cases, quite few aspect-like methods were introduced. Hence, the AO

design remained stable even when new functionalities are added. The results for

concern di®usion over lines of code (CDLOC) provide additional evidence that AO

implementations present better stability.

Coupling and Size Measures. Both OO and AO implementations present very

similar stability with respect to Coupling Between Components (CBC) and size

metrics. Figure 8 illustrates the curves results for coupling and size metrics of Health

Watcher. The CBC graphic shows that the AO implementations fared better, but in a

not very signi¯cant way. It happensmainly because, althoughmany aspects reduce the

coupling of system classes by modularizing the design by contract crosscutting con-

cern, they still reference the classes in which they introduce some behavior. Despite the

small di®erence between OO andAO regarding coupling, the AO implementation tend

to be better while applying the changing scenarios. This happens because during the

maintenance activities performed by the changing scenarios, it was observed that no

new aspects were created and the existing ones provide few heterogenous DbC fea-

tures. As a result, even though the VS graphic shows that the OO implementations

performed better than AO, the di®erence between them remained constant (due to

zero new aspects). Hence, the increase in the VS metric is justi¯ed by the introduction

of aspects to modularize the DbC concern. The same reason justi¯es the worse results

of AO implementations in relation to the Number of Operations (NOO) metric. The

main di®erence is that this metric varies in each release due to some heterogenous

contracts and changes scenarios (e.g. adding/removing functionalities).

Last but not least, the Lines of Code (LOC) values present not signi¯cant gains

for AO implementations. It is often claimed that AO solutions tend to have less LOC

Fig. 8. Coupling and size metrics variation through the analyzed 4 Health Watcher releases.

926 H. Rebêlo et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

due to reuse [30, 23, 48, 26]. However, in the context of design by contract imple-

mentations we do not see this e®ect. Even with higher reuse performed by the use of

aspects (discussed in the following), the heterogenous contracts and the extra code

used to expose the intercepted join points as well as their context information tend to

increase the lines of code related to contract concern.

Size Measures for Design by Contract Concern. Figure 9 presents the

results related to design by contract reuse. Observing the curves, AO implementa-

tions have much more stable values for all the DbC-related size metrics. The overall

DbC Lines of Code (DbCLOC) shows that the AO implementations tend to be better

after maintenance activities. This metrics take into account not only the code of pre-

and postconditions, and invariants, but all the DbC related code involved for the

realization of such concern. In the case of aspects, we mention all the code related to

expose the intercepted join points and their context values. Due to this extra code,

the gains of AO implementations were minimized against OO ones. However, when

analyzing the reuse of DbC features, we can observe that the AO implementations

fare better than OO implementations regarding pre- and postconditions, and

invariants reuse. Also, the preconditions and invariants presents the higher reuse of

the overall DbC code. The main reason is due to heterogenous contracts being more

present in postconditions. Despite this, we had a mean of 42.44% of reuse of post-

conditions. In summary, the design by contract concern tend to be very stable when

implemented with AO in all change scenarios analyzed.

5. Change Impact Analysis

Section 2.3 described how the assessment phase were organized in three stages. This

section presents the last stage where we quantitatively analyze to what extent each

maintenance scenario entails change propagation in the OO and AO HW

Fig. 9. Speci¯c size metrics for quantifying design by contract reuse.

Quantifying the E®ects of Aspectual Decompositions on Design by Contract Modularization 927

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

implementations. This phase relies on a suite of typical change impact measures [53],

such as number of components (classes and aspects) added or changed, number of

added or modi¯ed lines of code (LOC), and so forth. The purpose of using these

metrics is to quantitatively assess the propagation e®ects when introducing or

changing a speci¯c feature, in terms of di®erent granularities: components, opera-

tions, and LOC. Besides, the suite includes metrics to assess the changes in pointcuts

and mainly related to DbC feature declarations (e.g. preconditions). The lower the

change impact measures the more stable the design is to a certain change.

It is important to note that this change propagation metrics is related exclusively

to measure the impact of the design by contract concern in the overall HW system.

For instance, once a component is added to a change scenario, it is only considered if

it contains DbC-related code; otherwise it is discarded from the assessment.

Table 3 shows the change propagation in the Health Watcher design as it evolves

through the change scenarios (Table 1). In order to analyze the results more closely

and to identify speci¯c reasons for the applied changes, we classi¯ed the scenarios

into three groups: adherence of Open-Closed principle [33] (Sec. 5.1), comparison

when implementing a perfective change (Sec. 5.2), and quantifying DbC pluggability

(Sec. 5.3).

Table 3. Measures of change propagation in Health
Watcher.

928 H. Rebêlo et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

5.1. Adherence to the open-closed principle

AO solutions generally require more new components to implement a change. In

comparison the OO implementation require existing components to be modi¯ed more

extensively to implement the same change. This behavior is con¯rmed in the change

propagation metrics (Table 3) whereby much more extensive changes (in terms of

added operations and LOC) occur in the OO implementations. Up to 80% fewer

operations and up to 51.54% fewer LOC (note that this LOC is only related to DbC

features such as preconditions) are added in the AO implementations throughout the

scenarios. This indicates that the AO solutions conform more closely to the Open-

Closed principle [33] which states that \software should be open for extension, but

closed for modi¯cation".

The change scenario which best illustrates this di®erence is denoted by the HW

release 2 (CS2). The purpose of this scenario is to add six new contracted use cases to

the HW system. This involves modifying a sub-set of the HW classes in all layers

(which is acceptable to perform evolution). However, the OO implementation

requires further modi¯cation to add features related to the design by contract con-

cern. The AO implementation is able to quantify and capture these changes in-

volving DbC features via pointcuts rather than modifying existing ones in the base

code. Moreover, still regarding change scenario 2, the AO solution is still superior in

terms of added (DbC) LOC.

5.2. Comparison between OO and AO when implementing

perfective changes

When considering refactorings and improvements to the overall design of the HW

system (the addition of two adapter patterns [2] and two factory patterns [18]) in terms

of extensibility and reusability, the AO solution fared better than its counterpart in

OO. Observing the change propagation values of the CS1 (change scenario 1), we can

note that in the OO version we needed to add much more DbC features to new com-

ponents; whereas in AO version, we just reused the existing ones. One crucial evidence

of the bene¯ts of the AO implementation is related to the number of added DbC

features. We had to add 217 features in OO against only 14 in AO version. This

indicates an evidence that the AO solution tend to be much more stable in relation to

propagation changes involving perfective changes than OO solution. Also, this shows

that, in contrast to the OO solution, the existing aspects could be easily expanded to

incorporate new features.

5.3. Quantifying design by contract pluggability

Finally, the AO implementations are clearly superior in the change scenarios CS3

and CS4, which basically involves the partial and total removal of the design by

contract concern. The change scenario CS3 is responsible for removing a use case in

the HW system and its DbC-related code. The change scenario CS4 goes beyond

Quantifying the E®ects of Aspectual Decompositions on Design by Contract Modularization 929

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

where it completely removes the design by contract concern of the ¯nal production

HW system. We consider that a design by contract code is completely removed from

the system when we exclude or comment the lines of code related to its realization

on classes or aspects. Hence, as observable in Table 3, the e®ort to unplug or plug a

DbC feature such as preconditions is much easier in the AO implementation of HW

system. We need less changes in components, and also fewer lines of code need to be

eliminated to partial or complete remove the DbC concern from the HW system.

Even though an aspect declaration has a lot of pointcuts, advice, and DbC-related

features, the e®ort to completely unplug the design by contract concern in practice is

to remove 11 aspects from the HW build and remove the class which encapsulate all

the DbC operations; whereas in the OO version, we need to make 67 invasive changes

to OO classes to remove several lines of code related to DbC.

6. Discussions and Lessons Learned

This section presents an overall analysis of the previously observed results on

the application of the modularity and change propagation metrics, described in

Secs. 4 and 5. We present discussions on the e®ects of AO decomposition on DbC

modularization in di®erent maintainability facets of the Health Watcher system.

Furthermore, we discuss the constraints on the validity of our empirical case

study.

6.1. Observing ripple e®ects

A further analysis performed in this study was related to identify possible ripple-

e®ects caused by changes that propagate between unrelated modules. As explained,

if a change targets the HW Servlets, it would be expected to have changes localized

to the view layer. Any other particular change that is propagated to other concerns

(other layers) is considered a negative change.

This notion is illustrated in the change scenario 2, which focuses on modifying

the HW layers to add new use cases. The activity to add constrained modules

(contracted classes and methods) is performed by one layer (concern) at a time. For

instance, there are situations where the view layer is under modi¯cation to adhere the

new constrained modules, but the DbC features (such as preconditions) are propa-

gated to other layers such as the business layer. More speci¯cally, in the view layer

there is an interface called IFacade, but as a limitation of the OO decomposition,

we cannot add any precondition to this component, so we should propagate this

change to the modules a®ected (the classes which implement such interface) by such

interface. As a result, we have two classes implementing this interface: the RMI-

ServletAdapter in the same view layer and the HealthWatcherFacade class in the

business layer. This way, the attempt to add a precondition to a method of the

IFacade interface, results in changes in two components, one of them localized in

another unrelated layer (the business layer where the HealthWatcherFacade class is

930 H. Rebêlo et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

declared). In the same sense, while reasoning about the correctness of a method at

the RMIServletAdapter class, if we change a precondition in this class, we might

change the related precondition in the HealthWatcherFacade class as well. Thus,

these result in negative changes caused by OO ripple-e®ects. These negative changes

can be avoided in AO implementation since AspectJ-like languages can instrument

an interface and its hierarchy.

However, within the change scenario 1, which focuses on refactoring and im-

provement by the addition of design patterns [2, 18], such as adapter [2] and abstract

factory [18], we can observe in Table 3 that the AO solution also presents some

ripple-e®ects. We had to change 9 existing components (aspects), whereas only one

class in the OO version had to be changed. Pointcut fragility [49, 22, 37] is the

signi¯cant factor that contributes to these AO ripple-e®ects. The object-oriented

refactorings [17] invalidate pointcuts that are used to apply to the existing DbC

concern. This results in unintuitive changes having to be made. This is one of the

trade-o® that must be considered while adopting AO techniques. Future AO tech-

niques could take this pointcut fragility into account and allow more robust pointcut

speci¯cations, thus avoiding undesirable ripple-e®ects. Once this AO ripple-e®ect is

handled with refactoring of AO code to expose the refactored join points in the OO

version, we can observe that the remaining change propagation results fared better

for AO solution (as explained in Sec. 5.2).

Generally, we can conclude that ripple-e®ects occur in both OO and AO imple-

mentations in practice. The modularized design by contract concern within the AO

versions can be broken by OO refactorings resulting in less obvious changes to un-

related components. In turn the OO versions can also require unrelated changes

to other modules (e.g. business layer) while changing, for example, a precondition

localized at the HW's view layer.

6.2. Design by contract aspects reuse versus lines of code

We have observed that the presence of reusable pointcuts brought some bene¯ts

when the HW system was modi¯ed. In the AO versions of the HW system, there are

sets of reusable pointcut declarations related to the design by contract concern.

These aspects have drastically contributed to the decrease in the overall number of

DbC features of each ¯nal system after the application of the respective change

scenario. These bene¯ts can be observed in the complete analysis of all the change

scenarios of the HW system. As a result, we had a reuse of invariants in each AO

implementation higher than 90%, which give us an overall mean of 93.81% of reuse

against OO decompositions when modularizing the design by contract concern.

Despite the fact we had signi¯cant gains of SoC metrics and reuse of DbC features

in favor of the AO implementations of HW system, we found out that reusing con-

tracts in some cases can be more di±cult than usually advertised [30]. Contracts

reuse depends directly on their types (e.g. postconditions) and mainly if such con-

tracts is homogeneous or heterogenous [9]. Since an invariant crosscuts several

Quantifying the E®ects of Aspectual Decompositions on Design by Contract Modularization 931

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

methods in a single class, it is naturally more reusable than pre- and postconditions

that are relative to one or few particular methods. Hence, the reuse of pre- and

postconditions are directly related to their homogeneity [9]. In other words, if several

constrained methods present an intersection of common contracts, their reusability

can be improved. As an example, similarly to Lippert and Lopes [30], we found that

several methods in HW present the following homogeneous postcondition: JC.

ensures(result !¼ null). This postcondition states that every method using this

contract must return an object that is non-null. The same situation also occurred for

preconditions on input object parameters.

In the HW system we observed that the reuse of postconditions was quite low

(a mean of 50%) when compared with preconditions (more than 80%) and invar-

iants (93.81%). This scenario happens due to postconditions in HW being more

heterogenous than preconditions or invariants. With this ¯nding, we can conclude

that the more heterogenous is a contract, its reuse with AO programming is

minimized. We discuss bene¯cial and harmful scenarios of DbC aspectization in

Sec. 6.4.

Lippert and Lopes [30] discuss that by using AO decompositions they could re-

duce more than 50% of the total design by contract LOC due to the reuse. However,

contradicting this general intuition that aspects make programs considerably smaller,

we found that despite the higher reuse of DbC concern (as previously discussed) with

the AO versions of HW system, the gains in terms of the overall system LOC was only

2.65% and 18% considering exclusively the LOC of DbC concern. This was a directly

consequence of heterogenous contracts and the extra LOC used to intercept the

constrained join points, the contextual information, etc. [23].

6.3. Stability and scalability of the design by contract concern

One of the most signi¯cant results from the applied stability metrics is the number of

unique AO components modi¯ed through the four scenarios applied. Since the base

version, no new aspects were added to the HW system. Every change was inserted on

existing design by contract aspects. Another point to highlight was the reuse

achieved by the AO solution. Quite few DbC features were added to existing aspects

due to quanti¯cation properties which enabled the higher reusability performed by

the AO solution (also highlighted in the previous Sec. 6.2).

Similarly, when analyzing the change scenarios in terms of LOC, the AO solution

again showed more stability in comparison to OO. This happens even when the

aspect code needs to cope with more extra codeb to expose the intercepted join

points. The overall reduction of LOC in favor of AO was only 24%, but the reus-

ability achieved by the quanti¯cation properties made this few reduction worthwhile

when adding, for example, new preconditions and invariants.

bWe mean by extra code the code used to expose the join points using pointcuts and the behavior written

within the advice.

932 H. Rebêlo et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

In order to analyze the scalability of both OO and AO implementations in the

change scenarios when referring to design by contract concern, we have used the

collected values of both SoC and change propagation metrics. We consider a solution

as scalable if the evolution of its implementations did not impact a number of

modules that is higher than the number of modules a®ected before the changes.

Comparing the obtained results in the base and change versions of the HW, we

observed that the AO implementations were much more scalable than the OO ones.

For instance, the CDC values shows that the OO implementations required changes

in more components than AO implementations.

6.4. Representative scenarios

This section presents some examples of scenarios that were identi¯ed during the

process of refactoring Health Watcher. These scenarios represent recurring situations

in which a developer would have to deal with if faced with the task of modularizing

design by contract code using aspects. Each scenario template consists of two sides:

(i) left-hand side includes some design by contract code from the OO version of

Health Watcher, and (ii) right-hand side which includes a code snippet from the AO

version showing the result of moving design by contract to an aspect. We have

identi¯ed some scenarios in Health Watcher and classi¯ed each one as bene¯cial or

harmful, according to the quality of the AO implementation (based on the metrics),

when compared to the OO one.

A Bene¯cial Scenario. Figure 10 shows a scenario where the use of aspects is

advantageous. In this scenario, in the left-hand side of the template, the three

marked preconditions are used to check the nullity of the input parameters of the

three methods illustrated in the class Employee (e.g. JC.requires(name ! ¼ null) for

the method setName). Therefore, it is straightforward to implement these homoge-

nous preconditions with a single before advice in the AO version (as illustrated in

the right-hand side of the refactoring template).

It is easy to note that the e®ect of the scenario presented in Fig. 10 on the values

of some of the employed metrics is either positive, negative or neutral. For instance,

the separation of concerns metrics tend to be better for the AO version after

refactoring, but only for the CDLOC metric (since the tangling was removed). The

CDC and CDO metrics in this case are neutral due to the concern is realized by

always one component (class or aspect) and one operation (method or advice). The

number of preconditions shows that we decreased in 2 in the AO implementation

(only 1 precondition after refactoring) in contrast to the same 3 preconditions in the

OO version. Furthermore, the AO implementation has fewer couplings than in OO

version, because it does not refer to the class JC anymore. Finally, the measures for

the size metrics are worse in the AO version, even though we have reuse of pre-

conditions (3 references in OO to only 1 in AO). This refactoring code clearly

exemplify several ¯ndings we had with the entire AO versions of Health Watcher

system.

Quantifying the E®ects of Aspectual Decompositions on Design by Contract Modularization 933

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

A Harmful Scenario. Figure 11 shows a scenario where the aspectization of the

design by contract code brings more harm than good. The left-hand side of the

template illustrates three marked postconditions that should be enforced when

calling the constructor of class Address. Since these postconditions refer to speci¯c

attributes of the class Address, there is no bene¯t with its aspectization. After

refactoring (right-hand side of the template), we still have the same three post-

conditions. Since no reuse is possible due to the heterogeneity nature of the post-

conditions, the number of LOC also grows and tend to be even worse when compared

with the previous scenario. The application of SoC metrics to this example is neutral,

except by the CDLOC metric as in the discussed bene¯cial scenario. In the end, the

overall e®ect of this refactoring was only to increase the complexity of the design by

contract concern. The only bene¯t achieved by this example was the physical sep-

aration of concerns, but without reuse and quanti¯cation properties of AspectJ-like

languages [23].

Fig. 10. A scenario where aspectization is bene¯cial.

934 H. Rebêlo et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

6.5. Study constraints

In what follows, we present the threats to validity of our study.

External Validity. First, there is a threat to external validity that we used only

one system, which is di±cult to draw general conclusions. The HW system is a good

candidate for empirical studies due to the good documentation and resources available

[20]. Even though the Health Watcher system is representative in terms of the applied

contracts and scenarios of changes, we can have systems that the modularization of

contracts by aspects is not worthwhile as explained by harmful scenarios in the

previous section. Hence, a reader is encouraged to analyze the bene¯ts and drawbacks

of the \aspectization" of a particular system. So, it is desirable to involve more

systems and more approaches to complement this study. Second, the scope of our

experience is limited to Java and AspectJ languages. With respect to design by

contract features, our experience only considered the implementation of pre-, post-

conditions, and invariants. Our results may potentially generalize to other OO and

AO languages and design by contract features, though that requires further analyses.

Internal Validity. The authors implemented the contracts in the HW system,

which is a threat to internal validity. However, we minimize this threat since we

followed the HW requirements documentation, which contains information with

Fig. 11. A scenario where aspectization is harmful.

Quantifying the E®ects of Aspectual Decompositions on Design by Contract Modularization 935

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

respect to pre- and postconditions. Hence, we did not infer any contract (e.g. a

precondition). We implemented all contracts according to the documentation [20].

As explained, this was one of the main reasons to use the Health Watcher system in

this study.

Conclusion Validity. The applicability, usefulness, and representative of the

set of the metrics used in this study can be questioned. However, due to the nature of

the study and the fact that separation of concerns and change propagation are

central to this study, the design by contract crosscutting concern was naturally the

one which varied most. Hence, we used a set of metrics related to separation of

concerns and change propagation to better assess the design stability of the DbC

code throughout the changes. It is important to note that the multi-dimensional

analysis conducted by this work allowed us to grasp which measurement outliers

were signi¯cant and those which were not. In fact, when concluding from the results

we have considered all the gathered data and never relied upon one single piece of

data from this set. In addition, the SoC metrics described in Sec. 4 have already been

proved to be e®ective quality indicators in several case studies [19, 26, 15, 20, 8].

7. Related Work

The current body of empirical knowledge on AO explain how the use of aspect

decompositions supports the separation of classical crosscutting concerns such as

distribution [48, 47], persistence [36, 47], concurrency [25, 47], and design by contract

[23, 3, 11, 42, 38, 40]. However, such works do not analyze other e®ects and stringent

quality indicators in the resulting AO systems. In addition, they do not quantify the

positive and negative e®ects of AO techniques in the presence of widely-scoped

changes.

As a result, a number of quantitative empirical assessments have been carried out

to compare OO and AO designs, such as exception handling [15, 16, 8], design

patterns [19, 5], use cases [10], and other crosscutting concerns [26, 20]. These works

[26, 20] also analyze quantitatively the scalability of AO by implementing several

diverse changes. In addition to the traditional quantitative modularity metric suites

[45, 19, 26, 20, 14] such as separation of concerns, coupling, cohesion, and concise-

ness, researchers have proposed new quantitative modularity measures [50, 51, 6, 46].

Sullivan et al. proposed the application of net option value (NOV) [50, 51]

analysis to measure software modularity. The idea is that a module creates value in

the form of options: one has the right but not the obligation to replace a module with

a new/better version. The more likely a module is subject to change and the more

independent it is, the higher option value can be generated. Their analysis is based on

design structure matrix (DSM) models where both design and environmental con-

ditions, such as requirements, are uniformly modeled as design variables. Cai et al. [6]

proposed modularity vector so that design evolution can be simulated and the impact

of changes can be predicted based on the variations of NOV values and other

measurements. As a simpli¯ed variation of NOV analysis, Sethi et al. [46] proposed

936 H. Rebêlo et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

new modularity measurements, such as design volatility, concern scopes and inde-

pendence level, based on DSM models there both concerns and designs are uniformly

modeled. These measurements were used to quantitatively assess which program-

ming paradigm, AO, versus OO, is more stable under given changes and which one

can generate higher option values from design level.

However, none of this body of quantitative studies consider design by contract

concern as we do in this work. In this context, the most well-known study focusing on

the interplay between design by contract and AO was performed by Lippert and

Lopes [30]. They used AO techniques to modularize design by contract features such

as pre- and postconditions in a large OO framework, called JWAN. Also, they

attempted to identify situations where it was easy to aspectize design by contract

code. However, it has some shortcomings that hinder its results to be extrapolated to

the development of real-like software systems. First, the target of the study was a

system where the design by contract is only homogeneous (not application-speci¯c).

However, contracted systems can contains heterogeneous DbC (application-speci¯c)

such those we found in the Health watcher [20]. Second, their evaluation only con-

sidered pre- and postconditions, whereas we also include invariants in our analysis.

Third, their overall assessment was performed only in terms of pluggability and

incremental development. Quantitative evaluation was performed only in terms of

number of LOC. The use of LOC in isolation is usually the target of severe criticisms

[52]. For instance, in the context of the Lippert and Lopes study, the use of LOC as

the sole metric resulted in a narrow view of the e®ects of the aspectization of design

by contract on the program quality. They portrayed that the AO decompositions as

very superior to OO decompositions regarding system size.

8. Concluding Remarks

In this paper, we presented an empirical case study to assess various facets of design

by contract modularity of object-oriented and aspect-oriented implementations of a

real-life system to empirically understand their positive and negative e®ects through

design changes. This study was the ¯rst to include a quantitative and qualitative

analysis of the aspectization of design by contract concern and also with an analysis

of the implementations regarding modularity and change propagation.

From this analysis we have discovered a number of interesting outcomes. Firstly,

the AO implementations tend to have a more stable design when implementing the

design by contract crosscutting concern. Furthermore, changes tended to be much

less intrusive and more simplistic in the AO implementations. This indicates that

aspectual decompositions are superior especially when considering the Open-Closed

principle. In certain circumstances aspectual decompositions tended to propagate to

unrelated components due to ripple-e®ects caused by OO refactorings. In addition,

even with higher reuse, AO implementations tended to present no signi¯cant gains

regarding system and design by contract size in relation to OO decompositions as

usually advertised by the literature. The overall conclusion regarding design by

Quantifying the E®ects of Aspectual Decompositions on Design by Contract Modularization 937

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

contract modularity is that aspect decompositions tended to be much better than

OO in relation to several realistic maintenance scenarios leading to a more stable

design by contract implementation.

One of the most immediate future work is to derive a predictive model for using

aspects to implement design by contract, based on our experience of this study.

Hence, developers may recognize the situations where it is advantageous to aspectize

design by contract code. In addition, we intend to augment our change scenarios in

order to contemplate more kinds and combination changes. Furthermore, we also

intend to investigate the modularization of design by contract concern in other kinds

of system domains such as Software Product Lines.

Acknowledgments

This work is partially supported by INES, funded by CNPq and FACEPE, under

Grants 573964/2008-4 and APQ-1037-1.03/08. Henrique Rebêlo is also supported by

FACEPE under Grant No. IBPG-1664-1.03/08. Ricardo Lima is also supported

by CNPq under Grant No. 314539/2009-3. The work of Yuanfang Cai is supported

by the National Science Foundation under Grants CCF-0916891 and DUE-0837665.

Appendix A. Online Appendix

We invite researchers to replicate our case study. Source code of the OO and AO

versions of the HW system, used measurement tools, shadowed code, and our results

are available in [39].

References

1. Aop metrics tool. Available from: http://aopmetrics.tigris.org/.
2. V. Alves and P. Borba, Distributed adapters pattern: A design pattern for object-oriented

distributed applications, in Proceedings of the 1st Latin American Conference on Pattern
Languages of Programming, SugarLoafPLoP '01, 2001.

3. L. C. Briand, W. J. Dzidek and Y. Labiche, Instrumenting contracts with aspect-oriented
programming to increase observability and support debugging, in Proceedings of the 21st
IEEE International Conference on Software Maintenance, Washington, DC, USA, 2005,
IEEE Computer Society, pp. 687–690.

4. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M. Stal, Pattern-Oriented
Software Architecture: A System of Patterns (John Wiley & Sons, New York, 1996).

5. N. Cacho, C. Sant'Anna, E. Figueiredo, A. Garcia, T. Batista and C. Lucena, Composing
design patterns: A scalability study of aspect-oriented programming, in Proceedings of
the 5th International Conference on Aspect-Oriented Software Development, AOSD '06,
New York, NY, USA, ACM, 2006, pp. 109–121.

6. Y. Cai, S. Huynh and T. Xie, A framework and tool supports for testing modularity of
software design, in Proceedings of the Twenty-Second IEEE/ACM International Con-
ference on Automated Software Engineering, ASE '07, New York, NY, USA, ACM, 2007,
pp. 441–444.

7. S. R. Chidamber and C. F. Kemerer, A metrics suite for object oriented design, IEEE
Trans. Softw. Eng. 20 (1994) 476–493.

938 H. Rebêlo et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

8. R. Coelho, A. Rashid, A. Garcia, F. Ferrari, N. Cacho, U. Kulesza, A. Staa and
C. Lucena, Assessing the impact of aspects on exception °ows: An exploratory study, in
Proceedings of the 22nd European Conference on Object-Oriented Programming
(ECOOP '08), 2008, pp. 207–234.

9. A. Colyer, A. Rashid and G. Blair, On the separation of concerns in program families,
Technical report COMP-001-2004, Computing Department, Lancaster University, 2004.
Available at: http://www.comp.lancs.ac.uk/computing/aose/papers/COMP-001-2004.
pdf.

10. F. d'Amorim and P. Borba, Modularity analysis of use case implementations, in Software
Components, Architectures and Reuse (SBCARS), 2010 Fourth Brazilian Symposium,
2010, pp. 11–20.

11. Y. A. Feldman, O. Barzilay and S. Tyszberowicz, Jose: Aspects for design by contract 80-
89, in Proceedings of the Fourth IEEE International Conference on Software Engineering
and Formal Methods, Washington, DC, USA, 2006. IEEE Computer Society, pp. 80–89.

12. E. Figueiredo, N. Cacho, C. Sant'Anna, M. Monteiro, U. Kulesza, A. Garcia, S. Soares, F.
Ferrari, S. Khan, F. C. Filho and F. Dantas, Evolving software product lines with aspects:
An empirical study on design stability, in Proceedings of the 30th International Conference
on Software Engineering (ICSE '08), New York, NY, USA, ACM, 2008, pp. 261–270.

13. E. Figueiredo, A. Garcia and C. Lucena, Ajato: An aspectj assessment tool, in Pro-
ceedings of the 20th European Conference on Object-Oriented Programming (ECOOP
'06), 2006.

14. E. Figueiredo, C. Sant'Anna, A. Garcia, T. T. Bartolomei, W. Cazzola and A. Marchetto,
On the maintainability of aspect-oriented software: A concern-oriented measurement
framework, in Proceedings of the 12th European Conference on Software Maintenance
and Reengineering, Washington, DC, USA, IEEE Computer Society, 2008, pp. 183–192.

15. F. C. Filho, N. Cacho, E. Figueiredo, R. Maranhão, A. Garcia and C. M. F. Rubira,
Exceptions and aspects: The devil is in the details, in Proceedings of the 14th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, SIGSOFT
'06/FSE-14, New York, NY, USA, ACM, 2006, pp. 152–162.

16. F. C. Filho, A. Garcia and C. M. F. Rubira, Extracting error handling to aspects: A
cookbook, in ICSM, 2007, pp. 134–143.

17. M. Fowler, Refactoring: Improving the Design of Existing Code (Addison-Wesley Long-
man, Boston, MA, 1999).

18. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software (Addison-Wesley Longman, Boston, 1995).

19. A. Garcia, C. Sant'Anna, E. Figueiredo, U. Kulesza, C. Lucena and A. von Staa, Mod-
ularizing design patterns with aspects: A quantitative study, in Proceedings of the 4th
International Conference on Aspect-Oriented Software Development (AOSD '05), New
York, NY, USA, ACM, 2005. pp. 3–14.

20. P. Greenwood, T. Bartolomei, E. Figueiredo, M. Dosea, A. Garcia, N. Cacho, C. Sant'
Anna, S. Soares, P. Borba, U. Kulesza and A. Rashid, On the impact of aspectual
decompositions on design stability: An empirical study, in Proceedings of the 21st
European Conference on Object-Oriented Programming, LNCS, Springer-Verlag, 2007,
pp. 176–200.

21. C. A. R. Hoare, An axiomatic basis for computer programming, Commun. ACM 12(10)
(1969) 576–580.

22. A. Kellens, K. Mens, J. Brichau and K. Gybels, Managing the evolution of aspect-oriented
software with model-based pointcuts, in ECOOP, 2006, pp. 501–525.

23. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm and W. Griswold, Getting
started with aspectj, Commun. ACM 44 (2001) 59–65.

Quantifying the E®ects of Aspectual Decompositions on Design by Contract Modularization 939

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

24. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier and
J. Irwin, Aspect-oriented programming, in European Conference on Object-Oriented
Programming (ECOOP), Lecture Notes in Computer Science, Vol. 1241, pp. 220–242.

25. J. Kienzle and R. Guerraoui, Aop: Does it make sense? The case of concurrency and
failures, in Proceedings of the 16th European Conference on Object-Oriented Program-
ming (ECOOP '02) London, UK, 2002, pp. 37–61.

26. U. Kulesza, C. Sant'Anna, A. Garcia, R. Coelho, A. von Staa and C. Lucena, Quantifying
the e®ects of aspect-oriented programming: A maintenance study, in Proceedings of the
22nd IEEE International Conference on Software Maintenance, Washington, DC, USA,
2006, pp. 223–233.

27. Y. L. Traon, B. Baudry and J.-M. Jezequel, Design by contract to improve software
vigilance, IEEE Trans. Softw. Eng. 32 (2006) 571–586.

28. G. T. Leavens, A. L. Baker and C. Ruby, Preliminary design of JML: A behavioral
interface speci¯cation language for Java 31(3) (2006) 1–38.

29. T. Lima, V. Alves, S. Soares and P. Borba, Pdc: Persistent data collections pattern, in
Proceedings of the 1st Latin American Conference on Pattern Languages of Program-
ming (SugarLoafPLoP '01), 2001.

30. M. Lippert and C. V. Lopes, A study on exception detection and handling using aspect-
oriented programming, in Proceedings of the 22nd International Conference on Software
Engineering, (ICSE '00), New York, NY, USA, 2000, pp. 418–427.

31. M. Marin, L. Moonen and A. van Deursen, A classi¯cation of crosscutting concerns, in
Proceedings of the 21st IEEE International Conference on Software Maintenance,
Washington, DC, USA, 2005, pp. 673–676.

32. B. Meyer, Applying \design by contract", Computer 25(10) (1992) 40–51.
33. B. Meyer, Object-Oriented Software Construction (2nd edn.) (Prentice-Hall, NJ, 1997).
34. M. Mezini and K. Ostermann, Conquering aspects with Caesar, in Proceedings of the 2nd

International Conference on Aspect-Oriented Software Development (AOSD '03), New
York, NY, USA, 2003, pp. 90–99.

35. M. P. Monteiro and J. M. Fernandes, Towards a catalog of aspect-oriented refactorings,
in Proceedings of the 4th International Conference on Aspect-Oriented Software Devel-
opment (AOSD '05), New York, NY, USA, 2005, pp. 111–122.

36. A. Rashid and R. Chitchyan, Persistence as an aspect, in Proceedings of the 2nd Inter-
national Conference on Aspect-Oriented Software Development (AOSD '03), New York,
NY, USA, 2003, pp. 120–129.

37. H. Rebêlo, R. Lima, M. Corn�elio, G. T. Leavens, A. Mota and C. Oliveira, Optimizing
generated aspect-oriented assertion checking code for JML using program transforma-
tions: An empirical study. Sci. Comput. Program., 2012. Accepted to appear. Also
available as a TR at: http://www.eecs.ucf.edu/�leavens/tech-reports/UCF/CS-TR-10-
01/TR.pdf.

38. H. Rebêlo, R. Lima, U. Kulesza, R. Coelho, A. Mota, M. Ribeiro and J. E. Araujo, The
contract enforcement aspect pattern, in Proceedings of the 8th Latin American Confer-
ence on Pattern Languages of Programming (SugarLoafPLoP '10), 2010, pp. 99–114.

39. H. Rebêlo, R. Lima, U. Kulesza, M. Ribeiro, Y. Cai, R. Coelho, C. Sant'Anna and A.
Mota, Aspectized contracts and maintenance. Available from: http://cin.ufpe.br/
�hemr/ijseke13.

40. H. Rebêlo, R. Lima and G. T. Leavens, Modular contracts with procedures, annotations,
pointcuts and advice, in SBLP '11: Proceedings of the 2011 Brazilian Symposium on
Programming Languages. Brazilian Computer Society, 2011.

940 H. Rebêlo et al.

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

41. H. Rebêlo, R. M. F. Lima, U. Kulesza, C. Sant'Anna, R. Coelho, A. Mota, M. Ribeiro and
C. A. L. Oliveira, Assessing the impact of aspects on design by contract e®ort: A quan-
titative study, in SEKE, 2011, pp. 450–455.

42. H. Rebêlo, S. Soares, R. Lima, L. Ferreira and M. Corn�elio, Implementing Java modeling
language contracts with aspectj, in Proceedings of the 2008 ACM Symposium on Applied
Computing (SAC '08), 2008, pp. 228–233.

43. M. P. Robillard and G. C. Murphy, Representing concerns in source code, ACM Trans.
Softw. Eng. Methodol. 16 (2007).

44. D. S. Rosenblum, A practical approach to programming with assertions, IEEE Trans.
Softw. Eng. 21 (1995) 19–31.

45. C. Sant'Anna, A. Garcia, C. Chavez, C. Lucena and A. V. von Staa, On the reuse and
maintenance of aspect-oriented software: An assessment framework, in Proceedings of
XVII Brazilian Symposium on Software Engineering, 2003, pp. 19–34.

46. K. Sethi, Y. Cai, S. Wong, A. Garcia and C. Sant'Anna, From retrospect to prospect:
Assessing modularity and stability from software architecture, in WICSA/ECSA, 2009,
pp. 269–272.

47. S. Soares et al., Distribution and persistence as aspects, Softw. Pract. Exper. 36(7) (2006)
711–759.

48. S. Soares, E. Laureano and P. Borba, Implementing distribution and persistence aspects
with aspectj, SIGPLAN Not. 37 (2002) 174–190.

49. M. St€orzer and C. Koppen, Pcdi®: Attacking the fragile pointcut problem, abstract, in
European Interactive Workshop on Aspects in Software, Berlin, Germany, September
2004.

50. K. J. Sullivan, W. G. Griswold, Y. Cai and B. Hallen, The structure and value of mod-
ularity in software design, in Proceedings of the 8th European Software Engineering
Conference Held Jointly with 9th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, ESEC/FSE-9, New York, NY, USA, 2001, pp. 99–108.

51. K. J. Sullivan, W. G. Griswold, Y. Cai and B. Hallen, The structure and value of mod-
ularity in software design, SIGSOFT Softw. Eng. Notes 26 (2001) 99–108.

52. C. Wohlin, P. Runeson, M. H€ost, M. C. Ohlsson, B. Regnell and A. Wessl�en, Experi-
mentation in Software Engineering: An Introduction (Kluwer Academic, Norwell, MA,
2000).

53. S. S. Yau and J. S. Collofello, Design stability measures for software maintenance, IEEE
Trans. Softw. Eng. 11 (1985) 849–856.

Quantifying the E®ects of Aspectual Decompositions on Design by Contract Modularization 941

In
t.

J.
 S

of
t.

E
ng

. K
no

w
l.

E
ng

. 2
01

3.
23

:9
13

-9
41

. D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 F
E

D
E

R
A

L
 D

A
 B

A
H

IA
 o

n
05

/0
8/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.

	QUANTIFYING THE EFFECTS OF ASPECTUAL DECOMPOSITIONS ON DESIGN BY CONTRACT MODULARIZATION:
	1. Introduction
	2. Experimental Settings
	2.1. Aspectizing design by contract
	2.2. Target system selection
	2.3. Assessment procedures

	3. Health Watcher System
	3.1. OO architectural design
	3.2. AO architectural design
	3.3. Change scenarios

	4. Modularity Analysis
	4.1. Quantifying initial modularity
	4.2. Quantifying modularity of change scenarios

	5. Change Impact Analysis
	5.1. Adherence to the open-closed principle
	5.2. Comparison between OO and AO when implementing perfective changes
	5.3. Quantifying design by contract pluggability

	6. Discussions and Lessons Learned
	6.1. Observing ripple effects
	6.2. Design by contract aspects reuse versus lines of code
	6.3. Stability and scalability of the design by contract concern
	6.4. Representative scenarios
	6.5. Study constraints

	7. Related Work
	8. Concluding Remarks
	Acknowledgments
	Appendix A. Online Appendix
	References

