

Figura 70 – Espectro de RMN 13 C de **DV16** [75 MHz, (CD₃)₂CO, δ (ppm)]

Figura 71 – Experimento DEPT 135° de **DV16** (ampliação) [75 MHz, (CD₃)₂CO, δ (ppm)]

Figura 72 – EMIE 70 eV de **DV16**

Figura 73 – Espectro no UV de DV16 em CH₃OH com: a) AlCl₃ e AlCl₃ + HCl, b) MeONa, c) AcONa

Figura 74 – Principais fragmentações de massa observadas no EMIE de DV16

6.4.6. Identificação da 4',7-diidroxiflavanona

4',7-diidroxiflavanona (DV18)

Os espectros de RMN ¹³C (Figura 79, p. 138) e ¹H (Figuras 75 e 76, p. 137) de **DV18** aliados ao DEPT (Figura 80, p. 139) apresentaram sinais para 15 átomos de carbono e 10 átomos de hidrogênio. Estes dados em conjunto com íon molecular em m/z 256 observado no EM (Figura 81, p. 139) permitiram propor a fórmula molecular C₁₅H₁₂O₄.

Análise do espectro de RMN ¹H (Figura 76, p. 137) levou a propor que a substância era uma flavanona. O espectro de RMN ¹³C e experimentos DEPT 135° mostraram sinais para carbono oximetínico em δ 80,52, carbono metilênico em δ 44,66 e carbonila em δ 190,48, que confirmaram esta sugestão (Figuras 79 e 80, p. 138 e 139).

O EMIE da substância mostrou os fragmentos de RDA $[A_1 + H]^+$ em m/z 137 (pico base) e $B_3^{+\bullet}$ em m/z 120 que sugeriram presença de uma hidroxila no anel B e uma hidroxila no anel A (Figuras 81 e 83, p. 139 e 141).

Os dupletos observados no espectro de RMN ¹H (δ 7,12 e 6,61), integrando para 2H, indicaram a presença de sistema de *spins* A₂X₂, o que confirma a oxigenação no anel B na posição C-4'(Figura 77, p. 138; Tabela 37, 148). A proposição é confirmada pela análise dos dados de RMN ¹³C em δ 129,19 para C-2' e C-6' e em δ 116,42 para C-3' e C-5', além do carbono aromático oxigenado em δ 158,60 (Figuras 79 e 80, p. 138 e 139; Tabela 38, p. 149).

O espectro de UV revelou banda II de absorção mais intensa em $\lambda_{Max} = 275$ nm que sugere ausência de 5-OH. O uso de AlCl₃ não provocou deslocamento da banda II, que em conjunto com o deslocamento da carbonila em δ 190,48 confirmou a ausência de oxigenação em C-5 (Figura 82, p. 140). O uso de MeONa provocou um deslocamento batocrômico de 60 nm da banda II para $\lambda_{Max} = 335$ nm acompanhado de efeito hipercrômico, que confirma hidroxilação no anel A. O deslocamento batocrômico de 60 nm da banda II em presença de

CH₃COONa para $\lambda_{Max} = 335$ nm acompanhado de efeito hipercrômico sugeriu que havia hidroxila livre na posição 7 (Figura 82, p. 140).

Os deslocamentos de RMN ¹H em δ 7,45 *d* (J = 8,7), δ 6,29 *dd* (J = 2,4 e 8,7) e δ 6,14 *d* (J = 2,4) (Figuras 77 e 78, p. 138; Tabela 37, p. 148) mostraram a presença de três hidrogênios aromáticos num sistema AMX de *spins*, confirmando a substituição em C-7 no anel A, sendo que H-5 encontra-se em δ 7,45 devido ao efeito de desproteção da carbonila.

Todos estes dados e mais a comparação com dados da literatura (ACHENBACH, 1988) confirmaram que a substância **DV18** tratava-se da 7,4'-diidroxiflavanona (liquiritigenina), que foi isolada pela primeira vez de *Glycyrrhiza glabra* (SHINODA, J., 1934) e é de ocorrência comum em vegetais. O sinal negativo do $[\alpha]_D^{25} = -62,2$ confirmou sua configuração absoluta como 2*S*, tratando-se da (-)-(2*S*)-7,4'-diidroxiflavanona.

Figura 75 – Espectro de RMN ¹H de **DV18** [300 MHz, (CD₃)₂CO, δ (ppm)]

Figura 76 – Espectro de RMN ¹H de **DV18** (integração) [300 MHz, (CD₃)₂CO, δ (ppm)]

Figura 77 – Espectro de RMN ¹H de **DV18** (ampliação) [300 MHz, (CD₃)₂CO, δ (ppm)]

Figura 78 – Espectro de RMN ¹H de **DV18** (ampliação) [300 MHz, (CD₃)₂CO, δ (ppm)]

Figura 79 – Espectro de RMN ^{13}C de **DV18** [75 MHz, (CD₃)₂CO, δ (ppm)]

Figura 80 – Experimento DEPT 135° de **DV18** (ampliação) [75 MHz, (CD₃)₂CO, δ (ppm)]

Figura 81 – EMIE 70 eV de DV18

Figura 82 – Espectro no UV de DV18 em CH₃OH com: a) AlCl₃ e AlCl₃ + HCl, b) MeONa, c) AcONa

Figura 83 - Principais fragmentações de massa observadas no EMIE de DV18

6.4.7. Identificação da 7,3',4'-triidroxiflavanona

Os espectros de RMN de ¹³C (Figura 87, p. 144) e ¹H (Figura 84, p. 143) de **DV19** aliados ao DEPT (Figura 88, p. 145) apresentaram sinais para 15 carbonos e 12 hidrogênios. Estes dados em conjunto com íon molecular em m/z 272 observado no EM (Figura 89, p. 145) permitiram propor a fórmula molecular C₁₅H₁₂O₅.

Análise do espectro de RMN ¹H (Figura 84, p. 143; Tabela 37, 148) levou a propor que a substância era uma flavanona. O espectro de RMN ¹³C e experimento DEPT 135° mostraram sinais para carbono oximetínico em δ 80,57, carbono metilênico em δ 44,74 e carbonila em δ 190,53, que confirmaram esta sugestão (Figuras 87 e 88, p. 144 e 145; Tabela 38, 149).

O EMIE da substância mostrou os fragmentos de RDA $[A_1 + H]^+$ em m/z 137 (pico base) e $B_3^{+\bullet}$ em m/z 136 o que sugeriu presença de duas hidroxilas no anel B e uma hidroxila no anel A (Figuras 89 e 91, p. 145 e 147).

Os sinais de deslocamento no RMN ¹H em δ 7,04 *d* (J = 1,4), δ 6,85 *d* (J = 8,6) e δ 6,89 *dd* (J = 2,3 e 8,6) indicaram a presença de sistema AMX de *spins*, que confirma a presença de um grupo catecol no anel B, o qual encontra-se substituído nas posições C-3' e C-4'(Figuras 85 e 86, p. 144; Tabela 37, p. 148). A presença deste grupo é corroborada pelos dados de deslocamentos de RMN ¹³C em δ 114,71 (C-2'), δ 116,02 (C-5') e δ 119,19 (C-6'), além dos carbonos aromáticos oxigenados em δ 146,01 e δ 146,28 (Figuras 87 e 88, p. 144 e 145).

O espectro de UV revelou banda II de absorção mais intensa em $\lambda_{Max} = 278$ nm que sugere ausência de 5-OH. O uso de AlCl₃ não provocou deslocamento da banda II, informação que em conjunto com o sinal da carbonila no espectro de RMN ¹³C em δ 190,53 confirmou a ausência de oxigenação em C-5 (Figura 90, p. 146). No entanto, foi observado a complexação do AlCl₃ com as hidroxilas vizinhas em *orto*, porém como o anel B não faz

parte do cromóforo principal, este deslocamento da banda I é muito pouco intenso. O espectro de UV com adição de MeONa provocou um deslocamento batocrômico de 57 nm da banda II para $\lambda_{\text{Max}} = 335$ nm acompanhado de efeito hipercrômico, que confirma a hidroxilação no anel A. O deslocamento batocrômico de 57 nm da banda II em presença de CH₃COONa para $\lambda_{\text{Max}} = 335$ nm acompanhado de efeito hipercrômico sugeriu que a posição 7-OH encontravase livre (Figura 90, p 146). Os sinais de RMN ¹H em δ 7,72 *d* (J = 8,7), δ 6,56 *dd* (J = 2,3 e 8,7) e δ 6,42 *d* (J = 2,3) (Figuras 85 e 86, p. 144) indicaram a presença de três hidrogênios aromáticos num sistema AMX de *spins*, fato que confirma a substituição em C-7 no anel A, sendo que H-5 encontra-se em δ 7,72 devido ao efeito de desproteção da carbonila.

As considerações acima aliadas à comparação com dados da literatura (BURGER, 1983) confirmaram que a substância **DV19** trata-se da 7,3',4'-triidroxiflavanona (butina), a qual foi isolada pela primeira vez de *Butea* (PERKIN, 1904). O sinal negativo do $[\alpha]_D^{25} = -69,2$ confirmou sua configuração absoluta como 2*S*, tratando-se da (-)-(2*S*)-7,3',4'-triidroxiflavanona.

Figura 84 – Espectro de RMN ¹H de **DV19** [300 MHz, $(CD_3)_2CO$, δ (ppm)]

Figura 85 – Espectro de RMN ¹H de **DV19** (ampliação) [300 MHz, (CD₃)₂CO, δ (ppm)]

Figura 86 – Espectro de RMN ¹H de **DV19** (ampliação) [300 MHz, (CD₃)₂CO, δ (ppm)]

Figura 87 – Espectro de RMN 13 C de **DV19** [75 MHz, (CD₃)₂CO, δ (ppm)]

Figura 88 – Experimento DEPT 135° de **DV19** (ampliação) [75 MHz, (CD₃)₂CO, δ (ppm)]

Figura 89 – EMIE 70 eV de **DV19**

Figura 90 – Espectro no UV de DV19 em CH₃OH com: a) AlCl₃ e AlCl₃ + HCl, b) MeONa, c) AcONa

Figura 91 – Principais fragmentações de massa observadas no EMIE de DV19

Н	DV7	DV9	DV10	DV13	DV16*	DV18*	DV19*
2	5,45 dd	5,43 dd	5,41 <i>dd</i>	5,47 dd	5,40 <i>dd</i>	5,17 dd	5,39 dd
	(3,1;13,0)	(3,1;12,9)	(3,1;12,8)	(3,1;13,1)	(3,0;12,9)	(2,6;13,0)	(3,0;12,8)
3eq	2,83 dd	2,83 dd	2,83 dd	2,84 dd	2,66 dd	2,40 dd	2,67 dd
	(3,1;17,0)	(3,1;17,1)	(3,1;17,1)	(3,1;17,0)	(3,0;16,8)	(2,6;15,0)	(3,0;16,8)
3ax	3,04 <i>dd</i>	3,09 <i>dd</i>	3,09 dd	3,05 dd	3,01 <i>dd</i>	2,77 dd	3,01 <i>dd</i>
	(13,0;17,0)	(12,9;17,1)	(12,8;17,1)	(13,1;17,0)	(12,9;16,8)	(13,0;15,0)	(12,8;16,8)
5	7,35 s	12,05 s	12,19 <i>s</i>	7,85 d	7,25 s	7,45 d	7,72 d
		OH	OH	(8,7)		(8,7)	(8,7)
6	-	6,01 <i>s</i>	6,15 <i>s</i>	6,58 dd	-	6,29 <i>dd</i>	6,56 dd
				(2,3;8,7)		(2,4;8,7)	(2,3;8,7)
7	6,3 <i>sl</i>	-	-	-	-	-	8,6 <i>sl</i>
	OH						OH
8	6,60 s	6,01 <i>s</i>	OCH ₃	6,50 d	6,45 s	6,14 <i>d</i>	6,42 <i>d</i>
				(2,3)		(2,4)	(2,3)
2'	7,45 m	7,45 m	7,45 m	7,43 m	7,38 d	7,12 <i>d</i>	7,04 <i>d</i>
					(8,4)	(8,6)	(1,4)
3'	7,45 m	7,45 m	7,45 m	7,43 m	6,88 d	6,61 <i>d</i>	8,6 <i>sl</i>
					(8,4)	(8,6)	OH
4'	7,45 m	7,45 m	7,45 m	7,43 m	-	-	8,6 <i>sl</i>
							OH
5'	7,45 m	7,45 m	7,45 m	7,43 m	6,88 d	6,61 <i>d</i>	6,85 d
					(8,4)	(8,6)	(8,6)
6'	7,45 m	7,45 m	7,45 m	7,43 m	7,38 d	7,12 d	6,89 dd
					(8,4)	(8,6)	(8,6;1,4)
OCH ₃	3,93 s	-	3,96 s	-	3,85 s	-	-

Tabela 37 – Dados de RMN ¹H das flavanonas [300 MHz, CDCl₃, δ (ppm)]

*(CD₃)₂CO

С	DV7	DV13	DV16 §	DV18 §	DV19 [§]
2	79,99	79,86	80,57	80,52	80,57
3	44,19	44,26	44,53	44,66	44,74
4	190,63	191,17	190,47	190,48	190,53
5	106,76	129,41	107,87	129,42	129,48
6	142,52	110,93	144,31	111,25	111,20
7	153,48	163,60	155,54	165,46	165,25
8	103,43	103,46	104,26	103,65	103,72
9	158,38	163,76	159,02	164,51	164,50
10	113,54	114,85	113,69	115,08	115,30
1'	138,99	138,81	131,31	131,25	132,15
2'	126,13	126,19	128,83	129,19	114,71
3'	128,77	128,82	116,04	116,42	146,01
4'	128,65	128,74	158,50	158,60	146,28
5'	128,77	128,82	116,04	116,42	116,02
6'	126,13	126,19	128,83	129,19	119,19
OCH ₃	56,42	-	56,47	-	-

Tabela 38 – Dados de RMN 13 C das flavanonas [75 MHz, CDCl₃, δ (ppm)]*.

*Multiplicidades obtidas por DEPT, [§](CD₃)₂CO.

6.5.Diidroflavonóis

Os diidroflavonóis são flavonóides que apresentam como esqueleto base o grupo 2-fenil-3-hidroxibenzopiran-4-ona, sendo também denominados de flavanonóis ou 3hidroxiflavanonas. Possuem dois carbonos assimétricos C-2 e C-3, o que amplia para 4 o número possível de isômeros ópticos. Biossinteticamente são intermediários entre as chalconas e os flavonóis (HARBORNE, 1967; BOHM, 1975).

Apresentam espectro no UV similar as flavanonas, devido à ausência de conjugação entre os anéis A e B, com uma banda de absorção intensa entre 270-295 nm (Banda II), e uma inflexão de pequena intensidade entre 300-330 nm (Banda I). A presença da 3-OH sem a presença de insaturação entre C-2 e C-3 exerce pouca ou nenhuma diferença no espectro UV, sendo estes praticamente idênticos aos das flavanonas, que foram abordados no item 6.4. (MABRY, 1970; MARKHAM, 1982).

No EM, os fragmentos de RDA (rota I) dos diidroflavonois são os íons mais intensos observados, juntamente com o íon molecular, $[M - H]^+$, $[M - HCO]^+$, $[M - (Anel B)]^+$ e $[M - OH]^+$. O fragmento diagnóstico para diidroflavonóis é B_4^+ , derivado da transferência de H de C-3 para C-2 no fragmento B_3^+ e, sua proeminência está relacionada ao seu rearranjo para formação do íon tropílio (MABRY, 1975).

Os diidroflavonóis são facilmente reconhecidos por RMN ¹H devido aos deslocamentos característicos para os hidrogênios oximetínicos no anel C. Na maioria destes compostos os H-2 e H-3 são *trans*-diaxiais, sendo registrados como dupletos com J \cong 11 Hz. O H-2 por ser oxibenzílico encontra-se mais desprotegido (δ 4,9) que o H-3 (δ 4,3), sendo portanto facilmente diferenciáveis. A ocorrência de glicosilação em 3-OH desprotege H-2 e H-3. Todos os demais deslocamentos dos anéis A e B são equivalentes aos das flavanonas (MARKHAM, 1975 e 1994).

No espectro de RMN ¹³C, os diidroflavonóis apresentam perfil de proteção e desproteção semelhante ao das flavanonas, sendo que a 3-OH exerce efeito de desproteção ao C-3 em 30,5 ppm e ao C-2 em 5,0 ppm. Enquanto que o valor do deslocamento de C-4 permanece inalterado. Os carbonos oximetínicos C-2 e C-3 têm deslocamento na faixa δ 70,9-85,6, porém, C-2 por ser oxibenzílico encontra-se mais desprotegido sendo registrado geralmente em δ 78,3-85,6, enquanto C-3 é registrado na faixa δ 70,9-74,1. A presença de grupo oxigenado em C-2' ou em C-2' e C-6' protege C-2 da mesma forma que nas flavanonas, levando seu sinal para δ 75,5-79,2. Na ausência de grupo oxi em C-2' ou C-6', o sinal do C-2 é registrado em δ 82,4-85,6 (AGRAWAL, 1989).

Os diidroflavonóis apresentam conformação mais estável com o anel B em *pseudo*equatorial. A rotação da luz plano-polarizada está relacionada a estereoquímica absoluta, de forma que os (-)-diidroflavonóis (levorrotatórios) possuem configuração 2*S*, enquanto que os (+)-diidroflavonóis (dextrorrotatórias) possuem configuração 2*R*. Na natureza os diidroflavonóis são comumente encontrados na forma *trans*-2*R*. É interessante notar que o arranjo espacial das 2*S* flavanonas é o mesmo dos 2*R* diidroflavonóis, pois a prioridade nas regras de nomenclatura de Cahn, Ingold e Prelog é alterada devido a presença da hidroxila em C-3 (MARKHAN, 1982).

6.5.1. Identificação do 7-hidroxi-6-metoxiflavanonol

6-Metoxi-7-hidroxidiidroflavonol (**DV8**)

Os espectros de RMN ¹³C (Figura 94, p. 154) e ¹H (Figuras 92 e 93, p. 153) de **DV8**, em conjunto com experimentos de DEPT (Figuras 95 e 96, p. 154), apresentaram sinais para 16 átomos de carbono e 12 átomos de hidrogênio. Estes dados aliados ao íon molecular em m/z 286 observado no EM (Figura 100, p. 156) permitiu propor a fórmula molecular C₁₆H₁₄O₅.

Análise do espectro de RMN ¹H (Figura 93, p. 153; Tabela 39, p. 159) sugeriu que a substância era um diidroflavonol metoxilado. O espectro de RMN ¹³C e experimentos DEPT 135° e 90° mostraram sinais para carbono oxibenzílico em δ 84,26, carbono oximetínico em δ 73,24 e carbonila em δ 192,67, dados que juntamente com o sinal do carbono oximetílico em δ 56,42 confirmaram esta sugestão (Figuras 94, 95 e 96, p. 154; Tabela 39, 159).

O EMIE de **DV8** apresentou fragmentos de RDA $[A_1 + H]^+$ em m/z 167 (pico base), $A_1^{+\bullet}$ em m/z 166 e $B_3^{+\bullet}$ em m/z 120, além de B_4^+ em m/z 91, que sugeriram ausência de substituição no anel B (Figuras 100 e 102, p. 156 e 158). Este padrão foi confirmado pelo multipleto registrado no RMN ¹H em δ 7,59, integrando para 5 hidrogênios, e pelos sinais no RMN ¹³C de carbonos metínicos aromáticos característicos (Figuras 94, 95 e 96, p. 154).

O espectro no UV apresentou banda II de absorção mais intensa em $\lambda_{Max} = 280$ nm, que sugere ausência de 5-OH na estrutura do diidroflavonol. A adição de solução de AlCl₃ na solução não provocou deslocamento do espectro (Figura 101, p. 157), uma vez que a 3-OH não pertence ao grupo cromóforo principal. Adição de solução de MeONa provocou um deslocamento batocrômico de 74 nm da banda II para $\lambda_{Max} = 354$ nm acompanhado de efeito hipercrômico, o que sugere presença de hidroxilação no anel A (Figura 101, p. 157). O deslocamento batocrômico de 73 nm da banda II em presença de CH₃COONa para $\lambda_{Max} = 353$ nm acompanhado de efeito hipercrômico sugeriu a presença de um grupo hidroxila livre no C-7 (Figura 101, p. 157).

Análise detalhada do espectro de RMN ¹H indicou a presença de dois simpletos δ 7,32 e δ 6,59 (Figura 93, p. 153; Tabela 39, p. 159) indicativos de dois hidrogênios ligados a carbonos aromáticos em relação *para*. Estes dados confirmaram a substituição em C-6 e C-7 no anel A, sendo que H-5 encontra-se em campo de desproteção devido ao efeito da carbonila.

Experimentos de "nOe diff" mostraram transferência de polarização de 11% para OCH₃ quando H-5 foi irradiado (Figura 99, p. 156), confirmando a presença da metoxila em C-6. Por outro lado quando H-8 foi irradiado não houve transferência de polarização (Figura 98, p. 155) e irradiando-se o grupo metoxílico em C-3 foi observada transferência de polarização para H-5 (Figura 99, p. 156).

Estes dados aliados à comparação direta com dados da literatura (LIN, 1989) confirmaram que a substância **DV8** trata-se do 7-hidroxi-6-metoxiflavanonol, o qual foi isolado pela primeira vez de *Dalbergia ecastophyllum* (MATOS, 1970 e 1975) e posteriormente de *Spatholobus suberectus* (LIN, 1989), e *Abrus precatorius* (SONG, 1998). O sinal negativo do $[\alpha]_D^{25} = -50,5$ confirmou sua configuração absoluta como 2*R*, tratando-se do (-)-(2*R*,3*R*)- 7-hidroxi-6-metoxiflavanonol.

Figura 92 – Espectro de RMN ¹H de **DV8** [300 MHz, CDCl₃, δ (ppm)]

Figura 93 – Espectro de RMN ¹H de **DV8** (integração) [300 MHz, CDCl₃, δ (ppm)]

Figura 94 – Espectro de RMN 13 C de **DV8** [75 MHz, CDCl₃, δ (ppm)]

Figura 95 – Experimento DEPT 135° de **DV8** (ampliação) [75 MHz, CDCl₃, δ (ppm)]

Figura 96 – Experimento DEPT 90° de **DV8** (ampliação) [75 MHz, CDCl₃, δ (ppm)]

Figura 97 – Experimento nOe diff de **DV8** irradiando em $\delta = 6,57$ [300 MHz, CDCl₃, δ (ppm)]

Figura 98 – Experimento nOe diff de **DV8** irradiando em δ = 3,31 [300 MHz, CDCl₃, δ (ppm)]

Figura 99 – Experimento nOe diff de **DV8** irradiando em δ = 3,98 [300 MHz, CDCl₃, δ (ppm)]

Figura 100 – EMIE 70 eV de **DV8**

Figura 101 – Espectro no UV de DV8 em CH₃OH com: a) AlCl₃ e AlCl₃ + HCl, b) MeONa, c) AcONa

Figura 102 – Principais fragmentações de massa observadas no EMIE de DV8

Posição	DV8				
	δ-H (J = Hz)	δ-C			
2	5,10 <i>d</i> (12,3)	84,26			
3	4,58 <i>d</i> (12,3)	73,24			
4	-	192,67			
5	7,32 s	106,52			
6	-	142,88			
7	-	154,16			
8	6,59 s	103,52			
9	-	158,75			
10	-	110,60			
1'	-	134,80			
2'	7,59 <i>dd</i> (1,8; 8,1)	127,51			
3'	7,46 m	128,66			
4'	7,46 m	128,24			
5'	7,46 m	128,66			
6'	7,59 <i>dd</i> (1,8; 8,1)	127,51			
OCH ₃	3,95 s	56,42			

Tabela 39 – Dados de RMN ¹H (300 MHz) e ¹³C (75 MHz) do diidroflavonol [CDCl₃, δ (ppm)]*.

*Multiplicidades obtidas por DEPT.

6.6. Chalconas

As chalconas são uma classe de flavonóides com o anel C aberto e são caracterizadas por um esqueleto base do tipo 1,3-difenil-prop-2-en-1-ona. O anel A, proveniente da rota biossintética do acetato, encontra-se normalmente hidroxilado nas posições C-2', C-4' e/ou C-6'. Já o anel B, derivado de um fenilpropanóide, é mais comum em chalconas o não substituído, o monosubstituído em C-4, o disubstituído em C-3 e C-4 ou o trisubstituído em C-3, C-4 e C-5. As chalconas são consideradas intermediárias na biossíntese dos demais flavonóides. A sua coloração amarela deve-se á conjugação entre o anel B, e o sistema carbonílico insaturado (HARBORNE, 1967; BOHM, 1975).

As chalconas apresentam espectro no UV característico, com uma banda de absorção intensa entre 340-390 nm (Banda I), e uma banda de menor intensidade entre 220-270 nm (Banda II). A absorção da Banda I ocorre em comprimentos de onda consideravelmente menores na ausência de oxigenação no anel B, porém o aumento no grau de oxigenação em A ou B resulta em deslocamento batocrômico da Banda I. Como nos outros flavonóides, o uso de agentes de deslocamento é útil na determinação do padrão de hidroxilação e da substituição nas flavanonas. Muitas chalconas tornam-se vermelhas ou laranja na presença de CH₃ONa, devido ao deslocamento batocrômico provocado na Banda I. Nas chalconas com OH livre no C-4, a adição de solução de CH₃ONa produz um deslocamento batocrômico da Banda I de 60-100 nm, acompanhado de um efeito hipercrômico. Na ausência de 4-OH, mas presença de 2-OH ou 4'-OH também ocorre deslocamento batocrômico de 60-100 nm da Banda I, porém sem efeito hipercrômico. O uso de CH₃COONa causa deslocamento

batocrômico da Banda I para 4-OH e 4'-OH livres, não sendo observado deslocamento apreciável para outras hidroxilas. Chalconas com 3 hidroxilas adjacentes podem se decompor na presença de acetato. O uso de AlCl₃ é útil na detecção de grupo catecol no anel B, pois, causa deslocamento batocrômico da Banda I de 40-70 nm, que, após adição de HCl, retorna aos valores anteriores. Hidroxilas vizinhas no anel A também podem ser detectadas, porém o efeito batocrômico na Banda I é menor. A presença de 2'-OH causa um deslocamento batocrômico de 48-64 nm na Banda I com adição de AlCl₃, que persiste com adição de HCl (MABRY, 1970; MARKHAM, 1982).

Os EM das chalconas apresentam íons intensos para $M^{+\bullet}$, $[M - H]^+ e [M - CH_3]^+$ (para chalconas metoxiladas), além dos fragmentos derivados da fissão em ambos os lados da carbonila $A_2^+ e B_5^+$. As intensidades relativas de $A_2^+ e B_5^+$ depende do padrão de substituição nos anéis A e B. Existe um equilíbrio intramolecular entre os íons moleculares da chalcona e da flavanona, porém a isomerização completa não é observada, pois, a clivagem adjacente à carbonila se dá mais rapidamente, predominando portanto o EM da chalcona, com fragmentos da flavanona em menor intensidade (MABRY, 1975).

O espectro de RMN ¹H das chalconas é bastante elucidativo quanto a estereoquímica, pois as chalconas *trans* apresentam constante de acoplamento de cerca de 16 Hz entre H- α e H- β , enquanto que as chalconas *cis* apresentam constante de acoplamento de 12 Hz. O hidrogênio H- α encontra-se protegido por efeito de ressonância, apresentando deslocamento químico na faixa de δ 6,7-7,4, enquanto que H- β encontra-se desprotegido por efeito de ressonância, na faixa de δ 7,3-7,7. Os deslocamentos do anel B são semelhantes aos deslocamentos das flavonas. Os hidrogênios H-3' e H-5' para as chalconas hidroxiladas em 2' podem não ser magneticamente equivalentes, devido à dissociação da ligação de H entre 2'-OH e a carbonila ser lenta para a escala de tempo de análise em aparelho de RMN. A altas temperaturas, em presença de H₂O ou ácido a dissociação da ligação de H é muito mais rápida, não sendo observada esta não equivalência (MARKHAM, 1975, 1994).

Todos os átomos de carbono do esqueleto base das chalconas apresentam sinais de deslocamento no RMN ¹³C na região de 90-195 ppm. As chalconas não substituídas ou monosubstituídas em C-4 e/ou C-4' apresentam apenas 11 sinais de deslocamento no RMN ¹³C, devido à equivalência química e magnética de C-2/6, C-3/5, C2'/6' e C-3'/5'. Qualquer substituinte em outra posição torna o anel assimétrico, o que aumenta o número de sinais registrados. Dois anéis assimétricos apresentam 15 sinais de RMN ¹³C. Dentre os deslocamentos observados, o mais facilmente atribuído é o da carbonila, por ser o sinal mais desprotegido do espectro em δ 187-195 ppm. A presença de substituintes em *meta* ou em *para* nos anéis aromáticos exerce efeito muito pequeno no deslocamento da carbonila. Por outro lado, a presença do grupo 2'-OH desprotege a carbonila cerca de 3-5 ppm, devido à ligação de H intramolecular. O carbono sp^2 C- β encontra-se desprotegido pela ressonância entre a carbonila α,β -insaturada e o anel B, apresentando deslocamento em δ 136-147. No entanto, esta mesma conjugação protege C- α , que apresenta deslocamento em δ 116-129. A substituição em C-2 por grupo oxigenado desprotege o C- β cerca de 3-5 ppm (AGRAWAL, 1989).

6.6.1. Identificação da 2',4'-diidroxichalcona

Os espectros de RMN de ¹³C (Figura 105, p. 165) e ¹H (Figura 103, p. 164) de **DV11** em conjunto com experimento DEPT (Figura 106, p. 165) mostraram a presença de 15 carbonos e 10 hidrogênios. Estes dados em conjunto com íon molecular em m/z 240, observado no EM (Figura 107, p. 166) permitiram propor a fórmula molecular $C_{15}H_{12}O_3$.

Análise do espectro de RMN ¹H permitiu identificar os sinais característicos do esqueleto de uma chalcona (Figura 104, p. 164; Tabela 40, p. 181). Estes dados em conjunto com o espectro de RMN ¹³C auxiliado por experimento DEPT 135° que mostraram dois sinais de deslocamento para carbono sp^2 hidrogenado (δ 144,53 e δ 120,51), em conjunto com a carbonila (δ 192,00), confirmaram que a substância trata-se de uma chalcona (Figuras 105 e 106, p. 165).

Análise dos fragmentos observados no EMIE da substância mostrou fragmentação vizinha a carbonila A_2^+ em m/z 137 e B_5^+ em m/z 131. O pico base representou a perda do anel B [M – (anel B)]⁺ m/z 163, que juntamente com o fragmento B_4^+ em m/z 91 sugeriu ausência de substituição no anel B (Figuras 107 e 109, p. 166 e 168). Esta sugestão foi confirmada pelo multipleto registrado no RMN ¹H em δ 7,43, integrando para 3 átomos de hidrogênio, e pelo multipleto integrando para 2 átomos de hidrogênio em δ 7,66. Os sinais no RMN ¹³C de carbonos metínicos aromáticos também confirmaram este padrão de substituição (Figuras 105 e 106, p. 165;Tabela 40, p. 181).

Os sinais de RMN ¹H em δ 6,45 *d* (J = 2,1), δ 6,47 *dd* (J = 2,1 e 8,6) e δ 7,83 *d* (J = 8,6), num sistema ABX de *spins* (Figura 104, p. 164) confirmaram a substituição em C-2' e C-4' no anel A.

O espectro no UV revelou banda I de absorção mais intensa em $\lambda_{Max} = 316$ nm o que sugere ausência de hidroxilação no anel B. A adição de AlCl₃ provocou deslocamento

batocrômico de 34 nm da banda I para $\lambda_{Max} = 350$ nm, o que confirma a presença de 2'-OH (Figura 108, p. 167). O uso de MeONa provocou deslocamento batocrômico de 76 nm da banda I para $\lambda_{Max} = 392$ nm, porém, sem apresentar efeito hipercrômico. Esta observação confirma a ausência de 4-OH e sugere a presença de 4'-OH. O deslocamento batocrômico de 71 nm da banda I em presença de CH₃COONa para $\lambda_{Max} = 387$ nm confirmou a presença de hidroxila livre em C-4' (Figura 108, p. 167).

Todos estes dados aliados a comparação com descritos na literatura (WOLLENWEBER, 1982) confirmaram que a substância **DV11** tratava-se da 2',4'-diidroxichalcona, que foi isolada pela primeira vez de *Flemingia chappar* (ADITYACHAUDHURY, 1969) e de ocorrência comum em vegetais.

Figura 103 – Espectro de RMN ¹H de **DV11** [300 MHz, CDCl₃, δ (ppm)]

Figura 104 – Espectro de RMN ¹H de **DV11** (integração) [300 MHz, CDCl₃, δ (ppm)]

Figura 105 – Espectro de RMN 13 C de **DV11** [75 MHz, CDCl₃, δ (ppm)]

Figura 106 – Experimento DEPT 135° de **DV11** (ampliação) [75 MHz, CDCl₃, δ (ppm)]

Figura 107 – EMIE 70 eV de **DV11**

Figura 108 – Espectro no UV de **DV11** em CH₃OH com: a) AlCl₃ e AlAl₃ + HCl, b) MeONa, c) AcONa

Figura 109 - Principais fragmentações de massa observadas no EMIE de DV11

6.6.2. Identificação da 2',4,4'-triidroxi-3-metoxichalcona

Os espectros de RMN ¹³C (Figura 111, p. 171) e ¹H (Figura 110, p. 170) de **DV15** em conjunto com experimento DEPT (Figura 112, p. 171) apresentaram sinais para 16 carbonos e 11 hidrogênios. Estes dados aliados ao íon molecular em m/z 286 observado no EM (Figura 113, p. 172) permitiram propor a fórmula molecular C₁₆H₁₄O₅.

Análise do espectro de RMN ¹H permitiu identificar os sinais característicos do esqueleto de uma chalcona substituída por um grupo metoxílico (Figura 110, p. 170;Tabela 40, p. 181). Os dados do espectro de RMN ¹³C, auxiliado por experimento DEPT 135°, mostraram a presença de dois sinais de deslocamentos de C-*sp*² hidrogenados (δ 145,97 e δ 124,97), além da carbonila em δ 193,55 e de um grupo metoxilico em δ 56,56 (Tabela 40, p. 181). Estes dados, especialmente o sinal de C- α , confirmaram que a substância tratava-se de uma chalcona (Figuras 111 e 112, p. 171).

Análise do EMIE da substância mostrou fragmentações vizinhas a carbonila A_2^+ em m/z 137 (pico base), e B_5^+ em m/z 177. O fragmento representando a perda do anel B [M – (anel B)]⁺ em m/z 163, juntamente com os fragmentos B_5^+ em m/z 177 e B_4^+ em m/z 137 sugeriram presença de hidroxila e metoxila no anel B (Figuras 113 e 115). Esta sugestão foi corroborada pelos sinais observados no espectro de RMN ¹H (δ 7,37 *d*, δ 6,84 *d* e δ 7,71 *dd*) referentes aos hidrogênios acoplando num sistema AMX de *spins* (Tabela 40, p. 181). Os sinais observados no espectro de RMN ¹³C referentes a carbonos aromáticos hidrogenados (Tabela 40. p. 181) confirmam a presença de substituição em C-3 e C-4 no anel B. O efeito de desproteção observado em C-3 ($\Delta\delta$ = 4,52) em relação a **DV20**, e o efeito de proteção em C-5 ($\Delta\delta$ = 4,24) sugeriram que a metoxila encontrava-se na posição C-3 (Figuras 110 e 111, p. 170 e 171).

A presença de um outro sistema AMX de *spins* observado no espectro de RMN ¹H (δ 6,29, δ 6,41 e δ 8,00), confirmaram que no anel A as posições C-2' e C-4' encontram-se substituídas (Figura 110, p. 170).

O espectro no UV revelou banda I de absorção mais intensa em $\lambda_{Max} = 374$ nm, que sugere hidroxilação no anel B. Adição de AlCl₃ na solução provocou deslocamento batocrômico de 50 nm da banda I para $\lambda_{Max} = 424$ nm, que não retornou em presença de HCl, o que confirmando a presença hidroxila em C-2' e ausência de grupo catecol no anel B (Figura 114, p. 173). O uso de MeONa provocou um deslocamento batocrômico de 70 nm da banda I para $\lambda_{Max} = 444$ nm, acompanhado de efeito hipercrômico, o que confirma a presença de 4-OH livre. Já o deslocamento batocrômico de 36 nm da banda I observado após adição de CH₃COONa ($\lambda_{Max} = 410$ nm) confirmou que a posição 4'-OH encontrava-se livre. A metoxila, portanto encontra-se na posição C-3 (Figura 114, p. 173).

Estes dados aliados a comparação com dados descritos na literatura (LaDUKE, 1982) confirmaram que a substância **DV15** trata-se da 2',4,4'-triidroxi-3-metoxichalcona (homobuteína), a qual foi isolada pela primeira vez de *Acacia neovernicosa* (CLARK-LEWIS, 1972) e posteriormente de *Tithonia* (LaDUKE, 1982), *Wedelia asperrima* (CALANASAN, 1998) e *Erythrina abyssinica* (YENESEW, 2004).

Figura 110 – Espectro de RMN ¹H de **DV15** [300 MHz, CD₃OD, δ (ppm)]

Figura 111 – Espectro de RMN 13 C de **DV15** [75 MHz, CD₃OD, δ (ppm)]

Figura 112 – Experimento DEPT 135° de **DV15** (ampliação) [75 MHz, CD₃OD, δ (ppm)]

Figura 113 – EMIE 70 eV de **DV15**

Figura 114 – Espectro no UV de **DV15** em CH₃OH com: a) AlCl₃ e AlCl₃ + HCl, b) MeONa, c) AcONa

Figura 115 – Principais fragmentações de massa observadas no EMIE de DV15

6.6.3. Identificação da 2',3,4,4'-tetraidroxichalcona

Os espectros de RMN ¹³C (Figura 118, p. 177) e ¹H (Figura 116, p. 176) de **DV20** em conjunto com o experimento DEPT (Figura 119, p. 177) apresentaram sinais para 15 carbonos e 8 hidrogênios. Estes dados aliados ao íon molecular em m/z 272 observado no EM (Figura 120, p. 178) permitiram propor a fórmula molecular C₁₅H₁₂O₅.

Análise do espectro de RMN ¹H permitiu identificar os sinais característicos do esqueleto de chalcona (Figura 117, p. 176; Tabela 40, p. 181). Estes dados em conjunto com o espectro de RMN ¹³C, auxiliado por experimento DEPT 135°, mostraram dois sinais de deslocamento para C-*sp*² hidrogenados (δ 145,52 e δ 123,43) que em conjunto com a carbonila (δ 190,46) confirmaram que a substância tratava-se de uma chalcona (Figuras 118 e 119, p. 177; Tabela 40, p. 181).

O EMIE da substância mostrou as fragmentações vizinhas a carbonila características A_2^+ em m/z 137 (pico base) e B_5^+ em m/z 163. Os fragmentos A_2^+ e B_5^+ sugeriram a presença de duas hidroxilas no anel B e duas hidroxilas no anel A (Figuras 120 e 122, p. 178 e 180). Esta sugestão foi reforçada pelos sinais de um sistema AMX de *spins* de H no RMN ¹H (δ 7,35 *d*, δ 6,91 *d* e δ 7,22 *dd*) (Tabela 40, p. 181). Os sinais no RMN ¹³C obtidos em mistura com **DV19** de mostraram a presença de carbonos metínicos aromáticos (Tabela 40, p. 181) que também confirmam a substituição em C-3 e C-4 (Figura 118, p. 177).

A presença de outro sistema AMX de *spins* observado no espectro de RMN ¹H (δ 6,36, δ 6,46 e δ 7,95), confirmaram que no anel A as posições C-2' e C-4' encontram-se substituídas (Figura 117, p. 176).

O espectro no UV revelou banda I de absorção mais intensa em $\lambda_{Max} = 383$ nm, sugerindo hidroxilação no anel B. Adição de AlCl₃ na solução provocou deslocamento batocrômico de

74 nm da banda I para $\lambda_{Max} = 457$ nm e deslocamento hipsocrômico de 30 nm em presença de HCl retrocedendo para $\lambda_{Max} = 427$ nm, o que confirmou a presença de 2'-OH e a presença de grupo catecol no anel B (Figura 121, p. 179). O uso de MeONa provocou deslocamento batocrômico de 58 nm da banda I para $\lambda_{Max} = 441$ nm, acompanhado de efeito hipercrômico, o que confirma a presença de 4-OH livre. O deslocamento batocrômico de 58 nm da banda I em presença de CH₃COONa para $\lambda_{Max} = 441$ nm confirmou que a presença de hidroxila livre em C- 4' (Figura 121, p. 179).

Estes dados aliados à comparação com os da literatura (LIN, 1989) confirmaram que a substância **DV20** trata-se da 2',3,4,4'-tetraidroxichalcona (buteína), a qual foi isolada pela primeira vez de *Butea frondosa* (PERKIN, 1904) e é de ocorrência comum em vegetais.

Figura 116 – Espectro de RMN ¹H de **DV20** [300 MHz, CD₃OD, δ (ppm)]

Figura 117 – Espectro de RMN ¹H de **DV20** (integração) [300 MHz, CD₃OD, δ (ppm)]

Figura 118 – Espectro de RMN ¹³C de **DV20** + **DV19** [75 MHz, (CD₃)₂CO, δ (ppm)]

Figura 119 – Experimento DEPT 135° de **DV20** + **DV19** (ampliação) [75 MHz, (CD₃)₂CO, δ (ppm)]

Figura 120 – EMIE 70 eV de **DV20**

Figura 121 – Espectro no UV de **DV20** em CH₃OH com: a) AlCl₃ e AlCl₃ + HCl, b) MeONa, c) AcONa

Figura 122 – Principais fragmentações de massa observadas no EMIE de DV20

Posição	DV11		DV15		DV20	
	δ-Н	δ-C	δ-H [§]	δ-C [§]	δ-H [§]	δ -C [*]
β	7,89 <i>d</i> (15,5)	144,53	7,78 d (15,4)	145,97	7,73 <i>d</i> (15,6)	145,52
α	7,58 d (15,5)	120,51	7,64 <i>d</i> (15,4)	124,97	7,54 <i>d</i> (15,6)	123,43
β'	-	192,00	-	193,55	-	190,46
1'	-	114,51	-	114,76	-	114,73
2'	-	163,03	-	166,36	-	165,58
3'	6,45 <i>d</i> (2,1)	103,83	6,29 <i>d</i> (2,4)	103,80	6,36 <i>d</i> (2,1)	103,83
4'	-	166,54	-	167,51	-	167,62
5'	6,47 <i>dd</i>	107,85	6,41 <i>dd</i>	109,11	6,46 <i>dd</i>	108,71
	(2,1; 8,6)		(2,4; 8,9)		(2,1; 8,9)	
6'	7,83 <i>d</i> (8,6)	131,98	8,00 d (8,9)	133,49	7,95 d (8,9)	133,28
1	-	134,91	-	128,45	-	128,40
2	7,66 m	128,53	7,37 <i>d</i> (1,8)	116,56	7,35 <i>d</i> (2,0)	116,06
3	7,43 m	129,00	-	150,97	-	146,45
4	7,43 m	130,64	-	149,46	-	149,25
5	7,43 m	129,00	6,84 <i>d</i> (8,2)	112,25	6,91 <i>d</i> (7,8)	116,49
6	7,66 m	128,53	7,71 dd	118,67	7,22 dd	118,58
			(1,8; 8,2)		(2,0; 7,8)	
OCH ₃	-	-	3,94 s	56,56	-	-

Tabela 40 – Dados de RMN ¹H (300 MHz) e 13 C (75 MHz) das chalconas [CDCl₃, δ (ppm)]

Multiplicidade obtida por DEPT, [§]CD₃OD, *(CD₃)₂CO.

6.7.Flavan-3-ol

Os flavan-3-óis, também denominados de catequinas, pertencem à classe dos flavanóides, que não possuem o grupo 4-C=O nem conjugação entre os anéis A e B. Por este motivo sua absorção máxima no UV é observada em comprimentos de onda mais baixos, dificultando a análise do espectro no UV (AGRAWAL, 1989).

O espectro de massas por impacto de elétrons (EMIE) dos flavan-3-óis apresenta íon molecular $[M]^{+\bullet}$ pouco intenso, sendo dominado pelos fragmentos de RDA pela rota I e pelos íons derivados destes fragmentos. O pico base em geral é o fragmento que conserva o anel A com transferência de H $[A_1 + H]^+$. Outros fragmentos que se destacam são $[M - H_2O]^{+\bullet}$ (íon flaveno), $[M - H_2O - H]^{+\bullet}$ (íon flavílium), $[M - H_2O - (anel)B]^{+\bullet}$ e o íon tropílio proveniente do rearranjo de B_4^+ (MABRY, 1975).

Os espectros de RMN ¹H dos flavan-3-óis são caracterizados pelos hidrogênios alifáticos presentes no anel C, sendo que estes dependem da estereoquímica e da conformação deste anel. O hidrogênio oximetínico H-2 encontra-se mais desprotegido tanto na *epi*catequina ($\delta \sim 4,74$) que possui OH axial em C-3, quanto na catequina ($\delta \sim 4,49$) que possui OH equatorial em C-3, devido a desproteção adicional do anel B. O H-3*eq* da *epi*catequina encontra-se mais desprotegido ($\delta \sim 4,01$) que o H-3*ax* da catequina ($\delta \sim 3,83$). Os hidrogênios metilênicos benzílicos H-4*ax* e H-4*eq* encontram-se mais protegidos em ambas ($\delta 2,80-2,30$), sendo ligeiramente mais protegidos na catequina. Os demais deslocamentos de hidrogênio dos anéis A e B aromáticos pouco diferem dos demais flavonóides, sendo difícil distinguir algumas vezes entre H-6 e H-8 (MARKAN, 1994).

Os deslocamentos no RMN ¹³C dos flavanóides podem ser divididos em duas regiões bem distintas, os C-*sp*³ C-2, C-3 e C-4 do anel C são registrados em δ abaixo de 90 e os C-*sp*² em δ acima de 90. Os valores de deslocamento dos C-*sp*² dependem da hidroxilação e substituição nos anéis A e B, já tendo sido discutidos em outras classes de flavonóides. Já os valores de deslocamento dos C-*sp*³ dependem da substituição e funcionalização, assim como da estereoquímica do anel C. A conformação mais estável é geralmente aquela em que o anel B encontra-se em posição equatorial, porém a introdução de um substituinte volumoso em C-3 força o anel B para posição axial. Nos flavan-3-óis a conformação adotada é a de meia-cadeira e o anel B é quase exclusivamente equatorial. Portanto, na *epi*catequina a 3-OH será equatorial. Os deslocamentos de carbono serão então controlados pela orientação do grupo 3-OH. O C-2 oximetínico apresenta deslocamento em δ 76,7-82,3, cerca de 12-15 ppm mais desprotegido que C-3 oximetínico em δ 65,1-69,5 devido ao efeito de desproteção do anel B. Enquanto que o sinal do carbono metilênico benzílico é registrado em δ 24,0-32,6. A diferença epimérica entre a catequina/*epi*catequina é $\Delta\delta$ + 3,4 (C-2), $\Delta\delta$ + 2,1 (C-3) e $\Delta\delta$ - 0,7 (C-4) (AGRAWAL, 1989).

Os flavan-3-óis, assim como os demais flavonóides que possuem centro de assimetria, apresentam a estereoquímica absoluta intimamente ligada à rotação da luz planopolarizada $[\alpha]_D$. Assim, a (-)-*epi*catequina (levorrotatória) apresenta configuração 2R,3R e a (+)-*epi*catequina (dextrorrotatória) apresenta configuração 2S,3S. De forma semelhante a (-)-catequina apresenta configuração 2S,3R e a (+)-catequina apresenta configuração 2R,3S (MARKAN, 1982).

6.7.1. Identificação da epicatequina

Análise dos espectros de RMN ¹³C (Figura 125, p. 187) e ¹H (Figura 123, p. 186) de **DV22** auxiliada por experimento DEPT (Figura 126, p. 187) apresentou sinais para 15 carbonos e 9 hidrogênios. Estes dados em conjunto com seu íon molecular em m/z 290 observado no EM (Figura 127, p. 188) permitiram propor a fórmula molecular C₁₅H₁₄O₆.

O espectro de RMN ¹H (Figura 124, p. 186) apresentou perfil característico para um flavan-3-ol. Esta observação foi confirmada pelos deslocamentos no RMN ¹³C para os $C-sp^3$ hidrogenados observados para C-2, C-3 e C-4 (Figuras 125 e 126, p. 187; Tabela 41, p. 191).

Os fragmentos de RDA $[A_1 + H]^+$ em m/z 139 (pico base) e $B_3^{+\bullet}$ em m/z 152 sugeriram a presença de duas hidroxilas no anel A e três hidroxilas distribuídas entre B e C. O íon $B_4^{+\bullet}$ que rearranja para o íon tropílio em m/z 123 confirmou a presença de duas hidroxilas em B e sugere que a terceira se encontra em C na posição C-3 (Figuras 127 e 129, p. 188 e 190).

O espectro no UV mostrou banda I de absorção pouco intensa em $\lambda_{Max} = 370$ nm, que apresentou deslocamento batocrômico de 54 nm para $\lambda_{Max} = 424$ nm acompanhado de efeito hipercrômico em presença de AlCl₃ (Figura 128, p. 189). Este deslocamento sugere a presença de duas hidroxilas em *orto* no anel B. Os deslocamentos no RMN ¹H em δ 7,05 *d* (J = 1,8 Hz), δ 6,79 *d* (J = 8,1 Hz) e δ 6,90 *dd* (J = 1,8 e 8,1 Hz) de sistema ABX de *spins* (Figura 124, p. 186) em conjunto com os deslocamentos de RMN ¹³C (Figura 125, p. 187) confirmaram que o anel B apresenta hidroxilas em C-3 e C-4 (Tabela 41, p. 191).

Os sinais de RMN ¹H em δ 5,93 *d* (J = 2,4 Hz) e δ 6,03 *d* (J = 2,4 Hz) acoplando num sistema AX de *spins* (Figura 124, p. 186) sugeriu que o anel A encontrava-se hidroxilado nas posições C-5 e C-7 (Tabela 41, p. 191).

Análise destes dados e comparação com dados da literatura (JACQUES, 1974), confirmaram que **DV22** trata-se da 3,3',4',5,7-pentahidroxiflavana (*epi*catequina). O sinal

negativo do $[\alpha]_D^{25} = -16,0$ confirmou a estereoquímica como sendo 2*R*,3*R*, tratando-se portanto de (-)-*epi*catequina.

Figura 123 – Espectro de RMN ¹H de **DV22** [300 MHz, (CD₃)₂CO, δ (ppm)]

Figura 124 – Espectro de RMN ¹H de **DV22** (integração) [300 MHz, (CD₃)₂CO, δ (ppm)]

Figura 125 – Espectro de RMN ¹³C de **DV22** [75 MHz, (CD₃)₂CO, δ (ppm)]

Figura 126 – Experimento DEPT 135° de **DV22** (ampliação) [75 MHz, (CD₃)₂CO, δ (ppm)]

Figura 127 – EMIE 70 eV de DV22

Figura 128 – Espectro no UV de **DV22** em CH₃OH com: a) AlCl₃ e AlCl₃ + HCl, b) MeONa, c) AcONa

Figura 129 – Principais fragmentações de massa observadas no EMIE de DV22

Posição	DV22			
	δ-Η	δ-C		
2	4,87 sl	79,25		
3	4,21 m	66,87		
4ax	2,86 <i>dd</i> (4,5; 16,8)	28,83		
4eq	2,74 <i>dd</i> (3,0; 16,8)			
5	-	156,92		
6	5,93 d (2,4)	95,06		
7	-	157,41		
8	6,03 <i>d</i> (2,4)	96,20		
9	-	157,39		
10	-	99,66		
1'	-	132,02		
2'	7,05 <i>d</i> (1,8)	115,13		
3'	-	145,29		
4'	-	145,15		
5'	6,79 <i>d</i> (8,1)	115,45		
6'	6,90 <i>dd</i> (1,8; 8,1)	119,19		

Tabela 41 – Dados de RMN ¹H e 13 C do flavan-3-ol [(CD₃)₂CO]*

*Multiplicidade obtida por DEPT.

6.8. Proantocianidinas

As proantocianidinas são a classe mais abundante dos flavanóides. Podem existir como biflavonóides, triflavonóides ou poliflavonóides. Estes poliflavonóides também são conhecidos como taninos condensados. Em todos os tipos a unidade superior é sempre derivada de flavanóide e a inferior pode pertencer a qualquer classe de flavonóides. A numeração segue a regra dos flavonóides, acrescentando as letras *u* (upper) e *l* (low) para as unidades superiores e inferiores, respectivamente. Uma característica das proantocianidinas é a formação das antocianidinas através de hidrólise em meio ácido. As proantocianidinas mais comuns são oligômeros ou polímeros de flavan-3-óis polihidroxilados, em geral catequina ou *epi*catequina, apresentando uma ligação C-C entre as posições $4u \rightarrow 8l$ ou $4u \rightarrow 6l$ nas proantocianidinas do tipo-B, ou uma ligação éter adicional C-O-C entre as posições $2u \rightarrow 7l$ nas proantocianidinas do tipo-A. Os subtipos B₁, B₂, B₃, B₄,..., A₁, A₂, A₃, A₄,..., são definidos pelas configurações absolutas e relativas nos centros estereogênicos (PORTER, 1994).

Os EMIE apresentam fragmentos típicos para seus monômeros, além de fragmentos que conservam a ligação entre as unidades de flavonóides, característicos também para biflavonóides (MABRY, 1975). Em geral o método de impacto de elétrons não permite identificar o íon molecular [M]^{+•}, sendo necessário o uso de técnicas menos energéticas como íonização química (IQ) ou bombardeamento por átomos rápidos (FAB). Atualmente as técnicas de elétron *spray* (ES) ou ionização química à pressão atmosférica (APCI) são também utilizadas.

Os espectros de RMN ¹³C das proantocianidinas diferem das flavanas em geral principalmente nos deslocamentos dos carbonos em que se dão as ligações interflavonóide. Para as do tipo-B o deslocamento de C-4 é registrado ao redor de δ 37-38 tanto para a configuração 2,3-*cis* quanto para a configuração 2,3-*trans*. Para os flavonóides com ausência de grupos oxigenados no C-5, o C-4 é desblindado, sendo o sinal registrado em δ 41-44. Já o C-8 apresenta ressonância em δ 108 para ligação 4 \rightarrow 8, enquanto que para o C-6 essa aparece em δ 108-106, encontrando-se protegido em 0-2 ppm para ligação 4 \rightarrow 6. Uma das características nos espectros de RMN ¹³C das proantocianidinas do tipo-A é o sinal do C-2, que se encontra desprotegido próximo de δ 99, enquanto que o C-4 (δ 29) encontra-se protegido em relação à do tipo-B. Outra diferença entre os tipos A e B é a rigidez observada para o tipo-A devido ao sistema bicíclico, o que torna os sinais de RMN ¹H e ¹³C mais bem resolvidos (AGRAWAL, 1989).

Proantocianidina do tipo A2

A rigidez do anel bicíclico das proantocianidinas do tipo-A torna fácil a determinação da configuração relativa dos centros assimétricos através de experimentos de "nOe diff" ou mesmo através da análise das constantes da acoplamento. Já a estereoquímica absoluta não pode ser determinada apenas por $[\alpha]_D$, devido à abundância de centros estereogênicos. Deste modo, é necessário a obtenção de curvas de dicroismo circular (DC), pois o efeito Cotton na região de 220-230 nm está diretamente relacionado à configuração absoluta de C-4, sendo 4*R* se positivo e 4*S* se negativo (BARRETT, 1979).

6.8.1. Determinação estrutural da 3',4',7-triidroxiflavana- $(2\beta \rightarrow 7, 4\beta \rightarrow 8)$ -3-prenilfustina

3',4',7-triidroxiflavana- $(2\beta \rightarrow 7, 4\beta \rightarrow 8)$ -3-prenil-fustina **DV21**

A estrutura desta nova proantocianidina do tipo A foi proposta baseada somente na análise detalhada dos espectros de RMN ¹H (Figuras 130 e 131, p. 197), ¹³C (Figura 135, p. 199) inclusive DEPT 135° (Figuras 139 e 140, p. 201), "nOe diff" (Figuras 141 e 142, p. 202), HMQC (Figura 143, p. 203) e HMBC (Figura 145, p. 205). Análise do espectro de RMN ¹³C de **DV21** auxiliada por experimentos DEPT mostrou a presença de 35 carbonos sendo 15 não hidrogenados, 15 carbonos metínicos, 3 carbonos metilênicos e 2 carbonos metílicos, mostrando portanto a presença de 27 hidrogênios. Estes dados estão de acordo com a integração do espectro de RMN ¹H. Estes dados aliados ao número de carbonos oxigenados observados no espectro de RMN de ¹³C (Tabela 42, p. 224) permitiram sugerir a presença de 10 oxigênios e propor a fórmula molecular $C_{35}H_{32}O_{10}$, MM = 612.

Os deslocamentos dos hidrogênios ligados a C-*sp*² observados no espectro de RMN ¹H (Figura 132, p. 198) podem ser divididos em 4 sistemas de *spins* distintos. Dois sistemas AMX característicos de anéis aromáticos trisubstituídos (grupo catecol) que puderam ser identificados pelos sinais em δ 6,73 *d* (J = 2,0 Hz), δ 7,62 *d* (J= 8,7 Hz) e δ 6,51 *dd* (J = 2,0 e 8,7 Hz) e em δ 7,68 *d* (J= 2,4 Hz), δ 6,72 *d* (J = 8,7 Hz) e δ 7,54 *dd* (J = 2,4 e 8,7 Hz), que

constituem os anéis B das duas unidades flavanoídicas. A presença destes dois grupos pode ser corroborada pelos sinais observados no espectro de RMN ¹³C em δ 131,61 (C-1'u), δ 115.61 (C-2'*u*), δ 144,92 (C-3'*u*), δ 145,07 (C-4'*u*), δ 115,39 (C-5'*u*) e δ 119,59 (C-6'*u*) para um dos anéis e, em δ 131,71 (C-1'l), δ 115,11 (C-2'l), δ 145,70 (C-3'l), δ 147,30 (C-4'l), δ 114,89 (C-5'l) e δ 119,36 (C-6'l) para o outro. Estes sinais foram atribuidos com base nas correlações observadas no espectro HMQC (Figuras 143, 144 e 147, p. 203, 204 e 207) e no HMBC (Figuras 145, 146 e 147, p. 205, 206 e 207). Pode-se observar no espectro RMN de ¹H um terceiro sistema AMX em δ 7,68 d (J = 8,7 Hz), δ 6,88 dd (J = 8,7 e 2,1 Hz) e δ 6,28 d (J = 2,1 Hz), com valores um pouco mais protegidos em relação aos anteriores, característicos de anel A. Este sistema sugere ausência de OH no C-5 e ausência de vizinhança de C=O (C-4). Estes dados são corroborados pelos deslocamentos de RMN ¹³C (Tabela 42, p. 224). O espectro de RMN de ¹H também apresenta dois dupletos (δ 7,90 e δ 6,86), com constante de acoplamento J = 9.3 Hz, num sistema AX de *spins* característico da posição *orto* entre dois hidrogênios no anel A, em outro anel aromático, sendo que o sinal mais desprotegido é indicativo da presença de carbonila em C-4 vizinha. Os sinais de RMN ¹³C dos carbonos deste anel, auxiliados pelos experimentos DEPT, HMQC e HMBC, corroboram esta afirmação (Tabela 42, p. 224). O deslocamento de carbono em δ 128,36, observado para o carbono não hidrogenado C-8, é indicativo da presença de substituição nesta posição. Este se encontra mais desprotegido em relação a DV23 e DV24 devido à ausência de OH em C-5. Esta é possivelmente a posição da ligação C-C entre as duas unidades flavonoídicas (Figuras 136, 137, 138 e 140, p. 200 e 201; Tabela 42, p. 224).

Os valores dos deslocamentos observados no espectro de RMN ¹H na região referente aos hidrogênios ligados à C-*sp*³ (Figuras 133 e 134, p. 198 e 199) podem ser agrupados em três conjuntos. O primeiro conjunto apresenta dois hidrogênios em δ 4,95 *d* (J = 11,4 Hz) e δ 4,39 *d* (J = 11,4 Hz) acoplando em *trans*, num sistema AX de *spins*, característico para diidroflavonóis. O espectro de RMN de ¹³C auxiliado pelo DEPT confirma esta observação através do registro de dois carbonos oxibenzílicos e de uma carbonila (Figuras 136, 137, 139 e 140, p. 199, 200 e 201; Tabela 42, p. 224). Estes deslocamentos em conjunto com os observados para os carbonos aromáticos, sugeriram que a unidade inferior era formada pelo 7,3',4'-triidroxidiidroflavonol (fustina).

O segundo conjunto de hidrogênios é composto por um multipleto refrente a dois hidrogênios metilênicos (δ 1,28) e um multipleto em δ 3,35 *m* referente a um hidrogênio benzílico. A multiplicidade do hidrogênio benzílico não está clara, pois o sinal encontra-se

parcialmente encoberto pelo sinal da água do solvente. O sinal em δ 3,35 *m* é atribuído ao hidrogênio ligado ao C-4*u*, condizente com o carbono metínico observado no RMN ¹³C (δ 38,09), devido à ausência de OH em C-5. O carbono não hidrogenado em δ 101,63 (C-2*u*) indica a segunda ligação do tipo C-O-C entre os dois flavonóides (Tabela 42, p. 224). A unidade superior foi então identificada como sendo a 7,3',4'-triidroxiflavana.

Os demais sinais observados no espectro de RMN ¹H em δ 4,13 *dd*, δ 1,23 *m*, δ 1,35 *m*, δ 0,88 *d* e δ 0,85 *d* caracterizam a presença de um grupo prenila saturado (Figura 138, p. 200; Tabela 42, p. 224). Estes dados são confirmados pelos deslocamentos observados no RMN de ¹³C (Tabela 42, p. 224). Estes dados foram atribuídos com base nas correlações observadas nos esperimentos HMQC (Figuras 143, 144 e 147, p. 203, 204 e 207) e HMBC (145, 146 e 147, p. 205, 206 e 207). A figura 147 sumariza as correlações observadas no espectro bidimensional HMBC. A prenila foi localizada na posição C-3*l* com base nos incrementos de "nOe diff" observados ao irradiar o hidrogênio em δ 4,13 (H-1''), que mostrou uma transferência de polarização de 28% para o H-2*l* (Figura 141, p. 202).

A configuração relativa foi proposta com base nas constantes de acoplamento entre C-2l e C-3l em *trans* e nos incrementos de "nOe diff" observados. Ao irradiar H-4u foi observada uma transferência de polarização de 16% para H-2l, o que mostra que ambos encontram-se vizinhos espacialmente (Figura 142, p. 224).

Todos os dados expostos sugeriram que a substância **DV21** tratava-se da 3',4',7triidroxiflavana- $(2\beta \rightarrow 7, 4\beta \rightarrow 8)$ -3-prenil-fustina.

É necessária ainda a obtenção do EM pela técnica FAB ou IQ da substância, além de experimento de DC para determinação da configuração absoluta em C-4u, e, por conseguinte em toda a estrutura. Vale salientar que devido à ausência de 3-OH na unidade superior, as regras de Cahn, Ingold e Prelog irão alterar a nomenclatura para 4R se o efeito Cotton for negativo e 4S se o efeito Cotton for positivo na região de 220-230 nm.

Figura 130 – Espectro de RMN ¹H de **DV21** [300 MHz, DMSO, δ (ppm)]

Figura 131 – Espectro de RMN ¹H de **DV21** (integração) [300 MHz, DMSO, δ (ppm)]

Figura 132 – Espectro de RMN ¹H de **DV21** (ampliação) [300 MHz, DMSO, δ (ppm)]

Figura 133 – Espectro de RMN ¹H de **DV21** (ampliação) [300 MHz, DMSO, δ (ppm)]

Figura 134 – Espectro de RMN ¹H de **DV21** (ampliação) [300 MHz, DMSO, δ (ppm)]

Figura 136 – Espectro de RMN ¹³C de **DV21** (ampliação) [75 MHz, DMSO, δ (ppm)]

Figura 137 – Espectro de RMN 13 C de **DV21** (ampliação) [75 MHz, DMSO, δ (ppm)]

Figura 138 – Espectro de RMN ¹³C de **DV21** (ampliação) [75 MHz, DMSO, δ (ppm)]

Figura 140 – Experimento DEPT 135 de **DV21** (ampliação) [75 MHz, DMSO, δ (ppm)]

Figura 141 – Experimento nOe irradiando em δ 4,13 ppm de **DV21** [300 MHz, DMSO, δ (ppm)]

Figura 142 – Experimento nOe irradiando em δ 3,35 ppm de **DV21** [300 MHz, DMSO, δ (ppm)]

Figura 143 – Experimento HMQC de **DV21** [500 MHz, DMSO, δ (ppm)]

Figura 144 – Experimento HMQC de **DV21** (ampliação) [500 MHz, DMSO, δ (ppm)]

Figura 145 – Experimento HMBC de **DV21** [500 MHz, DMSO, δ (ppm)]

Figura 146 – Experimento HMBC de **DV21** (ampliação) [500 MHz, DMSO, δ (ppm)]

HMBC

"nOe diff"

Figura 147 – Correlações observadas no espectro HMBC e incrementos de "nOe diff" de DV21