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Projective modules with prime endomorphism rings

By
Davip A. HILL

Introduction. In [3] Chatters proves the following theorem: If R is a Noetherian
PP-ring then R is a ring direct sum of prime rings and Artinian rings. This theorem
is a generalization of his previous theorem concerning hereditary, Noetherian rings
(2D

The notions of hereditary and PP extend naturally to projective modules. For example,
a hereditary (PP) module is a projective module with every (cyclic) submodule projective.
The main objective of this paper is to extend his theorem to endomorphism rings of
finitely generated PP-modules over Noetherian rings. The theorem as it now stands is
primarily an existence theorem. We give a method for constructing the prime and
Artinian rings that occur in the decomposition of the endomorphism ring of a finitely
generated PP-module over a Noetherian ring, by means of an equivalence relation
defined on its indecomposable summands.

In Sect. 1, a basic criterion is given in order that the endomorphism ring of a projective
module be prime. In Sect. 2, some results about PP-modules are proved. As we shall see,
PP-modules share many of the same properties as hereditary modules. For example,
direct sums of PP-modules are PP. However, in contrast to hereditary modules, the
endomorphism ring of a finitely generated PP-module is seldom PP. For example, see
([41, Theorem 2.3). However, the main justification for PP-modules comes in Sect. 3: The
endomorphism ring of a finitely generated PP-module over a Noetherian ring decom-
poses into prime rings and Artinian rings.

In this paper all rings considered are associative with identity, and all modules
are unital. All conditions will be assumed to hold on both sides unless otherwise
stated. For example, a Noetherian ring is both left and right Noetherian. The following
notation will be used: The symbol J will always be used to denote the Jacobson radical
of R. For an R-module M, M will be used to denote the direct sum of A4 copies
of M.

For basic properties of hereditary modules we refer to [6], and for PP-rings we refer
to [9].

1. Endomorphism rings of projective modules. Some necessary and sufficient conditions
on a projective module are determined which imply that its endomorphism ring is prime.
But first the following lemma and corollary whose proofs are immediate and will be left
to the reader.
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1.1 Lemma. Suppose R is a ring direct sum of vings R, (i = 1, ..., k) and P a module over
R. Then P =P, ®...@ B, (some of the P, may be 0) with each P, a module over R,.
Moreover, Endz(P) = S; @ ... ® S, (S; = End, (P).

1.2 Corollary. Suppose R is a ring direct sum of rings R, and R, with R, Artinian and
P a finitely generated projective module. Then P = P, @ P, (P; a module over R, (i = 1, 2)),
and Endg (P) is a ring direct sum of S; and S,, with S; = Endg (P), (i = 1, 2). Moreover, S,
is Artinian.

1.3 Proposition. Suppose R is prime, and P a projective R-module. Then End (P) is prime.

Proof. Since for any prime ring R, eRe is also prime whenever e is an idempotent, it
suffices to show that the endomorphism ring S of any free R-module F is prime as
Endg (P) = eSe.

Suppose that aSh = 0,4, b€ S and b #+ 0. Therefore, there exists a canonical projection
n: F — R, and a canonical injection i,: R — F along the y and «’th coordinates respec-
tively such that =, bi, & 0. Thus for 7, i, with 7 and ¢ arbitrary, we obtain

0=mnaShi,=mn,ai,n,Si,mbi,.

Since 7,84, = Endg(R) = R, and =,bi, # 0, we obtain 7,ai, = 0. Since =, and i, are
arbitrary, a = 0.

The following corollary is well known and first proved by Robson ([8], Lemma 4.1).

1.4 Corollary. Let P be a finitely generated projective module and R a hereditary,
Noetherian, prime ring. Then Endg (P) is a hereditary, Noetherian, prime ring.

Proof. This is a consequence of 1.3 and ([6], Theorem 2.5).

1.5. Proposition. Let P (x€A) be a set of modules, and P =@ X P,(a € A),
S = Endg (P). Then S is prime if and only if for all i,j, k., 1€ A (i,}, k, | not necessarily
distinct) and non-zero maps ¢;: P, > P;, ¢3: B, — P, there exists a map ¢y : P, — P, such
that @y @5 ;5 + 0.

Proof. Suppose S is prime and let ¢;; and ¢y, be as given in the hypothesis. Then ¢,
and ¢, have natural extensions ¢;;, ¢;; € S which are defined to be zero on the comple-
ment of B, P, respectively. Since S is prime, ¢, S ¢;; + 0. Thus there exists ¢ € S such that
@i @ ¢i; * 0. Define ¢, to be the restriction of ¢ to P; followed by the projection onto
F,. Since the image of ¢}; is contained in P; and ¢y, is non-zero only on P, ¢ + 0.

Now suppose the condition holds, and let a, b non-zero homomorphisms in S. Then
for certain i, j, k, I € A, the restriction of a to P, and b to P, followed by the projection of
ato Pyand b to P, yield non-zero homomorphisms a;;: P, — P;, by, : B, —» F,. By hypothesis,
there exists a homomorphism ¢y, : P; — P, such that by, ¢, a;, + 0. Thus, it is easily seen
that ¢;, can be extended to a map ¢ € S such that bpa + 0. Thus, bSa + 0 and so S is
prime.
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2. PP-modules. A ring is called lefi (right) PP if and only if every cyclic left (right) ideal
is projective. If a ring is both left and right PP, it is called PP. The concept of a PP-ring
leads naturally to the module theoretic generalization. Thus, we have the following
definition:

Definition. Let P be a projective module over a ring R. Then P is said to be PP
in case every cyclic submodule of P is projective.

Remark. Hereditary modules are examples of PP-modules as are left and right
PP-rings. A number of results are true with only this hypothesis. See for example ([7],
Theorem 4.3).

It is clear that any direct summand of a PP-module is ailso PP. The same is true for
direct sums of PP-modules:

2.1 Lemma. Let R be a ring and P,(x€ A) a set of PP-modules over R. Then
P=@® X P(xe A)is PP.

Proof We will first show that a finite direct sum of PP-modules is PP using a finite
induction argument. For this it will suffice to show that for P, and P, PP-modules,
P, ® P, is PP.

So let x = (x,, x,) € P, @ P,, and consider the canonical projections 7;: Rx — Rx,
(i=1,2). Since Rx, € P, n, splits and Rx =K, ® K, with K, ~Rx, and K,
= ker (r;) = {rx|rx, = 0}. Now K, is cyclic and so the image of K, under 7, is a cyclic
submodule of R x,, which is necessarily projective. But the kernal of =, restricted to K,
is the set of r x with r x, = rx, = 0, which is zero. So K, is projective, and this shows that
R x is also projective.

The case when A4 is arbitrary is now obvious since for x € @ 2 P,, R x is contained in
a direct sum of a finite number of P, which is PP.

2.2 Proposition. Let P, (x€ A) be a set of indecomposable projective modules and
P=@® X P, (xeA),S=Endg(P). If the P, are hereditary (or cyclic and PP), then S is
prime if and only if Homg(F,, P;) &+ 0 for all o, f € A.

Proof. Suppose Homg(P,, P;) = 0 for some « and f. Let =, and =y be the natural
projections from P to P, and F; respectively. Therefore,

SnySm,=S(ny Sm)=8-0=0

with S#, + 0, S7; + 0.

Now suppose that Homg (P,, P;) # O for all o, f € A. We apply 1.5. Let ¢,,: P, > P,and
¢@u: B, = F,be non-zero homomorphisms with i, j, k, [ € A. Applying the hypothesis, there
exists a non-zero map @y,: P; — B,. Since the P, are hereditary (or cyclic PP), ¢;;, ¢y, 91
are all monic. Thus the composition ¢,; ¢, @;, + 0.

Remark. The “only if” part of the proposition is true for any set of modules.

Since the composition of monomorphisms is always a monomorphism, the proof of 2.2
yields the following corollary:
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2.3 Corollary. Suppose that P is an indecomposable, hereditary (cyclic and PP) module.
Then Endg (P) is an integral domain.

We investigate under what conditions an indecomposable PP-module has a prime
endomorphism ring.

Let M be a module and x, (x € A) a set of generators of M. We say that the set x, (a € A)
is minimal in case no x, is an R-linear combination of the others. Clearly every finitely
generated module has a minimal set of generators.

For the subsequent results the following notation will be introduced: Let P be a
PP-module with a minimal generating set x,(x € 4), and F = @ X Rx, (x € A). Then
there exists a natural map ¢: F — P defined as follows: Let x € F whose a’th coordinate
is r, x, {r, € R). Then let ¢ (x) = X r, x, € P where addition is addition of elements in P.
Clearly ¢ is well defined and onto. So ¢ splits, and F = ker (¢p) @ P, P = P/, p(P’) = P.
Let g: F — P’ be the natural projection and note that ker (g) = ker (o).

2.4 Lemma. Let P be a PP-module and suppose that P has a minimal set of generators
x, (x € A) with each R x, indecomposable, F, P', ¢, and g as defined previously. For each
o € A let i, be the natural projection of F onto R x,. Then for eacho. € A, g 7, g € Endg (P
is non-zero.

Proof. Suppose there exists f e A such that gngg = 0. Consider x € P’ such that
@(x) = x5, and let ¢y x; = my(x). Then x e P’ and g the identity on P’ imply that
gng g(x)=g(cyxg) = 0.80 ¢y x5 eker (g) = ker (). Thus letting 7, (x) = ¢, x, (2 € 4), we
obtain

xﬂ:(P(x): Z caxaEPa
axp

a contradiction to the minimality of the x,.

2.5 Theorem. Let P be a PP-module and suppose P has a minimal set of generators
x, (o € A) with each R x, indecomposable. Set F = @ X Rx, (e € A). Then the following
statements are equivalent:

(@) Endg(P) is prime.
(b) S = Endg(F) is prime.
(c) Homg(Rx,, Rxg) +0 forall o, fe A.

Proof. That (b) is equivalent to (c) is just Proposition 2.2.

(b) implies (a): Suppose S is prime. Since P is projective, Endg (P) = gSg g€S, ¢
idempotent. By a well known argument Endg(P) is prime.

(a) implies (b): Suppose S is not prime. Then by 2.2, there exists i,j € A such that
Homyg (Rx;, Rx;) = 0. Let n; and =; be the natural projections of F onto R x; and Rx;
respectively. Applying 2.4 gn; g and g=; g are non-zero. Thus, 7; S=; = 0 implies that
gn,g-98g-gm; g =_0. So gSg = End (P) is not prime.

Since any indecomposable, hereditary module has a prime endomorphism ring by 2.3,
we have the following corollary:

Archiv der Mathematik 44 9
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2.6 Corollary. Let P be a finitely generated indecomposable hereditary module with
x,(i=1,...,n) a minimal set of generators, and each Rx, indecomposable. Then
Homg(Rx;, Rx)+ 0 forall 1 £i,j <n.

2.7 Remark. Itis easy to see that for any Noetherian module a minimal generating
set can always be found whose elements generate indecomposable modules.

2.8 Proposition. Suppose R is a Noetherian ring and P an indecomposable PP-module
over R. Then Endg(P) is prime.

Proof. By factoring out the annihilator of P we may assume that P is faithful. Let g
be a primitive idempotent of R. Then g x % 0 for some x € P. Thus Rg=~ Rgxso Ryg
is PP. Applying 2.1 R is a Noetherian PP-ring. By 1.1 R is indecomposable. Thus by
Chatter’s theorem ([3]) R is either prime or Artinian. If R is prime apply 1.3. If R is
Artinian then P is isomorphic to R f for some primitive idempotent f. Thus P is cyclic
so 2.3 applies. This completes the proof.

2.9 Corollary. Let P be a finitely generated indecomposable PP-module over a Noethe-
rian ring R, with a minimal set of generators x; (i = 1, ..., n) and each R x; indecomposable.
Then Homg (Rx;, Rx;)) 0 forall 1 <i,j<n.

2.10 Lemma. Suppose P, and P, are PP-modules with minimal generating sets x, (o« € A)
and y, (B € B) respectively, and such that the Rx, and Ry, are indecomposable. Then
Homg (P, )+ 0 if and only if there exist an o€ A and feB such that
Homy (Rx,, Ry,) + 0.

Proof. Suppose that Homy (P, P,) # 0. Then there exists an « € A and a non-zero
map ¢,: R x, — P,. Since there always exists an embedding of P, in ® X Ry, (f € B), we
can obtain a # € B and a non-zero map ¢, :Im (¢,) — R y;. The composition of these two
maps yields a non-zero homomorphism ¢,;: R x, — R y;.

Now suppose there exists an « € 4 and f € B and a non-zero map ¢,;:Rx, = Ry,.
Identifying P, with its image in @ 2 R x, (a € A) and letting g, be the natural projection
of @ 2 Rx, onto P, and m, the projection of ® X R x, onto R x,, Lemma 2.4 implies that
n, g, + 0. Since ¢4 is monic, ¢, 7, g,: P, = Ry, & P, is non-zero.

2.11 Theorem. Let R be Noetherian and P a direct sum of finitely generated indecom-
posable PP-modules P, (« € A). Then Endg (P) is prime if and only if Homg (F,, Py) + 0 for
all o, e A.

Proof. Since R is Noetherian, we may apply 2.7 to obtain a minimal generating set
for each P, whose elements generate indecomposable submodules. The union of these sets
is a minimal generating set for P whose elements generate indecomposable submodules.

The “if’ part of the theorem is an easy consequence of 2.5, 2.9, and 2.10, and we leave
the details to the reader. For the ‘only if” part apply the observation following 2.2.

3. The theorem of Chatters. We consider projective modules which are direct sums of
indecomposable projectives. Projective modules having such a decomposition occur
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naturally as for example, all finitely generated projectives over Noetherian rings.

Suppose P =@ X P, (x € A), P projective, and each P, indecomposable. One can
define a relation ~ on the P, as follows: P, ~ P, if and only if Homg (P,, P;) + 0. Given
axe A, let

Aa = {ﬁeAlHomR(PwPﬁ) :!: O}

and set T, = Endg (® X P, € A,). (It is clear that P, + 0 always implies that o € 4,).
However the relation is seldom symmetric or transitive. When P is hereditary or a direct
sum of indecomposable cyclic PP-modules, the relation is transitive, since the composi-
tion of non-zero monomorphisms is non-zero.

When ~ is an equivalence relation, there is a partition of A in equivalence classes. If
the cardinality of A4 is also finite, an easy argument shows that S = Endg (P) is a ring
direct sum of the 7, « varying over each equivalence class.

The main theorem of this section shows that for a finitely generated PP-module over
a Noetherian ring, the relation ~ is an equivalence relation on the non-Artinian inde-
composable direct summands.

We start with some lemmas. The following lemma was first proved by Colby and
Rutter ([4], Lemma 2.5), under the hypothesis that R is a PP-ring. Their proof works
under the slightly weaker hypothesis that Re is a PP-module.

3.1 Lemma. Suppose e is an idempotent and Re a PP-module. Then eRe is left PP-ring.

3.2 Lemma. Suppose R is Noetherian and P a direct sum of finitely generated indecom-
posable PP-modules P, (x € A). Then the relation ~ is transitive.

Proof. The result follows easily from 2.10 and 2.9.

3.3 Lemma. Let R be Noetherian and Re = Re; @ Re, a PP-module, e, and e, primitive
orthogonal idempotents. Suppose that e, Re, is not Artinian. Then e; Re, % 0 if and only
if e; Re; + 0.

Proof. Suppose e; Re, + 0, and e, Re; = 0. Then eRe is isomorphic to the ring of
matrices of the form,

e, Re, e, Re,

0 e, Re,

Applying 3.1, ¢Re is an indecomposable, Noetherian PP-ring which is not Artinian. So
by Chatters theorem ([3]), eRe is prime, clearly a contradiction. Thus e, Re; = 0. The ‘if’
part of the lemma uses the same argument.

We will need the following concept: A projective module P is said to be local in case
it possesses a unique maximal submodule. This definition is equivalent to P = Re, e a
primitive idempotent with Je the unique maximal submodule and eRe/eJe a skew-field
([10]). For a discussion of local modules, see [10].

g*
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3.4 Lemma. Suppose R is Noetherian and P a finitely generated indecomposable P P-
module. Then S = Endg (P) Artinian implies that P = Re, e a primitive idempotent and Re
a local module.

Proof. Applying 2.8, S is prime. Thus S is a simple Artinian ring. Since P is indecom-
posable, S is a skew-field. Applying ([10], Theorem 4.2) of Ware, P is a local module. Thus,
P = Re with Je the unique maximal submodule.

3.5 Lemma. Let R be Noetherian. Then R has only a finite number of isomorphism
classes of local modules. Furthermore, if P is local and P % Re, e a primitive idempotent,
then there exists a primitive idempotent f such that P =~ Rf with e and f orthogonal.

Proof We may assume there exists a set of primitive orthogonal idempotents
e;(i=1,...,n)such that e, +... + ¢, = 1. Suppose P is a local module. Then P =~ Ry,
g a primitive idempotent with unique maximal submodule Jg. Therefore, since
g=-e g+...+ e, g, there exists some i < n such that e; ¢ Jg. So there exists a homo-
morphism g,:Re; - Rg given by right multiplication by g where the image is not
contained in Jg. As Jg is the unique maximal proper submodule of R g, g, is epic. This
implies that R g 2 Re;. Since at most only n of the Re; are local, the first assertion is
proved. The second assertion follows from the above proof observing that there always
exists a complete set of primitive orthogonal idempotents containing one that is given.

3.6 Lemma. Suppose R is Noetherian and Re an indecomposable PP-module, e a primitive
idempotent. Then Re is non-Artinian if and only if eRe is non-Artinian.

Proof. In one direction the result is obvious. So suppose that eRe is Artinian. We first
show that Re has descending chain condition on indecomposable cyclic submodules.
Suppose Re has a proper descending chain of indecomposable cyclic submodules:

Re=Rx, o Rx; ... Rx,> ....

We claim that for some i > 0, Endy (R x;) is not Artinian. Suppose not. With each R x;
indecomposable and Endg (R x;) Artinian it is immediate from 2.3 that Endg (R x)) is a
skew-field and from 3.4 that R x; is local. Using 3.5 there are only a finite number of
isomorphism classes of R x;. So there exists an i and j such thatj > iand R x; = R x;. Now
let e; be a primitive idempotent such that R x; = Re,. Since Rx; € Jx;, ¢; J ¢; = 0. This
contradicts ¢, Re; = Endg (R x,) being a skew-field. Therefore we conclude that for some
i > 0, Endg (R x;)is not Artinian. Now R x; = Re, implies that Re, & Re as eRe is assumed
to be Artinian. So applying 3.5 we assume that e and ¢; are orthogonal. Thus, f = e + ¢;
is an idempotent and so f Rf is a Noetherian PP-ring by 3.1. Observing that R x; S Re,
yields that e, Re £ 0. Applying 3.3, we obtain eRe; + 0. Since Rx, = Je, this means
that,

O*+eRx;, cele
a contradiction to eRe a skew-field. Thus the above chain must terminate after a finite

number of steps. Now Re must be Artinian. Suppose not. Since Re has descending chain
condition on indecomposable cyclic submodules, Re has a submodule R x minimal
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with respect to being cyclic indecomposable and non-Artinian. Therefore every proper
cyclic submodule of R x is Artinian which implies that R x is Artinian a contradiction.

3.7 Lemma. Let R be Noetherian and P a finitely generated indecomposable PP-module,
with a minimal generating set Rx;(i=1,...,n) and each Rx; indecomposable. Then
Endg (P) non-Artinian implies that all the Endg (R x;) are non-Artinian (i =1, ..., n).

Proof Applying 3.6, Endg (R x;) is non-Artinian if and only if R x; is non-Artinian.
So it suffices to show that all the R x; are non-Artinian. It is clear from the hypothesis that
at least one of the R x; is non-Artinian say R x,. By 2.9, R x, embeds in each R x; so that
all the R x; must be non-Artinian.

3.8 Theorem. Let R be a Noetherian ring and P =P, @ ... @ P, a finitely generated
PP-module with each P,indecomposable. Then S = Endg (P) is a ring direct sum of Artinian
rings and Noetherian, prime rings whose decomposition is determined as follows:

§=8,@85,, §=Endg(Q), (=12

where Q, is the direct sum of all the Artinian indecomposable modules that occur in the
decomposition of P, and Q, is the direct sum of the non-Artinian indecomposable summands.
Thering S, =T; ® ... ® T, (k < n) where each T, is the endomorphism ring of the direct
sum of all the non-Artinian indecomposable projectives which belong to the V'th equivalence
class determined by the relation: P, ~ Py if and only if Homg (P,, Py) # 0. Furthermore, S,
is Artinian and the T, are all non-Artinian, Noetherian, prime rings.

Proof. Applying Corollary 1.2, it is clear that S; is Artinian. We first observe that if
P, is not Artinian then Endg (P} is not Artinian. Suppose Endg (P) is Artinian. Then by
3.4 P, =~ Re, Re a local module. An application of 3.6 yields a contradiction. This proves
our claim. ’

We now show that ~ is an equivalence relation. By 3.2 we need only show reflexivity.
Let P; be non-Artinian, and suppose there exists P;(j # i) such that Homg (P, P)) # 0.
By 2.10, there exists an Rx; £ P, and an Rx; & P;, Rx; and Rx; indecomposable
and such that Homg (R x;, Rx;) #+ 0. Applying 3.7, Endg (R x;) is non-Artinian. Since
Rx; = Re; and Rx; = Re;, ¢; and ¢; primitive idempotents, we have ¢; Re; =+ 0. Suppose
e;e; 0, then Homg (R x,, Rx;) + 0. So we may assume that ¢; ¢; = 0. Then applying
clementary properties of idempotents, we may assume that e; and
e; are orthogonal. So by 3.3, 0+ Homg(Rx;, Rx;) = e, Re;. Applying 2.10 again
Homg (P;, P) & 0. This means that the relation ~ is an equivalence relation, and so
S, =@®2T(i=1,..., k)as aring. The T; are non-Artinian Noetherian, prime rings is a
consequence of Theorem 2.11 and Endg (P) non-Artinian.

Since the endomorphism ring of a finitely generated hereditary module is always
hereditary ([6], Theorem 2.5), we have the following corollary:

3.9 Corollary. We assume the hypothesis of Theorem 3.8. Also suppose the P,(i =1, ..., n)
are hereditary. Then Endg (P) is a direct sum of hereditary, Noetherian, prime rings and
Artinian hereditary rings with the decomposition as determined in 3.8.
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3.10 Corollary. Suppose R is Noetherian and P = Re, e an idempotent with Re a PP-
module. Then eRe is a direct sum of Artinian PP-rings and Noetherian prime PP-rings with
the decomposition as determined in 3.8.

3.11 Corollary. Let R be a Noetherian PP-ring and P a finitely generated projective
module over R. Then Endg (P) is a direct sum of Artinian rings and Noetherian prime rings
with the decomposition as determined in 3.8.

Remarks. (1) Let R be a Noetherian PP-ring and e;(i = 1, ..., n) a set of primitive
orthogonal idempotents with e; + ... + e, = 1. Let Re be the sum of all the Re; with
Re; Artinian. Then since Endg(P) =~ R canonically, Theorem 3.8 says that R = eRe
@1 —e)R(1 —e¢)asaringwitheRe = ReR,(1 —¢)=R(1 —e)R,and (1 — ¢) R(1 — ¢)
non-Artinian. The Noetherian prime rings can becomputed as follows: For each
e;€(1 —e)R(1 — e) apply 3.8 to obtain the Noetherian prime ring T; which is just the
sum of all Re; such that e; Re; # 0.

(2) Observe that the proof of 2.8 and 3.3 requires Chatters Theorem for PP-rings. We
suspect that a module theoretic proof of Theorem 3.8 can be given without requiring the
use of Chatters Theorem.

4. Examples and applications. We now give some examples and applications which will
serve to place the major results of sections 2 and 3 into perspective. The first example
shows that an Artinian PP-ring need not be hereditary.

1. Let F be a field and R the ring of matrices of the form

F r F
R=10 F 0f.
0 0 F

Then R is a hereditary left serial algebra (That is every indecomposable projective left
ideal has a unique composition series). Using the well known duality Hom, ( , F), R has
an indecomposable injective left module E with composition series of length 3 and
E/JJExF®F®F,JE ~F. In fact if we let

0 0

e, = 1 , e3= 0

and write Je, = Rv, Je; = Rw for some v, w € R, and let
D = {(xv,aw)]ae R}

then zE may be written as zE = (Re, @ Re,)/D.
Since E is in a natural way a right F-vector space, we may define S to be the ring of
matrices of the form

R E,
s[5 ]

with addition and multiplication of elements being the obvious ones.
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Then S is a PP-ring but is not hereditary. The left ideal

0 REp
0 0

is not projective over S since zEp is an indecomposable proper quotient of Re, @ Rej,.

2. The next construction gives examples of PP-modules whose endomorphism rings are
not PP.

Using the proof of the ‘if” part of ([4], Theorem 2.3),.their result can be sharpened as
follows:

4.1 Proposition. Let R be a left PP-ring and I a left ideal with n generators such that 1
is not projective. Then Endg (R™) is not left PP.
Consider the non-projective left ideal on two generators of example 1 namely

0 REF
0 0 |
By the above proposition Endg(S®) is not PP, although S is a Noetherian PP-ring.

3. Let R be a Noetherian, semi-perfect ring and P a finitely generated PP-module over
R. A large class of rings whose finitely generated projective modules satisfy these condi-
tions are the Semi-perfect hereditary Noetherian rings.

The T, can be computed as follows: Since R is semi-perfect, P = @ X Re{™
(j=1,..., k) with each Re; a local PP-module, e; a primitive idempotent, and satisfying
Re; £ Re, for i & j. Using 3.8 Endg (P) has a decomposition into Artinian and Noetherian
prime rings.

If we let f1, ... f; be those e; that belong to the i’th equivalence class determined by the
relation ~ defined in 3.8 and s; be the multiplicity of f; in the decomposition of P, then
each T; can be expressed as a matrix in block form:

Uy, ..Uy,
T=|: ;

Utl Uy

The gr’th block U, has entries taken from f, R f, and dimensions s, x s, as shown
below:

LiRL RS
v = : :

qr

fql.if,...fql.(fr

4. The following construction yields a class of Noetherian rings not PP but which have
PP-modules. Let R be a Noetherian prime PP-ring, and S be the ring of nx n block
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upper triangular matrices with entries from R above the blocks and zeros below as
indicated in the figure.

R

0

Then S has a PP-module which is the left ideal consisting of the upper left hand block
and zeros elsewhere. This block is the maximal PP direct summand of S as the following
argument shows: Denote by C; the i’th column of S. Suppose for some k < n, C, is PP
and C, does not belong to the block in the upper left hand corner of S. Then for all i < k,
C; is also PP since C, contains an isomorphic copy of C;. Thus S has a PP direct
summand of the form

[R |
[
L ! k’th
"1 column
L
!
I
o

Observe that T = Endg(T) (as rings). Now apply 3.8 to conclude that T must be prime.
But this contradicts the existence of non-zero nilpotent ideals in T. Thus § is never PP
unless it is the full matrix ring over R.

5. The following example yields indecomposable PP-modules which have minimal
generating sets of more than one element.

Let R be a Dedekind domain that is not a principal ideal domain, and I a non-principal
ideal of R. Since R is herditary and prime, I is an indecomposable hereditary module on
two generators.

For example, in the above construction one could take R=Z[,/ — 5] and
I'=2R+ (1 +./ —~ 5)R. Then I is an indecomposable hereditary module and has min-
imal generating set {2,1 + ./ — 5}.
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