Antimicrobial Resistance in *Haemophilus influenzae* Isolated during Population-Based Surveillance for Meningitis in Salvador, Brazil

Joice Neves Reis,1,2 Josilene Borges Lima,1 Guilherme Souza Ribeiro,1 Soraia Machado Corderio,1 Kátia Salgado,3 Mitarmayer Galvão Reis,1 and Albert I. Ko1,4*

Centro de Pesquisas Gonçalo Moniz, Fundação Oswaldo Cruz, Ministério da Saúde,1 Faculdade de Farmácia, Universidade Federal da Bahia,2 and Hospital Couto Maia, Secretaria da Saúde do Estado da Bahia,3 Salvador, Brazil, and Division of International Medicine and Infectious Diseases, Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021

Received 4 June 2002/Returned for modification 16 July 2002/Accepted 5 August 2002

Antimicrobial susceptibility was determined for 150 *Haemophilus influenzae* isolates obtained during population-based surveillance for meningitis in Salvador, Brazil. Ten (6.7%) isolates were resistant to ampicillin and chloramphenicol. Of these, two isolates, a β-lactamase and non-β-lactamase producer, were resistant to amoxicillin-clavulanic acid. These findings indicate that present antibiotic regimens in Brazil may not be appropriate for the treatment of *H. influenzae* meningitis.

Haemophilus influenzae remains a major public health problem in the post-*H. influenzae* type b (Hib) conjugate vaccine era, responsible each year for more than 3 million cases of invasive disease and 400,000 deaths worldwide (11). In developing countries, where the *H. influenzae* disease burden is greatest, treatment regimens for bacterial meningitis are based on low-cost antibiotics because of the economic constraints associated with purchasing third-generation cephalosporins; in Brazil, the combination of ampicillin and chloramphenicol is standard initial therapy for suspected bacterial meningitis in the pediatric population (9). However, antimicrobial resistance has emerged in the developing world in bacterial pathogens commonly associated with meningitis (5). In South America, more than 20% of *Streptococcus pneumoniae* clinical isolates are nonsusceptible to penicillin (4). Furthermore, findings from reference laboratory collection surveys (2) and laboratory-based surveillance (14) indicate that *H. influenzae* is resistant to commonly used antibiotics, albeit at levels lower than those observed in developed countries (6). Yet little, if any, information on antimicrobial resistance in *H. influenzae* disease is available from population-based surveillance in South America. Data from surveillance become ever more critical in guiding therapeutic decisions since few hospitals in South America have the laboratory infrastructure to monitor antimicrobial resistance in local catchment populations.

Active population-based surveillance for bacterial meningitis was established in Salvador, a city of more than 2 million inhabitants in northeastern Brazil. According to the state health secretary’s regulations, suspected cases of meningitis from the metropolitan region of Salvador are referred to the state infectious disease reference hospital. More than 95% of the case notifications for meningitis from the metropolitan region are identified at this site (case notification records, Secretary of Health for the State of Bahia). Between March 1996 and October 2000, the study team prospectively identified 524 consecutive cases of meningitis with *H. influenzae* isolated from the cerebrospinal fluid. *H. influenzae* was identified based on Gram stain morphology and growth requirement for hemin and β-NAD. Patients were enrolled into the study according to protocols approved by the institutional review board committees of the New York-Presbyterian Hospital and Oswaldo Cruz Foundation/Brazilian Ministry of Health. A sample of 150 (29%) isolates was randomly selected from the 524 identified during surveillance in order to achieve 4% precision for an observed prevalence value of 10% in the sample. The slide agglutination method was performed with type-specific antisera (Difco Laboratories, Detroit, Mich.) and identified 145 (95% of 150), 2 (1.3%), 2 (1.3%), and 1 (0.6%) isolates as serotypes a, b, nencapsulated, and f, respectively.

The broth microdilution method was used to determine MICs (10). We evaluated susceptibility to antimicrobial agents used in the treatment of bacterial meningitis and acute respiratory infections for which *H. influenzae* is an etiologic agent: ampicillin, amoxicillin-clavulanic acid, cefotaxime, cefaclor, cefuroxime, chloramphenicol, ofloxacin, rifampin, tetracycline, co-trimoxazole (Sigma Chemical Co., St. Louis, Mo.), and azithromycin (Pfizer Ltd., Sao Paulo, Brazil). Antibiotics were added to the *Haemophilus* test medium (Difco Laboratories) in doubling dilution to give final concentrations ranging from 0.008 to 64 μg/ml. Microdilution trays were inoculated with a saline (0.9%) suspension of isolate strains to produce a final inoculum density of approximately 5 × 10^5 CFU/ml (100-μl final volume) and were examined for growth after 20 to 24 h of incubation at 35°C in ambient air. The MIC was defined as the lowest concentration of the antibiotic that inhibited growth. *H. influenzae* ATCC 49247 and 4976b were included as quality control standards in each assay (10). MIC determination showed that 10 (6.7% of 150) of the isolates were resistant to ampicillin, 16 (10.7%) to tetracycline, 12 (8.0%) to chloramphenicol, and 8 (5.3%) to co-trimoxazole (Table 1). All of the isolates tested were susceptible to cefuroxime, cefotaxime, ofloxacin, and azithromycin.
Multidrug resistance, defined as being intermediate or resistant to two or more classes of antibiotics, was found in 9.3% (14 of 150) of the isolates tested. The most frequently identified pattern was resistance to ampicillin, chloramphenicol, and tetracycline (10 isolates, 6.7%) and was followed by resistance to chloramphenicol and tetracycline (3, 2.0%). All 14 multidrug-resistant isolates were nonsusceptible to chloramphenicol, and 10 (6.7% of 150) isolates were resistant to ampicillin and chloramphenicol.

Nine of 10 (90%) ampicillin-resistant isolates were identified as β-lactamase producers, while one was β-lactamase negative and ampicillin resistant (BLNAR), according to the nitrocefin disk method (Cefinase; BBL Microbiology Systems, Cockeysville, Md.). All 139 ampicillin-susceptible isolates were β-lactamase nonproducers, including the five isolates for which cefotaxime MICs were relatively elevated (0.25 to 1.0 μg/ml). Two isolates were resistant to amoxicillin-clavulanic acid; one was BLNAR while the other was β-lactamase positive and amoxicillin-clavulanic acid resistant (BLPACR). The amoxicillin-clavulanic acid MICs for the BLNAR and BLPACR isolates were 8.0/4.0 μg/ml, whereas the cefotaxime MIC for only the BLNAR isolate was relatively elevated (1.0 μg/ml).

Our study found that a significant proportion (6.7%) of patients in Salvador, Brazil, developed meningitis due to strains resistant to ampicillin and chloramphenicol, antibiotics used routinely for the empirical treatment of bacterial meningitis. Multidrug resistance, defined as being intermediate or resistant to two or more classes of antibiotics, was found in 9.3% (14 of 150) of the isolates tested. The most frequently identified pattern was resistance to ampicillin, chloramphenicol, and tetracycline (10 isolates, 6.7%) and was followed by resistance to chloramphenicol and tetracycline (3, 2.0%). All 14 multidrug-resistant isolates were nonsusceptible to chloramphenicol, and 10 (6.7% of 150) isolates were resistant to ampicillin and chloramphenicol.

Nine of 10 (90%) ampicillin-resistant isolates were identified as β-lactamase producers, while one was β-lactamase negative and ampicillin resistant (BLNAR), according to the nitrocefin disk method (Cefinase; BBL Microbiology Systems, Cockeysville, Md.). All 139 ampicillin-susceptible isolates were β-lactamase nonproducers, including the five isolates for which cefotaxime MICs were relatively elevated (0.25 to 1.0 μg/ml). Two isolates were resistant to amoxicillin-clavulanic acid; one was BLNAR while the other was β-lactamase positive and amoxicillin-clavulanic acid resistant (BLPACR). The amoxicillin-clavulanic acid MICs for the BLNAR and BLPACR isolates were 8.0/4.0 μg/ml, whereas the cefotaxime MIC for only the BLNAR isolate was relatively elevated (1.0 μg/ml).

Our study found that a significant proportion (6.7%) of patients in Salvador, Brazil, developed meningitis due to strains resistant to ampicillin and chloramphenicol, antibiotics used routinely for the empirical treatment of bacterial meningitis. Multidrug resistance, defined as being intermediate or resistant to two or more classes of antibiotics, was found in 9.3% (14 of 150) of the isolates tested. The most frequently identified pattern was resistance to ampicillin, chloramphenicol, and tetracycline (10 isolates, 6.7%) and was followed by resistance to chloramphenicol and tetracycline (3, 2.0%). All 14 multidrug-resistant isolates were nonsusceptible to chloramphenicol, and 10 (6.7% of 150) isolates were resistant to ampicillin and chloramphenicol.

Multidrug resistance, defined as being intermediate or resistant to two or more classes of antibiotics, was found in 9.3% (14 of 150) of the isolates tested. The most frequently identified pattern was resistance to ampicillin, chloramphenicol, and tetracycline (10 isolates, 6.7%) and was followed by resistance to chloramphenicol and tetracycline (3, 2.0%). All 14 multidrug-resistant isolates were nonsusceptible to chloramphenicol, and 10 (6.7% of 150) isolates were resistant to ampicillin and chloramphenicol.

Nine of 10 (90%) ampicillin-resistant isolates were identified as β-lactamase producers, while one was β-lactamase negative and ampicillin resistant (BLNAR), according to the nitrocefin disk method (Cefinase; BBL Microbiology Systems, Cockeysville, Md.). All 139 ampicillin-susceptible isolates were β-lactamase nonproducers, including the five isolates for which cefotaxime MICs were relatively elevated (0.25 to 1.0 μg/ml). Two isolates were resistant to amoxicillin-clavulanic acid; one was BLNAR while the other was β-lactamase positive and amoxicillin-clavulanic acid resistant (BLPACR). The amoxicillin-clavulanic acid MICs for the BLNAR and BLPACR isolates were 8.0/4.0 μg/ml, whereas the cefotaxime MIC for only the BLNAR isolate was relatively elevated (1.0 μg/ml).

Our study found that a significant proportion (6.7%) of patients in Salvador, Brazil, developed meningitis due to strains resistant to ampicillin and chloramphenicol, antibiotics used routinely for the empirical treatment of bacterial meningitis in Brazil. These population-based findings corroborate those obtained from reference laboratory surveys in Brazil (2, 14) and South America (3), albeit in certain countries, such as Argentina, Chile, and Mexico (7), ampicillin resistance was identified in more than 20% of the clinical isolates. Together, these findings indicate that the choice of antibiotic regimen for the empirical treatment of bacterial meningitis may need to be reevaluated in Brazil and parts of South America where ampicillin and chloramphenicol are used. During surveillance in Salvador, all isolates were susceptible in vitro to third-genera-

REFERENCES

