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The growth of the aerospace industry has motivated the development of alternative materials. The fiber-
metal laminate composites (FML) may replace the monolithic aluminum alloys in aircrafts structure as
they present some advantages, such as higher stiffness, lower density and longer lifetime. However, a
great variety of deformation modes can lead to failures in these composites and the degradation mech-
anisms are hard to detect in early stages through regular ultrasonic inspection. This paper aims at the
automatic detection of defects (such as fiber fracture and delamination) in fiber-metal laminates com-
posites through ultrasonic testing in the immersion pulse-echo configuration. For this, a neural network
based decision support system was designed. The preprocessing stage (feature extraction) comprises
Fourier transform and statistical signal processing techniques (Principal Component Analysis and Inde-
pendent Component Analysis) aiming at extracting discriminant information and reduce redundancy
in the set of features. Through the proposed system, classification efficiencies of ~99% were achieved
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and the misclassification of signatures corresponding to defects was almost eliminated.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Fiber-metal laminate (FML) composites [1] consist of thin
sheets of metal alternately bonded to thin layers of fiber-reinforced
polymers [2]. FML have specific properties such as low density,
resistance to impacts and corrosion [3] and thus are extensively
used in the aerospace industry. The FML allow weight reduction
and savings in fuel consumption and maintenance.

In order to monitor the integrity of these materials and identify
the occurrence of failures, non-destructive methods [4], among
which stands the ultrasonic testing [5,6], are applied. However,
the multilayer structure of the FML produces ultrasonic signals of
difficult analysis and interpretation, making the flaw detection
process a difficult task. Considering this, the ultrasonic operators
would benefit from an automatic decision support system de-
signed to provide information on the FML integrity based on ultra-
sonic signals.

Some works have been developed in order to obtain automatic
damages detection systems for composite laminate materials, such
as [7] which proposes the use of a neural network classifier to de-
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tect damages based on the results of Acoustic Emissions non-
destructive testing, or [8] which combines Digital Shearography
non-destructive testing and unconstrained optimization methods
to detect position and size of delaminations. The work [9] uses also
a neural network for estimating the residual tensile strength after
drilling in composite laminates. Neural network classifiers have
also being use in [10-12] to detect welding defects based on ultra-
sonic testing. Unfortunately, there was not found a considerable ef-
fort on developing automatic flaws detection systems for fiber—
metal laminate composites based on ultrasound testing.

Considering this, our work proposes a decision support system
for ultrasound inspection of FML composites which comprises a
neural network classifier [13] fed from frequency-domain infor-
mation. An additional preprocessing step through statistical signal
processing techniques (such as Principal Component Analysis -
PCA [14] and Independent Component Analysis — ICA [15]) was
also applied in order to properly select the classifier input features.

Neural network based classifiers are widely applied as they
combine high discrimination efficiency, through nonlinear separa-
tion hyperplanes, and fast execution due to their parallelized struc-
ture [13]. Statistical signal processing (SSP) techniques were
successfully employed for feature extraction in different applica-
tions such as high energy physics [16], passive sonar systems
[17] and biomedical engineering [18]. In these cases, SSP proved
to be an efficient preprocessing step for classification systems as
it reduces the redundancy in the features set.
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This work is divided as follows. In Section 2 the main aspects of
the fiber metal composites are briefly discussed. The proposed
automatic flaws detection system is presented in Section 3. The ap-
plied signal processing chain is detailed in Section 4. The experi-
mental results that validate the proposed approach are shown in
Section 5. Finally, Section 6 brings the conclusions.

2. Fiber metal laminate composites

Composites are formed by the union of two or more materials
with different characteristics in a way that their combination re-
sults in another material with specific mechanical properties.

The fiber metal laminate (FML) composites are formed by alter-
nating layers of thin metal sheets and pre-impregnated material,
which consists of fiber matrix and reinforcing agent.

The features of a composite depend on parameters such as fi-
bers orientation in the matrix and the number of layers [1]. Table 1
shows the mechanical properties of different materials. It can be
seen that the composites present high values of the elasticity mod-
ule (E), while maintaining low density. Such mechanical properties
are very important in several applications. Considering especially
the aeronautic industry, weight reduction is one of the main
advantages of composite materials. Other benefits over conven-
tional structure include, high corrosion resistance, and increased
resistance to damage from cyclic loading (fatigue).

2.1. Failure mechanisms

Fiber metal laminates exhibit failure mechanisms compatible
with both metal and composite materials. The metallic sheets
may develop fatigue crack growth (similar to monolithic metals).
The fibers restrain the cracks but are subject to delamination at
the metal-fiber interface (at the wake of the crack) due to cyclic
shear stress [20]. Fig. 1 illustrates the effects of delamination and
cracks in a composite material.

A fundamental aspect in composites is that, in general, a defect
is produced through a gradual sequence of micro-cracks and
delamination and thus, a composite material is subject to different
kinds of flaws [21]. The occurrence of a certain type of defect de-
pends on factors like: thickness, applied loads and the composite
material characteristics. Traction loads usually cause ruptures in
the fibers, while the compression loads produce defects like mi-
cro-buckling or shear.

Considering these complex modes of damage, it is important to
properly evaluate the integrity of FML structures through some
non-destructive testing technique. This is required in order to de-
tect and monitor the evolution of flaws. The next section describes
the automatic decision support system proposed in this work for
ultrasound inspection of FML.

3. Proposed decision support system

The proposed decision support system comprises different sig-
nal processing steps. As illustrated in Fig. 2, initially, the ultrasonic

Table 1

Comparison between the mechanical properties of different materials (here, E is the
elasticity module, ¢ is the tension, E.F. means Elongation in Fracture and p is the
density) [19].

Property E (GPa) o (GPa) E.F. (%) p (g/cm?)
Glass fiber S 87.0 35 4.0 2.5
Kevlar 180.0 3.45 19 15
Carbon fiber AR 250.0 2.8 1.2 1.8
Carbon fiber AM 370.0 1.7 0.5 1.9
Carbon fiber AD 230.0 4.5 2.0 1.8

Delamination

/

Cracks in the matrix

Fig. 1. Delamination and cracks in the matrix of fiber metal composite laminates.

signals are measured in a immersion pulse-echo configuration and
digitalized by an oscilloscope.

The digital signal processing chain involves the Fourier trans-
form, through the FFT (Fast Fourier Transform) algorithm [22]. In
the following, the FFT coefficients are processed through statistical
techniques (such as PCA [14] and ICA [15]) in order to remove sta-
tistical redundancy and reveal discriminating features. A super-
vised neural network based classifier [13] is used to produce an
indication of the composite material integrity.

3.1. Ultrasonic testing in composites

Non-destructive testing techniques shall be used to evaluate the
structural integrity of composites in equipments that require high
level of reliability. Here, the ultrasonic testing have been used with
this purpose due to the combination of simple execution and high
efficiency in flaws identification [23]. However, the ultrasonic
inspection efficiency in multi-layer composites may be limited by
the internal structure of the material, specially when the specimen
presents a large number of thin blades, which represent barriers
and reflection surfaces for the acoustic wave propagation.

As the heterogeneous structure of the composites makes the
conventional ultrasonic testing less reliable, the analysis of the
ultrasonic signals through digital signal processing techniques en-
ables better characterization of the acoustic signature, increasing
echoes visibility and defects identification reliability [24,25].

3.2. Experimental setup

Considering that we are dealing with thin test objects (thick-
ness of ~1.3 mm), the effect of the near field! prevents the use of
a direct coupling. In this case, the immersion test is required in order
to position the near field out of the testing zone.

In this work, as illustrated in Fig. 3, a water tank was used for
immersion ultrasonic testing. The used inspection equipment com-
prises a Krautkramer USM-25® ultrasonic device and an Olympus
Panametrics NDT V-326® transducer (diameter =9.525 mm and
nominal frequency =5 MHz). In this initial version, the analog to
digital (AD) conversion is performed using an oscilloscope (maxi-
mum sampling rate of 500 MHz) and the digital signal processing
routines are executed in a personal computer. An upgraded version
in which dedicated electronics (using a digital signal processor
DSP) will replace both the oscilloscope and the computer is under
development. In this setup, the AD conversion and the complete
signal processing chain will be performed by the DSP based

! Area of high sonic interference, which hampers the detection of defects near the
transducer.
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Fig. 2. Block diagram of the proposed automatic evaluation system.
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Fig. 3. Diagram of the experimental setup.

system.

The test objects used in this work are multi-layer composites
comprising aluminum plates (100 mm x 100 mm x 0.5 mm) and
pre-impregnated fiber uni-directionally reinforced (Hexply®
6376, 100 mm x 100 mm x 0.17 mm). The fibers orientation is
parallel to the aluminum lamination direction. The used specimens
present the following characteristics: no defect (ND), fiber fracture
(F) and delamination (D). The defects were artificially introduced
during the manufacturing process.

Fig. 4 illustrates the defective test objects. In the first specimen
(Fig. 4-left) exists a fracture region in which a mesh of 8 x 10
points (with steps of 1.25 x 2 mm) was defined for signal acquisi-
tion. In a similar way, meshes of 10 x 10 points (using steps of
2 x 2 mm) were defined respectively for the delamination region
(Fig. 4-right) and for the no defect region. Four different measure-
ments were taken at each acquisition point in order to account for
statistical variation.

4. The signal processing chain

Ultrasonic signals usually present low signal-to-noise ratio due
to problems such as back-scattering (produced by reflection sur-
faces inside the test object) and noise (generated from acoustic
and electronic sources) [26]. Considering this, a proper signal pro-
cessing chain shall be applied to maximize the test efficiency. The

20
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Fig. 4. Diagrams of the test objects (highlighting the defective regions), the
dimensions are in mm.

different stages of the proposed signal processing chain are de-
scribed further in this section.

4.1. Fourier analysis

Frequency domain analysis, through the Fourier transform, is
widely used in ultrasound testing. When dealing with digital
time-domain signals, the frequency components may be estimated
through the Discrete Fourier Transform (DFT). The DFT X (e"%"") of
the time-domain signal x[n] is defined as [22]:

X (efZW""> = %x[n]e*f%""" (1)
n=0

forO<k<N-1.

The acoustic signals characteristics are usually more evident in
the frequency domain as it provides a more compact representa-
tion than the time-domain one. Furthermore, the effects of attenu-
ation or scattering of the sound waves as they pass through a given
material modify the frequency contents of the received pulses.
Thus, frequency-domain information may be used to indicate the
materials internal characteristics.

Considering this, ultrasonic testing involves the definition of
reference standard signatures, which are determined from material
with known characteristics, and the use of this baseline informa-
tion to identify (or predict) the condition of the test samples.

4.2. Principal Component Analysis (PCA)

Principal Components Analysis (PCA) is a widely used technique
for feature selection in statistical pattern recognition problems
[14]. Considering a multivariate random vector x € RY, the princi-
pal components may be estimated through singular value decom-
position (SVD) [27] of the correlation matrix R of X. This implies on
solving the following equation system:

U'RU = A 2)
U—JA|=0 3)

where U is an orthonormal matrix containing the eigenvectors of R,
A is a diagonal matrix, whose elements A4, /, ..., Ay are the eigen-
values of R, and I is the identity matrix. Once the eigenvectors are
extracted, they can be ranked by their associated eigenvalues, form-
ing the principal component projection base. Usually, prior to the
PCA extraction, the random vector x is centralized by having its
mean removed (X — X — X), so that the correlation matrix becomes
the covariance matrix. In such condition, the eigenvalues give the
amount of energy (data variance) retained by the corresponding
component.

Furthermore, PCA provides a projection matrix U € R¥*N, where
the components are uncorrelated and ranked by the amount of sta-
tistical variance they retain from Xx. By discarding the least ener-
getic components, one can achieve dimension reduction in an
optimal way, in the mean squared error (MSE) sense.

4.3. Independent Component Analysis (ICA)

Considering that a set of N observed signals x(t) = [x1(t), ..., Xy
(t)]" is generated by a linear combination of unknown sources
s(t) = [s1(t), ..., sn(D)]":
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X(t) = Ws(t) 4)

where W is the N x N mixing matrix [15].

The standard Independent Component Analysis (ICA) model
deals with the problem of finding an estimate y of s considering
that the components y;(t) are mutually statistically independent.
A solution is obtained if one can find an approximation for the in-
verse of the mixing matrix B~ W~! and so:

s(t) = y(t) = Bx(t) ()

There are many mathematical methods for estimating the elements
(by) of B considering that the mutual independence assumption be-
tween the y; holds. The nonlinear decorrelation and the maximally
nongaussianity are among the most applied ones [28].

While PCA explores second order statistics and removes signal
correlation, ICA uses also higher-order information to produce sta-
tistical independence. Indeed, some ICA algorithms use PCA as a
preprocessing step. Considering that after PCA all second order
dependence is removed, the ICA problem is partially solved and
it is only needed to deal with the higher order statistics informa-
tion. ICA have been successfully applied for feature extraction in
[16,29].

In this work the FastICA algorithm [28] was applied for inde-
pendent components estimation. The Fast Fixed-Point Algorithms
so called FastICA were derived through approximate Newton-type
iterations applied to optimize a criterion based on parameters from
information theory such as the negentropy [30]. Among the advan-
tages of the method we can mention fast and more reliable conver-
gence (if compared to gradient based algorithms), computational
simplicity and little memory requirements.

4.4. Neural classification

Artificial Neural Networks (ANN) are computational models in-
spired in the human brain behavior. Basically, an ANN is composed
of several (usually nonlinear) processing units called neurons,
which may be interconnected in a highly complex and parallel
way. Some important features of the ANNs are listed below:

e Learning: through the training procedure the network is capa-
ble of learning from the input dataset.

e Generalization: the acquired knowledge shall be applied on
data not present in the training set.

e Adaptivity: the ANN can adapt their synaptic weights to
changes in the environment.

e Fault tolerance: a neural network is inherently robust to miss-
ing data and additive noise due to the distributed nature of
the acquired knowledge.

An artificial neuron model is illustrated in Fig. 5. The input sig-

nals (xq, X, . .., X;) may represent external sensor units or the out-
puts of other neurons. The neuron synaptic weights
(wg, w1, ..., wy,) are adjusted during the training procedure and

thus, retain the acquired knowledge. The nonlinear activation func-
tion ¢(-) allows access to high order statistical information [31].
The neuron output y is defined as:

y=4¢ (iwixi + a)()) (6)
i

The mapping (approximation) capabilities of a single neuron are
limited and thus, for solving complex problems a neural network
with multiple neurons is required. A multi-layer perceptron (MLP)
neural network comprises a feed-forward cascaded structure of
neuron layers and is proved to be an universal approximator. For
MLP neural networks, error back-propagation algorithms are usu-
ally applied in the training phase [13].

Xn

Inputs

Fig. 5. Artificial neuron model.

In this work, multi-layer perceptron (MLP) neural networks
comprising input, hidden and output layers were used as classifi-
ers. The input layer connects the network to the features used in
the discrimination problem and the output layer produces the
decision. The hidden layer is responsible to produce the hyper-
planes that separate the classes of interest. The hyperbolic tangent
activation function was used in all neurons.

5. Results

To design and test the proposed system, the available experi-
mental data was equally split into training, validation and testing
sets. In order to properly explore the available statistics, the neural
network training procedure was initialized 10 different times ran-
domly choosing the signals that compose each dataset (training
validation and testing).

To evaluate the obtained discrimination performance the nor-
malized efficiencies product (EP) and the confusion matrix were
used. Considering a three-class problem the EP shall be defined as:

EP = (Ef, x Ef; x Efy)"/° @)

where Ef; is the discrimination efficiency for the ith class of interest.
This index is interesting due to its sensitivity to changes in the effi-
ciencies of all classes. When EP = 1 maximum efficiency is achieved
(100% of accuracy).

The elements (c;) of the confusion matrix (C) represent the
amount (usually in %) of signals from class i identified by the clas-
sifier as belonging to class j. Considering this, the diagonal brings
the efficiencies (c; = Ef;) and the off-diagonal elements represents
misclassification. When maximum efficiency is achieved the con-
fusion matrix tends to a diagonal matrix.

As described previously in Section 4, the initial digital signal
processing step consists on converting the acquired signals to the
frequency domain. Fig. 6 presents the average Fourier spectra’
for the tree classes of interest: no defect, delamination and fracture.
It is possible to observe that the average events present similar char-
acteristics with slight differences in the bandwidth (specially for the
delamination case that presents a quite larger frequency band) and
in the frequency profile shape (the no defect mean signal presents
a local minimum point around 6 MHz). It can also be depicted that
the frequency-domain information is close to zero in a large band
(specially for frequencies > 10 MHz).

In the next signal processing step, the frequency-domain infor-
mation (corresponding to 256 coefficients) is projected into the
principal components. As it can be observed in the PCA load curve
(see Fig. 7), high compaction rates were achieve, in a way that, the
1st, 5th and 15th most energetic principal components retain
respectively 86.2%, 97.7% and 99.5% of the total signal energy and
represent compaction rates of 256x, ~51x and ~17x.

2 The average spectra are obtained by computing, for each class, the mean of all DFT
signatures in the training set.
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Fig. 6. Average Fourier spectra for the different classes of interest.

Fig. 8 shows the average events for each class when the DFT
coefficients are projected into the 15 more energetic principal
components. It can be observed that the similarity between delam-
ination and no defect signals is preserved in the principal compo-
nents, but, using PCA, the mean profile of fracture signals is more
easily distinguished from the others. This indicates that the dis-
criminating information present in the 256 frequency coefficients
is somehow highlighted in these 15 principal components. It is also
important to notice that due to singularity in the covariance matrix
(of the DFT coefficients), the PCA algorithm was able to estimate
only 80 principal components. A possible reason for this is that a
large number of DFT coefficients tends to zero.

Using the information provided by PCA, an Independent Com-
ponent Analysis (ICA) algorithm (Fast ICA [28]) was applied in or-
der to estimate the ICA transformation.

Considering the different preprocessing steps (DFT, DFT + PCA
and DFT + ICA), linear discriminators [31] were trained to each case
in order to evaluate whether the classification problem requires a
more complex (nonlinear) classifier (such as a neural network) or
it can be properly solved linearly. In this case, 80 components were
used for both PCA and ICA (which corresponds to a compaction fac-
tor of 3.2 and retains almost 100% of the signal energy).

The linear classifier was implemented using a single layer neu-
ral network structure with three linear neurons. The ith neuron
was trained with target output equal to 1 for signatures belonging
to class i and —1 otherwise. In the operation phase, for a given in-
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Fig. 7. Obtained PCA load curve.
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Fig. 8. Average events considering the first 15 principal components.

put signal, the neuron which produces highest output value indi-
cates the assigned class.

Table 2 illustrates the discrimination efficiencies (considering
both the EP and the confusion matrix). obtained by feeding a linear
discriminator directly from the frequency domain coefficients
(DFT). A particular characteristic of our application is that the mis-
classification of signals corresponding to defects as no defect signa-
tures is more serious than the opposite case, because this mistake
may seriously compromise the system reliability. For the linear
classifier it was obtained EP = 0.8011 = 0.3590 and high confusion
among the different classes. In this case ~29% of the signals corre-
sponding to defects (delamination and fracture) were incorrectly
classified as having no defect.

When the linear discriminator is fed from the principal compo-
nents (DFT + PCA) a significant improvement in the discrimination
efficiencies was achieved. In this case, EP = 0.9896 + 0.0113 and the
confusions (classification errors) were <2%. The misclassification of
defects signatures as having no defect was reduced to ~1.2%.

If the Independent Component Analysis (DFT +ICA) was ap-
plied, the discrimination efficiency was slightly increased
(EP =0.9945 + 0.0065). In this case, the misclassification of defects
is almost eliminated (~0.08%) and the fracture signatures were
identified with no error. Fig. 9 illustrates the independent compo-
nents (IC) discrimination capability. Considering the projection in
the first IC, the fracture signatures are linearly separable from
the other classes, allowing full identification of this pattern using
a linear classifier. The IC projections also provide low confusion
among no defect and delamination signatures, as it can be ob-
served from the 73rd IC projections for these classes.

Table 2
Confusion matrices (in %) for delamination (D), fracture (F) and no-defect (ND)
regions considering a linear classifier for different signal processing chains.

D F ND
DFT (256 comp./EP = 0.8011 + 0.3590)
D 70.2079 11.8879 17.9042
F 9.2696 79.7819 10.9484
ND 5.0833 2.8716 92.0451
DFT + PCA (80 comp./EP = 0.9896 + 0.0113)
D 97.7307 1.5637 0.7056
F 0.0926 99.4444 0.4630
ND 0.2459 0 99.7541
DFT + ICA (80 comp./EP = 0.9945 + 0.0065)
D 99.9219 0.0781
F 0 100 0
ND 3.4447 0 96.5553
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In a neural discriminator, the number of neurons in the hidden
layer (HN) is a parameter that needs to be specified during the de-
sign process. HN usually increases with the complexity of the prob-
lem. In this work, an iterative experimental procedure was applied
in order to determine the “optimum” value for HN. For this, a clas-
sifier with a single hidden neuron was trained (HN =1) and the
respective value of EP computed. In the following, the number of
hidden neurons was increased to HN =2 and the training proce-
dure restarted. These iterations continue until there is no signifi-
cant improvement in the discrimination efficiency by adding new
neurons.

Fig. 10 illustrates the variation of EP as a function of HN for both
DFT and DFT +PCA preprocessing (the curve obtained for the
DFT + ICA case was very similar to the DFT + PCA one and was
omitted for simplicity). One can see that for HN = 4 the efficiency
(measured by EP) achieved approximately its maximum value.
Considering this, neural classifiers with four hidden neurons were
used in further analysis. Other important aspect is that through
PCA and ICA preprocessing it was possible o achieve high discrim-
ination efficiencies even for a small number of hidden neurons,
indicating that the proposed preprocessing somehow reveals the
relevant information, facilitating flaws identification.

Table 3 shows the results obtained by feeding neural (multi-
layer perceptron) classifiers after different preprocessing steps. It
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Fig. 9. Distributions of the first (top) and 73rd (bottom) independent components
for the classes of interest.
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Fig. 10. Normalized efficiencies product as a function of the number of hidden
neurons in the neural classifier.

can be seen that the neural classifier is able to produce high dis-
crimination efficiency for all cases. It can also be observed that
for PCA and ICA preprocessing the fracture signals are identified
without confusion. The highest EP was obtained by the discrimina-
tor fed from the independent components (EP ~ 0.998). In this
case, the misclassification of defects signatures was as low as
~0.16%. This indicates that the statistical independence obtained
after ICA favors signal identification for all classes of interest.

It is also important to note the efficiency of PCA for signal com-
paction. By training a neural discriminator only from the five most
energetic principal components it was also possible to obtain high
discrimination efficiency (see Table 4), achieving EP ~ 0.993 and
confusion probabilities lower than 1.3%. In this case, a classifier
with only two hidden neurons was able to produce the highest dis-
crimination efficiency. This result is very important if the proposed
system is embedded in portable inspection equipment, as a reliable
indication is obtained by using low computational requirements.

An estimate of the computational requirements of the proposed
discriminators may be obtained by analyzing the number of multi-
plications and accumulations (MAC) required after the DFT compu-
tation (which is common in all cases), to provide the final decision.

In a general configuration, the input DFT feature vector X is mul-
tiplied by a matrix U. which was defined for PCA or B for the ICA
case (in this computational requirements analysis only the U ma-
trix is used, without loss of generality). A neural network with
two layers produces the final output y through:

y = F(W,F(W,;Ux)) (8)

where W; and W, are respectively the neural network input and
hidden layers weights and F(-) is the activation function. As in the
operational phase, U, W; and W, are known in advance, it is possi-
ble to previously compute the product U; = UW; and so, Eq. (8) may
be modified to:

Table 3
Confusion matrices (in %) for delamination (D), fracture (F) and no-defect (ND)
regions considering a MLP neural classifier (HN =4) for different signal processing
chains.

D F ND

FFT (256 comp,/EP = 0.9970 + 0.0054)

D 99.6094 0.0781 0.3125
F 0 100 0

ND 0.4918 0 99.5082
FFT + PCA (80 comp./EP = 0.9966 + 0.0035)

D 98.9831 0 1.0196
F 0 100 0

ND 0 0 100

FET +ICA (80 comp./EP = 0.9978 + 0.0053)

D 99.8438 0.1563
F 0 100 0

ND 0.4918 0 99.5082
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Table 4
Confusion matrix (in %) for delamination (D), fracture (F) and no-defect (ND) regions
considering a MLP classifier fed from the five more energetic principal components.

D F ND
FFT + PCA (5 comp./EP = 0.9932 + 0.0155)
D 99.2169 0 0.7831
F 1.2150 98.7850 0
ND 0 0 100

Table 5
Comparison between different discriminators considering EP, misclassification of
defects (Miss Def. in %) and the number of MACs.

Preproc. EP Miss Def. MACs
Linear classifier

DFT 0.8011 28.85 768
PCA(80comp.) 0.9896 1.17 768
ICA 0.9945 0.08 768
Neural classifier

DFT 0.9970 0.31 1225
PCA s0comp) 0.9966 1.02 1225
PCA(scomp,) 0.9932 0.78 653
ICA 0.9978 0.16 1225

¥y = F(W2F(U1x))) 9)

Considering that the feature vector x has 256 coefficients, the num-
ber of MACs is for the linear classifier is computed through:
Npyac = 256 x 3. For the MLP classifiers, the number of MACs is a
function of the number of hidden neurons NH. The nonlinear neu-
rons also require the computation of the hyperbolic tangent (tanh)
activation function, which shall be performed accurately using Tay-
lor series expansion [32]. For a seven terms expansion approxi-
mately 27 MACS are required for each tanh computation. In this
case: Nyac=256 x NH+NH x 3 +(NH +3) x 27.

Table 5 provides a comparison between the proposed discrimi-
nators considering the discrimination efficiency, the misclassifi-
cation of defects and the computational requirements estimation.
Generally, the used MLP classifiers presented NH =4, except for
the MLP classifier fed from the five principal components
(PCA(5comp.))» which used NH = 2 It can be seen that linear discrim-
inators present reduced computational requirements, together
with the PCA(scomp.) based nonlinear discriminator. It can also be
observed that for both linear and nonlinear classifiers, best results
were obtained after ICA preprocessing. Furthermore, the ICA based
discriminators presented minimum misclassification of defects sig-
natures, which is very important to the reliability of the proposed
decision support system.

6. Conclusions

The fiber metal laminates (FML) are very important materials in
many applications (specially in the aeronautic industry) due to fea-
tures such as high stiffness, low density and long lifetime. How-
ever, its various modes of deformation and its physical structure
in multiple layers make the detection of flaws in early stages a dif-
ficult task. In this work was proposed an automatic decision sup-
port system to help the inspector in the identification of different
kinds of defects that may appear in FMLs. For this, a signal process-
ing chain which comprises two distinct stages (feature extraction
and hypothesis testing) was designed. For feature extraction, the
acquired signals were transformed to the frequency domain and
processed by statistical techniques (such as PCA and ICA) in order
to remove redundancy and reduce the background noise. The
hypothesis testing (classification) stage was performed by both lin-

ear and neural classifiers. The applied feature extraction tech-
niques were able to reveal the underlying structure of the data
producing high discrimination efficiencies. This can be observed
particularly when a linear discriminator was used. In this configu-
ration, the efficiency was considerably improved by using PCA and
ICA transformations. In the case of ICA preprocessing, the classifi-
cation results were quite similar to the ones achieved when using
the nonlinear (neural) discriminators, but with considerably lower
computational requirements. Considering the neural classifiers, the
ICA preprocessing also contributes to produce higher discrimina-
tion efficiencies, achieving EP = ~0.998 and reducing the misclassi-
fication of defect signals to ~0.16%. In this context, PCA proved to
be also very efficient for signal compaction as a neural discrimina-
tor fed from only the five most energetic components was able to
present high discrimination accuracy (EP = ~0.993).
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